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Model calculations for an atom interacting with an intense, time-dependent electric field
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We have performed a set of numerical calculations of the one-dimensiona1, time-dependent
Schrodinger equation in order to study the interaction of an intense, electromagnetic field with a
model atom. %'e approximate the atom by a local, square-well potential and the electromagnetic
wave by an oscillating electric field. %e investigate the multiphoton-absorption process that leads
to the "above-threshold" ionization (ATI) phenomenon. %'e not only examine the ionization proba-
bility and electron-energy distributions within the field but also the efFects of spatial and temporal
boundaries that represent the finite dimensions of a laser pulse. We observe all the main features of
the ATI behavior from the shifting of the peaks to their disappearance. In addition, we find

differences in the positions of the peaks according to how the electron exits the Seld region. %'e also
explore resonant ionization as well as Volkov wave packets and the recombination process.

I.. INTRODUCTION

Recent advances in the technology of short-pulse,
highly focused lasers have motivated a variety of experi-
ments' in which atomic and molecular targets are ex-
posed to very intense electromagnetic (EM) waves
(10' —10' W/cm ). Using spot sizes of a few microns
and pulse durations of hundreds of femtoseconds, these
experiments have achieved field strengths comparable to
those that bind the atomic targets (10'6 W/cm =0.5 a.u.
of field) The. exploration of this new regime has wit-
nessed the discovery of a number of new processes, which
may have profound ramifications for the study of the in-
teraction of radiation with matter. One of ihe most stud-
ied of these new mechanisms is "above-threshold" ioniza-
tion (ATI). The basic ionization process is described as

Nh v+ A (ct)~ & +(P)+«

in which a beam of photons each with energy» im-

pinges upon an atom in state a with binding energy e,~
and leads to an ion in state P and a free electron with en-
ergy k . In the standard, weak-6eld ionization case, we
observe a single peak in the electron-energy distribution
at k =2(h v —

~

e
~

). However, the new bright-source
lasers achieve an intensity high enough to evoke the full
multiphoton process. Therefore, the electron-energy
spectrum exhibits a series of peaks, separated by the pho-
ton energy hv, that correspond to the absorption of suc-
cessively higher numbers of photons. In fact, cases in-
volving the absorption of 10 to 50 photons have been
recorded. In addition, the relative heights and positions
of the peaks vary with the field strength. For certain
characteristics of the pulse, the peaks appear to shift and
even disappear as the intensity is increased. The question
arises, which we shall pursue further, as to the basic na-
tuj'. e of these phenomena.

Such findings have, of course, witnessed the reviva1 and
development of a wide variety of theoretical
methods. The application of standard time-

dependent (TD) perturbation theory (PT) was the most
natural first choice. However, to model the full ATI
structure would require very high orders of the expan-
sion, which are usually difBcult to calculate. Such an ap-
proach is therefore usually confined to weak 6elds for
which only the lowest few orders are required. Another
approach was devised by Keldysh shortly after the
discovery of the laser. One prescription for obtaining his
results involves the expansion of the system wave func-
tion in terms of bound target states and Volkov func-
tions, ' which are exact solutions to the Schrodinger
equation for an unperturbed electron interacting with an
oscillating electric field. The evolution of the system is
described in terms of a set of coupled, first-order
difFerentia1 equations, whose solution is the time-
dependent expansion coe%cients of the bound and Vol-
kov basis. Starting with the assumption that the system
remains mostly in the initial bound state, we derived a
first-order form for the ionization probability that con-
tains contributions from the principal multiphoton tran-
sitions. Higher-order contributions can be obtained by
successive substitutions of the approximate solutions.
Using a difFerent gauge, Reiss" devised a similar tech-
nique based on the integral equation formulation of
scattering theory. Using the homogeneous solution as an
initia1 approximation, he obtained higher-order correc-
tions to the wave function by repeated substitutions. Al-
though both the Keldysh and Reiss prescriptions can be
iterated to an exact solution, the forms reported by both
authors and used in calculations are only valid to first or-
der. Other formulations, using modulation theory' '
and two-step schemes, ' have followed along similar lines.
Despite their simplicity, these approaches predict many
of the genera1 features of the ATI process. However,
many of these schemes, including those of Keldysh and
Reiss, are utilized only in first order in the wave function
and are of questionable validity once the system becomes
appreciably ionized (probability P ~10 ). Therefore, in
order to determine the range of applicability of these ap-
proximate techniques and to investigate the regime of
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more completely ionized systems, more sophisticated
methods were sought.

A wide variety of more elaborate theoretical pro-
cedures have been applied to the intense field case. These
have ranged from applications of Floquet theory, '

which takes advantage of the periodicity of the Hamil-
tonian, to the direct numerical solution of the TD
Schrodinger equation. ' In many of these schemes,
the 5-function model ' ' has played an important role.
The basic TD formulation is greatly simplified by the re-
placement of the atomic potential by a 5 function. The
numerical approaches have ranged from the treatment of
simple, one-dimensional models to elaborate TD
Hartree-Fock calculations for hydrogen and helium.
These more exact methods have not only served to test
the validity of the perturbative approaches but also to
probe the intricate details of the ATI process. %e have
presented a very brief, selective overview of the status of
the experimental and theoretical endeavors on intense
6elds; an extensive review is available in a recent series of
papers,

In this paper we have selected a simple model of the
matter-radiation interaction so that we can obtain an ex-
act numerical solution to the resulting Schrodinger equa-
tion. %e represent the atomic target by a local, finite-
ranged model potential in one spatial dimension. In addi-
tion, we approximate the EM wave as an oscillating elec-
tric field. Our choice of a square well serves as a transi-
tion between the 5-function potential ' and the long-
range Coulomb form. As we reduce the extent and in-
crease the depth of the well, we approach the 5-function
limit and can gauge the validity of this quotidian model.
By widening the potential we approximate a more realis-
tic physical target. For the basic multiphoton processes
observed within the 6eld, we obtain results in general
agreement with other practitioners. In this sense, our
calculations complement these earlier works. However,
we also investigate the manner in which the ejected elec-
trons exit the field, or in other words, the sensitivity of
the ATI peaks to the spatial and temporal boundary con-
ditions of the laser pulse. Since the ATI experiments
show a dependence on the pulse length, ' this numerical
study is particularly valuable. %e have also explored the
ramifications of introducing a second bound level into the
potential well so that resonant ionization processes be-
come important. In addition, we have examined the
recombination process as mell as Volkov wave packets.
The latter quantities, which have analytical expressions
for Gaussian distributions, display many of the interest-
ing properties of the full solutions. Therefore, we
connate a diverse set of results for the multiphoton ion-
ization within an intense EM 6eld in order to present a
unified picture of the many aspects of this process for a
simple, well-defined model system.

II. THEORY

A. General time-dependent formulation

The interaction of an electromagnetic wave with an
atom is described in terms of a time-dependent, three-
dimensional Schrodinger equation, which must contain a

representation of the atomic target as well as the propa-
gating radiation 6eld. The solution to such an equation
presents a most formidable task. In order to make the
problem more tractable, we introduce a set of simplifying
assumptions that we hope shall reduce the complexity of
the solution without sacrificing the pertinent physics. %e
invoke the following set of simplifications: (1}we employ
only one spatial dimension, (2) we represent the target by
a local potential, (3) we treat the radiation field classical-

ly, and (4) we consider the electromagnetic wave to be
given by an oscillating electric field.

