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A multichannel study of the photodetachment of a negative ion such as S in the presence of a
constant electric Seld is presented. The analysis is carried out as a series of frame transformations
for the outgoing photoelectron. An earlier analysis in the absence of the external field is now aug-
mented by the further transformations from spherical to cylindrical symmetry that are required.
The interplay between the various thresholds due to Sne structure in the negative ion and residual
atom and the eN'ects of the external Sield are analyticaBy treated. The net efFect is to eliminate the
thresholds, to induce modulations in the detachment cross section, and to introduce Seld-assisted-
tunneling contributions to the photodetachment. Numerical illustrations are provided. Our treat-
ment closely parallels similar treatments of photoionization of neutral atoms in an electric 6eld and
of photodetachment in a magnetic field.

I. INTRODUCTIGN

%'e consider the photodetachment of a negative ion in
the presence of an external electric field. There has been
considerable experimental and theoretical activity in re-
cent years in the allied problems of photoionization of
neutral atoms in external electric or magnetic fields. '
Likewise, some experimental data is available on the pho-
todetachment of a negative ion in a magnetic field. Al-
though similar experiments with comparable resolution
have not yet been carried out on photodetachment in an
electric field, such experiments are feasible. In fact, we
hope that our analysis and some of the features revealed
by it may prompt such an experimental study. In any
case, the motivation for our study is that it complements
other theoretical analyses of photoionization in an elec-
tric 6eld and photodetachment in a magnetic field. All
these share the common element of competing sym-
metries that prevail for the motion of the electron at
small and large radial distances, with the external field in
particular playing a role only at large r.

The efFect of the external field is entirely negligible for
the small-r motion and this feature is exploited to cast all
cross-section expressions in a simple, factorized form.
The zero-field cross section is multiplied by a "modulat-
ing factor, " into which is absorbed the entire inhuence of
the external Seld. This factor reduces to unity when the
field strength goes to zero. The modulating factor is de-
rived as an aspect of a "frame transformation" ' between
the descriptions relevant to small and large r. The
feature which distinguishes these external-field frame
transformations from other frame transformations be-
tween orthogonal bases in spectroscopy and scattering is
that the transformations are now nonorthogonal. Never-
theless, as pointed out by the pioneering study of Fano
and of Harmin for photoionization in an electric field,
the transformation and the modulating factor it leads to
can be worked out explicitly when the large-r motion in
the long-range 6elds is exactly solvable in some suitable
system of coordinates. Their work rested on the fact that

motion in the combined Coulomb and electric field poten-
tials has an analytical solution in parabolic coordinates.
Our paper, and the companion paper by one of us, con-
sider two other instances where such solutions are avail-
able, namely, when the long-range potential is due to an
electric field alone or due to a magnetic field alone. To-
gether, these studies serve to illustrate both the common
elements of such analyses and the specific differences that
each specific potential brings. We hope that taken to-
gether these studies will show how to use the theory of
nonorthogonal frame transformations. Finally, we note
that what still stands in the way of extending this analysis
to the more challenging, and at the same time more stud-
ied (experimentally and through numerical calculations),
problem of photoionization in a magnetic field is that no
set of coordinates is available for describing the motion of
an electron at large r in combined Coulomb and diamag-
netic potentials.

For concreteness, we analyze a specific negative ion,
namely, S (or its analogs, 0 and Se ). Our choice is
made because there exists already a detailed theory of
multichannel photodetachment in this system in the ab-
sence of an external field. ' This theory has been de-
scribed in terms of frame transformations (albeit orthogo-
nal ones) between small and large r The descrip. tion at
small r and part of the transformation to large r are,
therefore, already available. It remains then for us to de-
velop the added transformation introduced by the exter-
nal field to have a full treatment of the problem. %'e also
note that it is precisely in the 8 negative ion that experi-
mental data is available on photodetachment without an
external Seld" and with a static, magnetic Seld.

As in the previous study' of S photodetachment in
zero field, we restrict ourselves to the region around the
threshold for this process

S ( P3y2 imp)+hV~S( Pi i 0)+e (i =0)

Six different fine-structure channels are available, depend-
ing on the states of the negative ion and the neutral atom.
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%e derive expressions for the cross section as a function
of photon energy and as a function of the electric field
strength F. These expressions di6'er in two ways from the
I'=0 results available in the literature. ' First, the old
cross sections are modulated by an E-dependent factor;
second, there is, of course, no photodetachment threshold
since all channels are automatically open in the presence
of the electric field. Even when this energy falls short of
the smallest separation between S and S states
(specifically, the Pi&& and Pi states), electrons can still
be ejected because of energy derived from the external
field F We. will show how our expression for the cross
section becomes proportional far below the threshold
photon energy to the probability of 6eld ionization by
way of tunneling' through the linear Stark potential Fz,
%'e will assume a static field in the z direction and use
atomic units throughout.