Before delving into the mathematical formulation, we
should briefly explore the consequences of these approxi-
mations. The restriction to one spatial dimension limits
our models of the target system, our ability to predict
continuum-electron spatial distributions, and our repre-
sentation of the electromagnetic wave in that certain
cross-6eld terms are omitted. However, in compensation,
we shall be able to investigate the ionization process over
a wide ran'ge of spatial and temporal variables. This Aexi-

bility allows us to properly converge the electron-energy
distributions, which lie at the heart of the ATI
phenomenon, and to study the manner in which the elec-
tron leaves the electric 6eld. Qur second approximation
of a local, model potential to represent the atom restricts
our picture of the atom-field interaction as well as of the
intricacies of the atomic structure. Qn the other hand,
the simplicity of this model will allow us to study a wide
range of forms in order to ascertain the sensitivity of the
various processes to the nature of the atomic potential.
The third constraint to a classical representation of the
radiation field is not severe. The system is now noncon-
servative since an unlimited number of photons can be
absorbed or emitted. However, the Hamiltonian remains
Hermitian, thereby preserving the norm and the con-
tinuity equation. Quantities such as ionization probabili-
ties and electron-energy distributions are well de6ned.
Finally, the use of only an oscillating electric 6eld in
place of the full EM wave limits our description of the
general time evolution of the system, such as the passage
of the front over an atom or the detailed interaction of
the free electron with the 6eld. In addition, this form
completely neglects the magnetic field. However, for the
intensities and frequencies employed in current lasers to
study ATI„ the magnetic component is very weak. On
the other hand, the oscillating electric field approxima-
tion forms the basis of most intense-field approaches from
the Keldysh to sophisticated numerical models. There-
fore, while moderately restrictive, these approximations
should not destroy the basic physical mechanisms in-
volved in the multiphonon ionization.

The formulation of the field-atom interaction is some-
what difkrent from that of standard scattering, being
nonstationary and time dependent. %e start the solution
in a given initial state and follow its evolution in time and
space. We e6'ect this evolution through a solution of the
following time-dependent Schrodinger equation:

H(x, t )g(x, t }=iD,Q(x, t ),

H(x, t ) =Ho(x )+H; (x, t ),
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Ho(x ) =K(x )+ V(x ),
K(x ) = D—„„/2,
H, (x, t ) =xE(x, t )cos(tot ),

(2c)

IQ(t}6—= T ' jQ(t)dt, (6b)

Finally, in some cases, we shall need the time average of a
quantity over a period of the electric field, which we shall
designate as

D, —:8/Bt and D„„=B/8 x. The time-independent part
Ho contains the kinetic energy operator K(x ) which de-
scribes the translational motion of the continuum parti-
cle, and the local potential V(x), which represents the
atomic target. The interaction with the oscillating elec-
tric Geld is carried by the dipole-coupling term in 0, .
For the one-dimensional case, the dipole representation is
exact. The frequency and amplitude of the field are
designated by ai and E, respectively. This corresponds to
a photon energy of hv (v=ro/2m) and a period for the
field of T=2m /co. We have allowed for the possibility of
ramping the field in space and time and have written the
equation in atomic units (au) [the atomic units of length
(ao), time (r), energy (hartrees), and electric field have
the following standard equivalents: 5.29 g IO cm,
2.42X10 ' sec=0.0242 femtoseconds (fsec), 27.21 eV
and 5. 14X 10 eV/cm]. The laser is usually characterized
in terms of its intensity I, which in turn is related to the
electric field [I(W/cm )=3.50X10' E (a.u. )]. Since we
are concerned with an initial-value problem, the solution
at a starting time to must obey the condition

g(x, to ) =F(x, to ), (3a)

with F a known function. For example, in ionization,
this function F would represent the bound state of the
target system, while for recombination, a wave packet
corresponding to the incident particle.

For most of our studies, we shall employ

aconite

range-
potential such that V(x ) tends to zero faster than
1/

I
x

I
. In fact, we shall usually confine our attention to

a square well of the form

—Vo, I
x

I
&a

V' '=
0, IxI &a. (3b}

(O
I 1()=—J

"
y(x, t )*y(x, t }dx .

The square well has the additional property of properly
approaching the 5-function limit f V~ —85(x)] as the
width tends to zero and the depth to infinity while the
product 2a Vo(—:8) remains constant. Numerous formu-
lations have employed this 5-function potential in both
one ' and three dimensions. %e therefore may be
able to extend our present findings to more complicated
systems by analogy with the 6-function results.

One of the observables in which we are interested is the
probability of finding the electron at a given point in

space and time and is given by

P(x, t)=g*(x,t)g(x, t) .

Since the particle must lie somewhere in the radial range
at any given time, we also have

P(t)—:J P(x, t)dx =(1(
I g) =1,

where the integral extends over a period [(n —1)T
~nT]

B. Limiting cases

%e consider several limiting cases to the general
Schrodinger equation (1).

l Poten. tial only (E=O)

In this case, we recover the standard stationary-state
formulation. The time dependence can be solved exact-
ly, and the solution takes the form

il{x,t)=P, (x ) exp( ie—t ),

Hop, (x ) =.((,(x ), (7b)

with c. the eigenenergy. For negative energies we obtain a
discrete set of bound-state solutions [ P„ I, which are nor-
malized as

(Sa)

On the other hand, for positive energies„we have a con-
tinuous spectrum t P„ I, which exhibits the usual
l3irac-5-function normalization

(y„ I y. ) =5(k —~), (8b)

where k =2@.
For aPnite range poten-tial in one dimension, we have

for each value of k two degenerate continuum solutions.
The first represents a wave moving from left to right
{Pk ), while the second designates the opposite motion

(Pl, ). In the asymptotic region in which the potential
may be neglected, these two solutions have the following
forms:

exp(ikx )+R i exp( ikx ), x & 0—
ai x-

T,exp(ikx), x &0

T,exp( ikx ), x—~0
P (x)= '

exp( ikx )+R,e—xp(ikx ), x & 0

(9c)

where T (R} is a transmission (reflectance) coefficient,
which indicates the departure of the solution from a pure
plane wave. For such simple potentials as the 6-function
and square well, we can determine these coeScients
analytical1y. In the case of more complicated forms we
must determine T and 8 from matching the numerical
solutions to the above asymptotic expressions. %'e sha11

use these states to describe the ionization process.
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2. Field only (V=0)

X(xt )—:C exp{i [k —y, sin(an't )]x I,
rt, (t )—:exp[ i(y—ik2+y, )t],

(1 la)

(1 lb)

i) (t)—:exp{i[—y4k cos(tot)+y sin(2tot)]{, (1lc)

with C =I/(2m), y, =Eolco, yz ———,', ye=ED/(4to ),

y~= y, /ai, and y5 =yi/(2'�). For our purposes we take
the Volkov states as forming a complete set and obeying
Dirac-5-function normalization. These states will prove
very useful in describing the exit of the particle from the
electric field and in establishing certain properties of the
electron-energy distribution.

C. %ave packets

Underlying our entire description of the time-
dependent Schrodinger equation is the concept of a wave
packet. We generally construct such a packet as a super-
position of a complete set of known basis functions {$1, {

g(x, t)= f (ak, t)P ( Ixt)dk . (12)

The basis is usually formed from stationary states
[P&( xt)=X&(x)exp(iet)] of the system although this is
not a requirement so long as the set is complete. The
square modulus of the quantity a(k, t ) is the probability
of finding the system in a particular state P& at a given
time t. Even though the individual continuum basis func-
tions may obey 5-function normalization, their superposi-
tion gives rise to a total system wave function that is well
behaved over all space and satisfies Eq. (5).

We now consider a few examples of such wave packets.
The most common construction employs the free-particle
( V=O, E =0}functions of the form

The solution to the time-dependent Schrodinger equa-
tion in the case of a charged particle in an oscillating
electric field [E(x,t ) =ED, a constant] was originally de-
rived by Volkov ' and has the form

P„(x,t )=X(xt)ri, (t )rt, (t ),

g(x, t)= f a„(k,t)g„(x,t)dk, (17)

where the Volkov state is given by Eq. (10). We start the
solution at time t =0 in a particular momentum distribu-
tion,

a, (k, O)=N exp[ —(k —ko) /w&], (18)

where N =2/(n. wl, ). We have selected a Gaussian for
convenience since the basic propagation properties are
fairly insensitive to the form of the initial distribution.
This distribution is peaked about the most probable ini-
tial velocity of the system ko and has a width in rnomen-
tum space of mj, .

We now let the packet evolve in time according to Eq.
(1) under the influence of an oscillating electric field but
with no potential ( V=O). This is the electric field analog
of the free-packet propagation; both lit and g, satisfy the
same time-evolution equation. Since we have not intro-
duced any additional interactions into the time-
dependent Schrodinger equation that could induce transi-
tions among the Volkov states, the packet must remain in
the same momentum distribution. We therefore have

P„"'(t)= ~a„,(k, t).~'= ~a„(k,O) ~'.
We can actually solve for the time evolution of this pack-
et analytically and obtain, for the probability density at a
later time,

with the fact that the Dirac —5-function normalization
condition on the P~ holds only for positive k (see Ref. 38,
Chap. III); the two linearly independent solutions are
then required for completeness. The probability of
finding the system in the state designated by k at a given
time t is simply

P„(t)= ~a, (k, t}
~

'+ ~a, (k, t) ~',

where

at(k }=~Wi I 4)
When we specifically project onto the continuum square-
well solutions, we shall designate the probability as PI', .

As a Anal example, we consider a Volkov packet of the
form

y„(x,t ) =exp(ikx )exp( tk 't /2) —. (13) P(x, t ) =c(t )exp[ —(z —kot ) /Q(t )],
While convenient, many such functions may be required
to represent the solution for propagation in a potential or
Geld. %'e therefore may wish to use a stationary-state
basis that contains some information about the actual
system. In the case of a local potential in one dimension,
we can usually obtain the bound and continuum solutions
analytically or from a simple numerical integration of the
tine-independent Schrodinger equation [Eq. (7b)]. Due
to the double degeneracy of these continuum solutions,
the appropriate form for the packet is

P(x, t)= f a, (k, t)P„'(x, t)dk

+ f a, {k,t)PI', (x, t)dk . (14)

The reason for this form is somewhat arcane but rests

x„„„,=kot+(Eoloi )cos(cot) . (21)

The erst term represents an overall translation, which
corresponds to the classical motion of a particle in free
space. Superimposed on this translation is an oscillatory
or "jitter" motion displayed by the second term. In addi-
tion, the packet will spread spatially according to the
time dependence in the quantity q(t). Although the
center of the packet appears to move classically, the
spread with time should alert us to the quantum-
mechanical nature of the propagation. Since we are solv-

where c(t) = I/[irQ(t)], w„=2/to&, q(t)=[1+(t /
io„)], Q(t)=to„q(t), and z=x y~cos(cot). Wh—ile com-
plicated, this expression has a very simple interpretation.
The center of the packet moves according to the form
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ing a complex difFusion equation, we obtain the probabili
ty of finding the particle in a given state k at a prescribed
location. %'e therefore must be circumspect about classi-
cal analogies.

An interesting situation arises if we project this Volkov
packet onto the free-particle stationary states of Eq. (13),

f(x, t)= f a&(k, t)gk(x, t)dk . (22a)

The probability Pk (t ) of finding the system in a particular
stationary state is time dependent although periodic and
has the simple form

Pg(t)=—
I
a&(k, t)

I
=

I
a„(k+(Eo/to)sin(tot), 0)

I

2,

(22b)

where a, is given by Eq. (18). If we look uu'thin a period,
we shall observe the center of this k-space distribution
shift in position about ko according to

k„„„„=ko+(Eo/to)sin(cut ) .

The expectation value of the time derivative, which in
a conservative system would correspond to the total ener-

gy, has a term that grows linearly in time as t cos(tot).
Qn the other hand, if we take the time average over a
period of the electric field of the "kinetic energy" term
[Eq. (2c)], we obtain

I &1f
I
&(x)

I q) Ir ——(ko/2)[1+(2N„ko) ']+EJ, (22d)

with

process by Xo. Therefore, an Xo-photon Ionizatian will

have a threshold of Xo~. In the ionization process, we

start the system in a bound state of the potential

F(x, to) =P„(x )exp( —i e„t )

and evolve the solution in space and time by solving the
Schrodinger equation. As time goes by, the electric field
will induce transitions from this bound state into the con-
tinuum. Therefore a measure of the degree of ionization
will be the amount of population in the contiuum states.
Since the ionization is determined from a measurement of
the number of free electrons outside of the electric field,
the natural representation of the continuum is in terms of
the field-free stationary states [Eq. (7)]. These states
mould also form the proper representation if after some
time we turned the field off adiabatically. In terms of
these states, we have for the total ionization probability

P(t)=( 2m)-' f I &P„(x,t) I g(x, t)) I'dk, (25)

where the (()„ functions are given by Eqs. (7)—(9). If we
project unto the continuum states of the square well [Eqs.
(9)] then we must include both linearly independent solu-
tions P' and P, since each contains even and odd parity
components. This is not a particularly convenient form
to calculate since we must perform the integration over
all allowed continuum states. Using the completeness of
the bound and continuum basis functions, we can also
write the probability as

(26)
Ei =—Eo/(4' ) . (22e)

In the limit of an in6nitely broad packet, which implies
through the uncertainty principle that the momentum is
precisely defined, this result approaches the classical en-
ergy of a particle moving in an oscillating electric field.
The second term E~ represents the famous jitter or quiver
energy. %'e may regard this extra term as a self-energy
or in analogy with the Lamb shift, an effective mass. '

If a fixed imount of energy is supplied to the system, then
part must go to the quiver motion while the remainder
can result in translation. %e shall return to this point in
Sec. III A.

D. Ionization

General formulation

Multiphoton ionization is described by the following
schematic reaction:

—f Iq(x, t) I'dx= —f D„J(x,t)dx, (27a)

where the probability current is

j (x, t ):— [p(D„f') f'—(D„p))— (27b)

for a range of the spatial variable from xo to x, . By in-
tegrating over time and by assuming that the ionized par-
ticle has left the vicinity of the bound wave function, we
have

The sum now extends only over the discrete spectrum.
For the case of a Anite-range potential, which has only a
small number of bound states, this form is far more tract-
able. In the case of an atom with a large Rydberg spec-
trum, the advantages are not as clear.

%e can also de6ne the ionization in terms of the proba-
bility current. Since the Hamiltonian [Eq. (1)] is Hermi-
tian, the solution obeys the continuity equation,

Nh v+ A ( )~nA (m+)+ke
P, (t i ) = fj (x, t )dt, . (27c)

In other words, a number of photons, each with energy
hv, impinge on an atom in a bound state n of energy c.„
producing an atomic ion in state m and a continuum elec-
tron with energy k (Ry) given by

k =2(%co
I

c.„ I
) . —

%'e 1et Xo represent the minimum number of photons
needed for ionization. Even though many more photons
may be absorbed, we shall characterize the ionization

where the limits go from to to t, . %e have also assumed
that at to the system is confined to the initial state
[P; (to) =0] If we take t—he pr. oper limits, all three forms
should agree.

2. Perfurbation schemes

%e fol)ow the usual approach to time-dependent per-
turbation theory and expand the solution of Eq. (1) in
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terms of a complete set of known bound t (|,„ I and contin-
uum I X„ I states. For the case of a single-bound state
(n =b ), we have

(({(x,t ) =ao(t )pb(x, t )+ I ak(t )Xk(x, t)dk, (28a)

where (()b( x, t)=pb(x)exp( i—Ebt), and

H()(x )Pb(x ) =eb(t)b(x ) .

%e derive a set of coupled, first-order temporal
difFerential equations for the coeScients a(t ) by substi-
tuting Eq. (28a) into Eq. (1), multiplying through by fb
and 7,', respectively, and integrating over the spatial
coordinates. We begin the perturbation approach by as-
suming that most of the probability remains in the initial
state (zeroth-order approximation)

a (0) (t ) (28b)

%e substitute this result into the coupled equations and
derive a first-order approximation for the other
coefFicients. %e obtain successively higher orders to this
expansion by repeated substitutions. For the first-order
corrections to be valid, the probability for the given tran-
sition must be small [ I

a„(t )
I

&&1 for all k values] in or-
der for Eq. (28b) to hold. Technically, we can continue
this iterative prescription until an exact solution is
reached. In practice, since the higher-order terms be-
come progressively more difficult to calculate, we usually
confine the perturbative expansion to the lowest few
terms.

The standard TD perturbation-theory form is obtained
by choosing the continuum functions also to be solutions
of the Hamiltonian Ho of the unperturbed system. For
X-photon ionization we have

I', ( t ) = Wbt t, (29a)

with W'z being proportional to E . For a single-photon
process we have

~) =~Eo ID k I')o (29b)

for E(x, t)=Eocos(tat). The dipole matrix element is
defined as

(29c)

with (() ((}()k ) the bound (continuum) eigenfunction of en-

ergy e (s=k /2). The density of states (DOS) p de-

pends on the choice of normalization of the continuum
functions. If we choose the continuum functions to be
normalized according to the relation

(b Ib'&=5(b b')/ {b), —

then the DOS is given by

p=n(b) db/de .

Choosing the incident plane wave to have unit amplitude
as in Eq. (9), we have b—:k, n (b ) = I /(2m ), and
p= 1/(2mk ). On the other hand, for energy normaliza-
tion, we find that the DOS is unity with the variable b set
to s. We have included an additional factor of 2 in Eq.
(29b) to account for the double degeneracy of the one-
dimensional continuum states.

Another approach is to employ nonstationary states in

the expansion. This strategy is valid provided these
states form a complete set. The most common choice is
the Volkov solutions, leading to the well-known Keldysh
and Reiss" forms depending upon which gauge is select-
ed. Thegrst ord-er result is given by

a,'"(t ) = t—f I" pb(x, .) V, (x,.n„(x,.)dx d7,

xE(t )
V;(x, t)= iA(t)D„/c+ A(t) /(2c)

(30a)

(30b)

with the forms given by Keldysh and Reiss, respectively,
with E(t )=Eocos(tot ), and A (t ) the associated vector
potential. For the first-order probability per unit time,
we obtain in the Reiss formulation

~;"))=g I
(t)b(t(„)

I
'J„(u„,v )'Q„, (30c)

where pb is the Fourier transform of the bound-state
function [((}I& I

(})b ), with (I)„given by Eq. (13)], J„ is a
generalized Bessel function" of order n, 4Q„=(a„
—2

I Eb I ), u„=Eoa„/cv—, v=——E()/(8' ), and
x„:2(nt—o

I sb —
I E, ), with—E, given by Eq. (22e). The

summation begins at the minimum number of photons
needed to ionize the system, Xo, determined by the condi-
tion that x„ is positive. %'e observe that even in first or-
der this form includes an approximation to all allowed
multiphoton transitions. In the limit of single-photon
(No 1 ) ionization and weak electric fields, this expres-
sion for W; will approach Eq. (29b) for standard TDPT
provided we replace the length form of the dipole matrix
element with the velocity and use plane waves for the
continuum states. Although not restricted to weak Aelds,
the above approach is still perturbative and depends on
condition (28b) being valid. As the ionization probability
approaches unity, the erst-order Keldysh-Reiss formulas
will also break down. %e might term the electron-energy
distributions obtained from the Keldysh or Reiss forms
as first-order ATI (FATI) spectrum, and if all transitions
are considered, we have a FATI complete.

E. Recombination

%e depict this process by starting the system in a wave
packet representing a particle incident upon the atom as

F(x, to ) =exp(ikox )exp[ —(x —xo) /(v„], (31a)

with no initial occupation in the bound states. %e have
employed a Gaussian distribution for the packet, cen-
tered at xo with a width of m . The leading term pro-
vides an initial velocity ko to the packet. As the packet
passes over the atom, the oscillating electric field will in-
duce transitions from the continuum to the bound state
according to the energy condition in Eq. (23). The total
probability of recombination is given by

The recombination process is the reverse of photoion-
ization, being described in the single-photon mode as

ke + A+(m )~ A(n )+hv .
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(31b)

which is just the projection of the total system wave func-
tion on the bound states. For a tightly peaked packet and
a finite-range potential, this quantity should reach a
steady state once the packet has cleared the well. This
particular view of recombination is a one-time process;
however, the actual experimental arrangemcnt involves a
continuous beam of electrons colliding with the ion. In
order to represent this arrangemcnt we would have to
form a very broad packet. For this case the probability
should grow in time and be equal to the photoionization
probability.

F. Ramping the electric Seld

The formu1ations of Secs. II A-II 0 apply for electric
fields extending over all space and remaining on for all
times. However, lasers produce pulses with finite spatial
and temporal extents. Therefore, in order to compare
with experimental findings, we must consider the effects
of certain boundary conditions on the previous results.
To this end, we have allowed for the departure of the
electric field from its strictly oscillatory form as

E(x, t ) =E,f(t )g(x ), (32)

1, x (xi
g(x)= '

2 2exp[ —(x —x
~

) /(x
~

—xi ) ], x y x ~.

(34a)

(34b}

These forms of the spatial and temporal boundaries of
the field roughly correspond to two distinct cases for the
ionized electron exiting the laser pulse. To see this more
clearly, we consider a square pulse of radial and temporal
widths, x and t, respectively. We assume that the elec-
tron has a given energy k, and hence a velocity U, .
Therefore, in the time that the pulse is on, the electron
travels a distance x, =v, t . If x, is less than x, then the
pulse turns o6' in time before the electron can leave the
field region. This case corresponds to the temporal ramp
of Eqs. (33). For the opposite extreme (x, &x~), the
electron exits the spatial region of the pulse while the
field is still on. Wc now have conditions described by the
spatial form of Eqs. (34). For convenience, we shall refer
to the first case as a temporal-exit mode (TEM) and the
latter as a spatial-exit mode (SEM). We shaH demon-
strate in Sec. III that the manner in which the ionized
electron leaves the field has a profound effect on the ener-
gy distribution or ATI peaks.

where Eo is the constant amplitude. In time, we have the
option to linearly ramp the field up or down according to
the constraint

(t —t, )/(t, t, ), — (33a)

(33b)

The field can be ramped down in time by reversing this
order. We also allow for a spatial ramping in order to
study the exit of the ionized particle from the field. In
this case, we select the exponential form

G. Numerical solutioa

The time-dependent Schrodinger equation has the form
of a complex parabolic partial differential equation
(PDE). Since such equations have a long history of
study, wc can draw upon general, highly reliable schemes
for their solution. We solve Eq. (1) numerically by a uni-

tary form of the standard Crank-Nicholson algorithm,
which is based on a finite-difference approach. This
prescription guarantees unitarity to the same order as the
propagation. Since the method is implicit, at a given
time we must solve for the wave function at all spatial
points. This requires the solution of a set of tridiagonal
linear-algebraic equations of the order of the number of
spatial points. We can effect this solution either by recur-
sion or Gaussian elimination. The spatial mesh is select-
ed by placing between 10 and 20 points to a de Broglie
wavelength (X=2n /—k ) of the most energetic electron we
wish to model (bx = A, /20). In addition, this mesh
should have a similar number of points for each oscilla-
tion of the bound function. The temporal mesh is then
prescribed by the algorithm as b, t =r(bx } . The Crank-
Nicholson form has a principal truncation error on the
order of (ht ) + b, t (bx ) and is convergent and stable for
any positive value of r. %e find that r =2 is a practical
choice that gives very stable solutions over a wide range
of field and potential parameters. These constraints on
the step sizes determine the propinquity of the next (x, t )

point. Given. these optimal step sizes, we choose a spatial
region [x, ,x&] large enough so that the amplitude of the
wave packet at the limits is for all times very small. We
find that a limit of 10 is suScient to produce distribu-
tions and period-averaged quantities accurate to several
significant figures. We start the temporal range at t =0
for convenience in evaluating the initial conditions al-
though its value is completely arbitrary. With this choice
of parameters, we can eSciently and accurately propa-
gate the tine-dependent Schrodinger equation.

We have tested this procedure on three cases that have
analytical solutions: (1) free packet, (2) propagation in a
linear potential (constant force), and (3) Volkov packet.
Wc obtain excellent agreement for a wide range of pa-
rameters. In addition, we compare very well with the re-
sults of Goldberg, Shey, and Schwartz for wave-packet
scattering from a square barrier and Geltman ' for
single-photon ionization from a 5-function potential. For
each case presented in this paper we have performed
several extensive tests of successively halving the spatial
mesh size in order to assure convergence. In addition,
since we have only a two-dimensional PDE, we need not
invoke absorptive barriers to constrain the mesh. In
Table I, we present typical values for the various mesh
parameters for each type of problem treated.

III. RESULTS AND DISCUSSIQN

IIi this section wc prcscnt thc 1csults of numerous cal-
culations for the model established in the previous discus-
sion. %'e present a sample of the many cases we have
studied that best illustrates the important physical mech-
anisms. For most of the discussion, we shall consider a
canonica/ model that employs the four approximations
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TABLE I. Parameters for the solution of the TD Schrodinger equation: x; (x&), initial (final) value
of the radial variable (ao); hx, radial step size; N„, number of radial mesh points; b t, temporal step size
{a.u.).

Volkov
Ionization Xo ——1

Ionization Xo ——2,4

0.07
O.OS

0.10

0.02m

0.01m
0.01m

listed above, in addition to considering the 1ocal potential
as a square weH with one bound state [Eq. (3b)]:

a =0.5ao, Vo ——0.6 hartree,

c.&
———0. 130235 hartree .

%e have varied the well parameters and observed little
sensitivity of the basic physical quantities for wells with
the same ionization energy. %e therefore feel that this
canonical square-well model (CSWM) gives a fair repre-
sentation of a broad set of calculations.

Before presenting the results of our calculations, we
should briefly review the quantities defined in Sec. II,
which will be of particular interest. We consider the fol-
lowing expressions.

(1) P(x, t ) is the probability of finding the particle at a
given spatial and temporal point (x, t ).

(2) Pi, (t ) is the probability of finding the particle in a
given continuum state k at a particular time t with the
specific continuum projection designated by o,'as s, square
well [Eqs. (3b) and (9)]; u, Volkov [Eq. (10)]; and f, free
[Eq. (13)].

(3) P;(r) [P„(t)] is the probability for ionization
(recombination) at time r.

(4) W~(t ) is the probability per unit time for ionization
(P; /& ).

(5) No is the minimum number of photons required for
ionization.

(22)] over a single period of the electric field. We note
that this quantity shifts in position about the original dis-
tribution, as predicted by Eq. (22c). The maximum dis-
placement of the center comes at t = T/4 and 3T/4 with
a magnitude of Eo/ru. This behavior of the k-space dis-
tribution during a single period is the consequence of pro-
jecting a nonstationary solution on a set of stationary
states. If the field is turned ofF slowly in time, the excur-
sion of the peak away from ko during a period becomes
less pronounced. %hen the field becomes effectively zero,
the distribution remains centered at ko for all later times.
Many of the properties of the electron-energy distnbu-
tion of the Volkov packet will manifest themselves in the
ATI phenomena associated with the ionization process.

B. Ionization

1. Single photon (Nz ——1)

We consider a single-photon (re=0. 2) ionization pro-
cess in the canonical model for both a weak and intense
field. For the weak field (En=0.003, I =3.15X10"
W/cm ), we hope to observe the system approach the
standard TDPT limit. In Fig. 3 we present the ionization
probability per unit time W, (t) as a function of the num-
ber of cycles of the field (T =10m a.u. =0.76 fsec). After

%e begin our discussion with a brief review of the Volkov
packet.

0.12

0.10

A,. Volkov packet

While not directly related to ionization, the Volkov
packet illustrates several important points about the be-
havior of wave forms in electric fields. %e consider an
initial Gaussian packet as in Eq. (18) with parameters
ko=0. 5, xo ——0, and m„=5. This choice represents a
wave function centered at x =0 and moving from left to
right with velocity 0.5 a.u. In Fig. 1 we present the evo-
lution of the probability density P(x, r ) in space and time
over four periods of an electric Seld with Eo ——0.01 and
~=0.1. %e observe as expected that the center of the
packet moves according to Eq. (21) and spreads in space.
We have also verified numerically that

~
a, (k, t )

~

remains constant about k =0.5 for all times. In Fig. 2 we
display the square modulus of the projection of the Vol-
kov packet onto the free-particle stationary states [Eq.

0.08

x 0.06
CL

0.02

0.00
0 0 50 0 100.0

x/0
$50.0 200 0 250.0

FIG. 1. Evolution in time and space of the probability densi-
ty P(x, t) of a Volkov wave packet with parameters k0=0. S,
x0 ——0, and iL)„=S for an electric field of E0 ——0.01 a.u. and
m=0. 1 a.u. Curves represent successive times starting at t =0
and extending over four periods of the field [r =( 1 —4}T].
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FIG. 5. Ionization probability P(t) as a function of time for
CSW'M with Ep ——0.02 and cu =0.2 a.u. (Np ——1).

(14). As the field is slowly ramped off in time, these peaks
coalesce. Their positions and relative amplitudes remain
unchanged during this switch-off process. Therefore, re-
porting the distribution at multiples of the period, once
beyond the transistory phase, corresponds to the limit of
slowly turning off the field in time over many periods.
%' h 11 return to this point in more detail in Sec. III C.e s a

f theFrom the graph we obtain an energy for the center o t e
eak of 0.136 Ry, while Eq. (23) predicts 0.1395 Ry. The

two results can be reconciled by introducing the jitter
term of Eq. (22e) to give an electron energy of

k =2(¹o—
i ei, i

F., ) . —2 (35)

Finally, in Fig. 8 we display the wave packet P(x, r), at
several periods. The distribution moves out in tine as
more of the bound state is ionized.

2. Afultiphoton ionization

%e begin with a description of ionization that requires
at least two photons (%0=2, F0=0. 1) since its basic

00 f

0.00 0.05 0.350.25

features are representative of higher ionization degrees.
For a weak field with ED=0.0075 a.u. (I =1.97X10'
W/cm ), we obtain an ionization probability per unit
time 8'; that is nearly constant after a few cycles of the
field. The value is within about 25% of that predicted by
the Reiss formula, Eq. (30c). To investigate the high-
intensity behavior, we consider a sequence of field values
starting at ED=0.02 a.u. (I =1.4X10' W/cm ). Even
for the lowest field value, the system becomes more than
half ionized [P, (t) &0.5] after only a few periods. There-
fore we are well outside the first-order perturbative re-

ime. As an illustration we present in Table II the ion-
ization probability at several times. In Fig. 9(a) we show
the electron-energy distribution P„'(t) for four different
field strengths at r =8T. For the weakest field (Eo ——0.02
a.u.), we observe three distinct ATI peaks. Their centers
are separated by an energy cu and are found at positions

11 os-corresponding to the condition in Eq. (35). The sma os-

0, 10 0.15 0.20 0.30
E(Ry)

FIG. 7. Electron-energy distribution PI,'(t) as a function of
energy and time for the case of Fig. 5. Numbers represent times

' 3 n —')T'4,within a single period: l, t =nT; 2, (n+4)T; 3, + —,'; 4,
{n + 4 ) T; and 5,2n T, where n =4.

-1
10 =-

10 =

10 -=

10 l i 1I I

0.0 0,5 1.0 1.5 2.0 2.5 3.0 3.6 4.0 4 5 5.0
t{cycles)

FIG. 6. Ionization probability per unit time 8';(t) as a func-
tion of time for the case in Fig. 5. The dashed line represents
the result of standard 6rst-order perturbation theory.

10
-80.0 -60 0 -40.0 -20.0 0 0 20.0 40.0 60.0

x/0
80.0 100.0

FIG. 8. Probability density, P(x, t) as a function of radial
coordinate x (ap) for several times: Solid line, t =0; short-
dashed hne, 4T; long-dashed line, 5T.
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TABLE II. Ionization probability P;(t) as a function of time
and field strength (Eo) for the CS%M with ~=0. 1 (Xo ——2,
T =2(hr a.u. ) ~ith no spatial or temporal ramps (to ——0) and the
mesh of Table I.

0.02
Eo (a.u. )

0.03 0.05

0.179
0.295
0.394
0.479
0.552

0.553
0.788
0.890
0.952
0.977

0.853
0.951
0.987
0.997
0.999

cillations between the principal peaks arise from the ini-
tial ramping of the electric field. They will eventually
damp out at longer times as explained in Sec. II. As we
increase the magnitude of the field, we observe that the
peaks shift to lower energies. In addition, the amplitude
of the lowest peak diminishes and practically disappears
at the highest field. The explanation for this disappear-
ance rests with the energy condition in Eq. (35). The
jitter energy provides a threshold value for exciting a
continuum state with translational motion. Until we
have supplied an energy to the electron suScient to excite
its jitter mode, we cannot gain any net linear momentum.
We should also emphasize the fact that we do not need to
introduce any constant potential term to explain this
suppression. In fact, the addition of such a term to the
square well will simply shift the zero of energy. Since all
quantities depend on energy dN'erences„ the result will be
unchanged. In Table III, we present a more quantitative
description of these findings. We note that a slight
discrepancy still remains between the predicted results
and those obtained from the graphs. This extra shift may
arise from an additional effect on the bound state, al-
though our numerical precision is not sufFicient to unam-
biguously make this assignment. If we increase the field
further, we observe the peaks to shift and vanish. In Fig.
9(b) we display the ATI spectrum for a field of 0.06 a.u.
(1.38X10' W/cm ). We note that the first peak has
completely disappeared and that the second is highly
suppressed. We also observe a whole new series of peaks
at higher energies (E p 1 Ry). We compare this against
the predictions of the first-order form of Reiss (dashed
lines). ""' For this case, the Reiss form predicts an ion-
ization probability too large by over an order of magni-
tude, which is not surprising given the high degree of ion-
ization. In addition, even the relative amplitudes of the
peaks are in substantial error, with the second set not
predicted by the approximate form. In Fig. 10 we
present the case for four-photon (%0=4) ionization. The
results are similar to the previous cases although exhibit-
ing a richer spectrum.

For the multiphoton ionization process, w'e have ob-
served several interesting features. First, for fields on the
order of a few hundredths of an atomic unit and higher,
the "atom" is completely ionized in a very few periods of
the radiation field. This fact places a severe constraint on
the validity of most first-order perturbative approaches.
Second, we observe peaks in the electron-energy distribu-

tion separated by the photon energy ca. In addition, these
ATI peaks are shifted by the jitter energy E according to
the relation [Eq. (35)]

k =2[X&v—
~ ei, ~

E—, ] .

Third, as the intensity increases, the lowest peaks are
suppressed and eventually disappear when the photon en-

ergy is insuScient to overcome the jitter term. These
particular features have all been observed experimentally
and are the natural consequence of our rather simple
model. We emphasize that these findings pertain to an
oscillating electric field with constant amplitudes of
infinite temporal and spatial extent, in other words, for
the case of the ionized electrons always remaining within
the field. We now turn to the efFects of the spatial and
temporal boundaries of the laser field on the ionization
process.

C. Spatial and temporal Seld dependence

1. Ramping in time

We have previously discussed some of the conse-
quences of turning on the field at some finite time to. We
observed additional modes at frequencies other than %co,
w'hich damped out as time passed, leaving the main ATI
peaks. We are also interested in the effects on other
properties of this initial switching on of the field. In Fig.
11 we present the ionization probability as a function of
time for single-photon processes (co=0.2, Xo= 1) with
the canonical square-well model for Eo ——0.0075 a.u. We
investigate the e6'ects of an instantaneous ramp as well as
two linear forms. The first linear form reaches the full
field Eo at the end of two cycles [t =2T] while the
second takes four cycles. We observe that after about ten
periods all three means of ramping the field produce
nearly the same results. In fact, the positions and relative
magnitudes of the lowest few ATI peaks reach agreement
even sooner. Thus, since we are interested in the ioniza-
tion properties after a reasonable number of cycles, the
exact manner of instigating the field is of little conse-
quence.

%e now investigate the effects of turning the field oft'

after many periods. We have briefly touched on this
point in Sec. II and shall illustrate it with a particular ex-
ample. We choose the canonical model with a field of
0.02 a.u. and a frequency of 0.2, yielding a single-photon
process. We ramp the field oft in time according to Eqs.
(33) from t =6 to 9T. In Fig. 12 we display the electron-
energy distribution at several times before, during, and
after the turnoff' (r =5.25, 8.25, and 9.25, respectively).
%'e note two main features. First, the dual peaks, which
arise from the projection onto the doubly degenerate con-
tinuum square-well states [Eq. (15)], coalesce to a single
peak as the field dies. This single peak is centered at the
half- and whole-period positions. Second, the position of
the center of the peak does not change during the ramp-
ing process. Therefore, in the case in which the field is
ramped o8'over several periods, the positions of the ATI
peaks are given by Eq. (35) with the quiver energy still in-
cluded. In another sense, this situation corresponds to
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FIG. 9, (a) Electron-energy distribution Pl',.(t) as a function of energy (rydbergs) for CS%M with ~=0. j a.u. (Xo ——2) for several
values of the electric field; ED ——0.02, 0.03, 0.04, and 0.05 a.u., depicted from the bottom to the top of the graph, respectively. The
distribution is plotted at t =ST. (b) Same as (a) except for Eo ——0.06 a.u. and t =5T. The dashed lines represent the results of the
6rst-order Reiss form ~ith the second peak normalized to the CS%N result.
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TABLEE III. Positions of 6rst three AT

f Eq (g2 )
2

from the graph.
e; ko is the calculated result read

Eo (a.u. )

1.Q

0.8

0.02
0.02
0.02

0.03
0.03
0.03

0,04
0.04
0.04

0.05
0.05
0.05

0.140
0.340
0.540

0.140
0.340
0.540

0.140
0.340
0.540

0.140
0.340
0.540

0.120
0.320
0.520

0.095
0.295
0.495

0.059
0.259
0.459

0.015
0.215
0.415

0.114
0.312
0.516

0.089
0.290
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other hand, the projection onto the continuum square-
well states changes in time since the field continues to in-

duce transitions. %e have verified these suppositions by
numerical calculations. %'e approximate this Volkov dis-
tribution by a Gaussian as in Eq. (18) and allo~ this
packet to move through the spatial ramp. Since from the
point at which the packet clears the well to the point at
which it enters the spatial gradient the solution to the
Schrodinger equation is given by a superposition of Vol-
kov states with constant coefFicients, we may start the
packet fairly close to the edge of the laser beam. In order
to most efFectively display the efFects, we have selected a
Volkov packet with the following parameters:

I o=] &O=O and m, =&0

In this case we assume that the well is located at some
large negative distance. %'e select the field and ramp
conditions in Eqs. (32) and (34) as

Eo ——0.20, co=0. 1, x, =100~o, xz ——300ao .

In Fig. 13 we display the electron-energy distributions be-
fore and after the particle has left the field. The chief
efFect results from the electron gaining the jitter energy
from the field. Therefore, for a spatial ramp in which the
field remains on in time (SEM), the ATI peaks are not
shifted by the jitter term and are positioned at the value
predicted by Eq. (23), by

A: =2(¹o—hei, i).
In summary, we observe difFerent behaviors of the

electron-energy distribution according to the nature of
the temporal or spatial ramp of the field. For a field
slowly turned off in time over many periods (TEM), the
position of the ATI peaks are the same as in the full field
case and include the shift due to the quiver energy. For
an electron passing through a spatial ramp (SEM), the

positions shift to higher energies without a contribution
from the jitter term. This difFerence in behavior accord-
ing to how the electron leaves the field has been noted by
a number of authors. ' ' ' The numerical demonstra-
tion of these efFects within such a simple quantal model is
most gratifying. We should be cautious about extrapola-
tions since we have not treated the full nature of a parti-
cle interacting with an EM wave.

D. Resonant ionization

We now investigate the efFects on the ionization pro-
cess of placing a second bound state in the potential well.
The situation is depicted in Fig. 14 in which the two lev-
els are separated by an energy b,E—=

l
Eo —Ei l. We

choose the excited state to have odd parity so that dipole
transitions between the two levels are allowed. We shall
restrict our initial discussion to moderately weak electric
fields so that we may ignore the quiver correction and the
higher-order multiphoton transitions. We are particular-
ly interested in competing ionization processes which
occur when the frequency approaches the transition ener-

gy (b,E =m). The ground state can be directly ionized by
a two-photon (%0=2) absorption yielding a continuum
electron with energy, ko =2(2' —

~
eo ~

). In addition, we
can excite the second bound state by a resonant one-
photon process and, in turn, ionize from this state by ab-
sorbing a second photon (Xo ——1). In the latter case, the
electron will be ejected with an energy, k, =2(m —

~
e,

~
),

and the two peaks will be separated by b, =2
~

bE —~
~

.
Therefore we would expect the electron-energy distribu-
tion P„(t) to possess two distinct peaks at ko and A:, .
When the frequency of the electric field is equal to the
transition energy, the two continuum electrons will leave
at the same energy, and we should observe a single peak
(b,, -+0). As we tune the frequency well away from the
resonant transition energy, we should observe only the
one peak arising from the ionization of the ground state
since we no longer populate the excited bound level. %e
examine an actual model to ascertain the validity of these
speculations.

%'e display the results in Fig. 15 for a square well
(a =2ao, V0=0.6 a.u. ; co= —0.4585, e, = —0. 104;

FIG. 13. Electron-energy distribution Pl', (t) as a function of
vvave number k for a Volkov packet (k0 ——1, xo ——0, and m =10}
moving through a spatially ramped electric 6eld
(xl ——100,xz ——300a0) for E0 ——0.20 and m=0. 1 a.u. The solid
line gives distribution at t =0, while the dashed line represents
t = 13T, at which time the packet is completely free of the field
region.

~ « ~ ~ ~ ~ ~ ~ ~ ~ « ~ ~ ~ ~ ~ ~ ~ ~ ~

r 0

FIG. 14. Schematic representation of resonant ionization
process in a square-well potential.
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FIG. 15. Electron. -energy distribution Pq(t) as a function of
electron energy and Beld frequency ~ at t =20T for E& ——0.02
a.u. The curves are labeled as follows: Dashed line, ~=0.30;
solid line, co=0.35; line with circles, co=0.40 a.u. The square
well has two bound states and a width and depth of 2.0ao and
0.6 a.u. , respectively.

FIG. 16. Probabilities as a function of time (in periods of the
6eld, T) for ionization (solid line), occupation of ground state
(short-dashed line), and occupation of excited state (long-dashed
line} for the two-state, square-well system of Fig. 15 with

E& ——0.02 and cu =0.35 a.u. ( AE =co).

AE =0.3564 a.u. ) and for three values of the field fre-
quency (~=0.30, 0.35, 0.40), which span the region
around the resonant excitation energy AE. %hen the fre-
quency of the electric field is smaller than the transition
energy (co=0.3, dashed line), we observe two distinct
peaks in the electron-energy spectrum. The lower peak
corresponds to a direct two-photon ionization of the
ground state, while the higher peak represents the ab-
sorption of a single photon from the excited level. The
maxima of the two peaks are separated by 0.12 Ry, which
is in very good agreement with the predicted value (0.11
Ry). As the frequency (co=0.35, solid line) approaches
bE, the peaks begin to merge into a single structure.
This structure again splits into two peaks as the frequen-
cy is further increased (co=0.4, circles). However, the
lower peak now corresponds to the one-photon ionization
of the excited state. Therefore, if we have a laser at a fre-
quency near the transition energy of two bound states of
the target atom, we might expect to observe multiple
structures in the ATI peaks. In fact, Javanainen and
Eberly have reported an even richer structure for their
one-dimensional Coulomb model due to resonances rvith
the Rydberg levels. Such a repeated structure has also
recently been observed in experiments on Xe. In Fig. 16
we display the probability for ionization (solid line) and
for the system being in the ground (short-dashed line) or
excited (long-dashed line) states for a near-resonant fre-
quency (~=0.35). The populations of the two bound
states oscillate in analogy with Rabi Hopping. The
overall decrease in their amplitudes comes from the
steady drain of the ionization channel. Finally, we ob-
serve a pronounced enhancement in the ionization proba-
bility at the resonant frequency.

Before leaving this subject, we should make several ob-
servations. First, as the field strength Eo is increased, we
observe ATI peaks coming from absorption of larger
numbers of photons. For the near-resonant case, these
higher peaks also appear in groups of two with the indivi-

dual components 6, apart. A given peak is, in turn,
separated by co from its counterpart in the next lower or
higher group. Second, such resonant processes depend
critically on the nature of the potential V(x). Therefore,
to proper1y model these structures vrill probably require a
reasonable representation of the target atom. Third, cer-
tain two-step ionization mechanisms for ATI may be of
questionable validity for this type of resonant excitation
since the manner in which the electron reaches the con-
tinuum is governed by the intermediate bound state. In
such a case, the process cannot be viewed as a direct ion-
ization, followed by rearrangements amongst the continu-
um channels.

K. Recombination

We have also considered the recombination process.
In this case, we start a Gaussian wave packet at some
time to according to Eq. (31a). We allow this packet to
propagate in space and time according to the TD
Schrodinger equation (1). At some time later, the packet
will cross the finite-range potential we11, and the oscillat-
ing electric field will induce transitions to the single
bound state of the canonical model. In Fig. 17 we
present the probability for recombination given by Eq.
(31). This quantity rises as the packet experiences greater
overlap with the potential well. Once the packet is com-
pletely crossed, the probability reaches a steady state.
This is not quite true since the Geld can still produce ion-
ization. However, since the 6eld in this case is weak, this
depletion is fairly slow. %e do, however, in this wave-
packet treatment observe the basic features of recombina-
tion.

IV. COCCI.USIQNS

We have performed extensive numerical calculations
on a simple model of an atom within an intense elec-
tromagnetic field. %'e confined our attention to one spa-
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FIG. 17. Recombination probability I'„(t) as a function of
time for the CSWM with E0 ——0.002, and co=0.2 a.u. for a
Gaussian packet with parameters k0 ——0.375, x0 ———50, and
w~ = 5 B.U.

tial dimension and to a local, finite-range representation
of the atomic potential. The EM wave was approximated
as a single-frequency (co), oscillating electric field with
spatial and temporal dependence [Eof(t)g (x)cos(mt)] so
that the general characteristics of a laser pulse could be
modeled. %e primarily investigated the multiphoton ion-
ization process, leading to the ATI features in the energy
distribution of the ejected electrons. In addition, we
studied various mechanisms by which the electron leaves
the pulse. We also explored Volkov wave packets and the
recombination process.

For multiphoton ionization we observed a variety of
interesting features, many of which are observed in the
experimental results. First, we found that for fields of in-
tensities above about 10' W/cm, the atomic system be-
comes significantly ionized [P;(r) &0.5] after only a few
cycles of the field. This finding implies that we must be
cautious about applying standard TD perturbation
theory or such first-order forms as those of Keldysh and
Reiss. Second, ioithin the geld region, we observed ATI
peaks in the electron-energy distribution centered at
values given by

ki=2(Ncu
~

eb
~ E, )=2[Eb(N) ——E, ]

and separated by cu. In this expression, the binding ener-

gy of the model atom is cb and the jitter or quiver energy
E- is Eo/4' . Third, as the intensity of the field is in-
creased, the shift due to the quiver term becomes more
pronounced, and the lowest peaks become suppressed. In
fact, as the magnitude of the field is raised further the
lowest peaks begin to disappear. This behavior is best ex-
plained by viewing the jitter energy F. as a threshold or
self-energy term. In other ~ords, the ejected electron
much first pick up the quiver energy before it can
translate. For a given number of photons N, if Ei, (N) is
less than E, then this mode cannot be excited, and no
continuum electron appears. Therefore, within the pulse
where the electric field has the form Eocos(cot), the ATI
peak are separated by an energy m and start for an X

such that E&(N) exceeds E . However, the observed ATI
spectrum also depends on the manner in which the con-
tinuurn electron exits the field.

%e have also made a study of the eC'ects on the elec-
tron distribution of the spatial and temporal boundaries
of the field. %e allow the field to turn o6' in time by a
linear ramp and in space by an exponential form. These
ramping forms lead to very diferent behavior in the ATI
spectrum. If the field is slowly ramped oft' in time over
many periods, the positions of the peaks are given by the
above formula, Eq. (36). This situation of a temporal
ramp corresponds to the laser pulse passing over the elec-
tron before it can extract itself from the spatial region
due to its radial velocity k. On the other hand, if the
electron has sufficient velocity to exit the spatial realm of
the beam while the field is still on, then the ATI peaks
appear at values,

k =2(Na) —
i eb i ) .

In other words, for a radial ramp, the electron gains back
the quiver energy from the spatial gradients in the field.
%'e should emphasize that the threshold conditions
uiithin the geld region, which were discussed in the previ-
ous paragraph, still hold. If the difference between the
N-photon and bound energies is less than the quiver term,
then no ATI peak will appear. However, for those peaks
with energies above the threshold, their positions will be
governed by the manner of exit from the field. These
effects are well documented in a recent set of experi-
ments. '" For a pulse with a given spatial extent, as the
temporal duration is shortened, the ATI peaks shift by
larger and larger amounts.

Finally, we have explored the effects of introducing a
second bound state of opposite parity into the potential
mell. %hen the field frequency m approaches the transi-
tion energy hE, between the two bound levels, we observe
groups of two AI peaks. The groups are separated in en-

ergy by ar while the individual peaks within a grouping
are 5, =

~

hE —cu
~

apart. One peak arises from the
direct N-photon ionization of the ground state. On the
other hand, a second peak comes from the resonant exci-
tation of the excited level followed by the absorption of
X —1 photons. As we tune the frequency well away from
resonance, we observe only a single peak from the direct
ionization process. Such repeated ATI structures have
also been observed in recent experiments.

%hile the model we have investigated is rather simple,
we still obtain most of the basic features of recent multi-
photon ionization experiments for high-intensity lasers.
This model allows us to systematically treat the various
aspects of the ATI process and to isolate various mecha-
nisms and deduce their relative importance.
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