A. Identification of appropriate coordinates

The relevant potential for a photoelectron in an elec-
tric field is

V(r) = V, (r)+Fz,
where V, (r) is the short-range interaction with the neu-
tral atomic core. %e will parametrize its effect most sim-

ply by zero-field quantum defects, or the equivalent
scattering lengths. Since I' ~g1 for almost all fields of in-
terest (1 a.u. of electric field=5. 1)&10 V/cm), the term
in F is entirely negligible at small distances. This is a key
to our analysis and to all similar analyses of external
electric- and magnetic- (diamagnetic potential) field
e6ects. On the other hand, at large distances, the multi-
plicative dependence on the radial extent (z in the Stark
problem, x +y in the diamagnetic} makes these field
dependent terms the dominant ones. [In photoionization
of neutral atoms, the long-range Coulomb tail needs to be
superimposed, but for the negative-ion problems that
concern us, the second term in (1) is the sole long-range
potential. ] This initial assessment of (1) points to the
suitable descriptions for the small- and large-r parts of
the problem. Spherical polar coordinates are the obvious
choice for the former, and this choice is common to all
such analyses. At large r, however, we may use in the
present problem Cartesian, cylindrical, or parabolic coor-
dinates because the Schrodinger equation for the poten-
tial Fz separates in all these systems. We elect to work
with cylindrical coordinates for two reasons. First, it is
the natural choice for the companion analysis of photo-
detachrnent in a magnetic field. Second, we can proceed
to the final steps through simple, analytical expressions
whereas the choice of parabolic coordinates is more
clumsy in this regard (note that this is the necessary
choice when a Coulomb tail is superimposed on Fz). Ex-
ploratory calculations in parabolic coordinates appear to
give equivalent results.

B. Different ranges of motion

The short range V, (r) in (1) extends over a few a.u. We
mill call this region I for the photoelectron's motion.

Outside this region, since the term in F only becomes
significant for distances exceeding several hundred a.u. , it
is useful to subdivide further into two regions. An inter-
mediate region II, still described in spherical coordinates
and with angular momentum I(=-0) a good quantum
number, stretches to =10 a.u. It is only beyond this
that we are in region III, which then stretches to asymp-
totic infinity, and where the Fz term and its cylindrical
symmetry prevail. Each passage between regions is ac-
cornpanied by a frame transformation between the
descriptions of the wave function that are appropriate to
each region.

The passage from region I to region II is as in the F=O
problem. The same (spherical) coordinate system applies
in both these regions so that the passage consists only of
an orthogonal transformation of the angular and spin
parts of the wave function and a rewriting of the radial
wave function from the form appropriate to small r to
that for large r. The orthogonal transformation is' an
LS~jj recoupling because these are the respective cou-
pling schemes applicable to region I (when the photoelec-
tron is strongly coupled to the core) and region II (when
the photoelectron is separated from the core so that the
spin and orbital angular momentum of each are first cou-
pled among themselves). For the low energies near
threshold that are of concern to us, the small-r radial
wave function (with 1=0) in region I will be described by
a single set of parameters, az and a, the scattering
len ths for the doublet and quartet states of the
[e ( s) + S( P)] system. (Two more parameters, the
effective ranges, may be added if more accuracy or a
broader energy coverage is desired. } The total angular
momentum J remains a good quantum number
throughout regions I and II.

C. Scheme of the analysis

In the earlier work' at F=O, only one simple step
remained to connect the region II wave functions to the
expressions for cross sections. This was to apply bound-
ary conditions ("ingoing wave") at infinity that are ap-
propriate to the photoelectron's emergence in one or the
other of the alternative channels characterized by the j
value of the residual P atom that is left behind. At the
same time, since experiments monitor the electron or the
atom and not the total angular momentum J, one had to
decouple the j values of the two fragments (this involved
a Clebsch-Gordan coefBcient) and superimpose ampli-
tudes for alternative J values that contribute to an ob-
served cross section. In the current paper, more novel
and nontrivial elements enter into the passage from re-
gion II to III. %ith the brealang of spherical symmetry
by the electric field, J is not a good quantum number.
Only the projection MJ retains status as a conserved
quantity. A Clebsch-Gordan coeScient and superposi-
tion of J values is, therefore, again one element of the
fr anle transformation between these regions. IB addition,
there is the recasting of the full wave function from its
spherical description in region II to the cylindrica1 one
appropriate to region III. Apart from the common coor-
dinate p, the azimuthal angle conjugate to MJ, this is
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efFectively a two-dimensional transformation (r, O)~(p,
z). Following Harmin's similar transformation from
spherical to parabolic bases, the initial step is to make a
local coordinate transformation in region I (where F is
still negligible) between wave functions of a free particle
from spherical to cylindrical bases. At this point, as the
bases are orthogonal, so is the transformation UF='.
Next, the fact that the wave functions of the asymptotic
scattering states in region III (which are dependent on F)
must be proportional at smaller distances to the region II
cylindrical wave functions is exploited to get the
nonorthogonal transformation U that recasts the region
II functions in terms of those for region III. This is the
key result of our analysis because the modulating factor
in the cross sections is essentially the square of U .

The arrangement of this paper is as follows. In Sec. II
we describe the wave functions in regions I and II and the
frame transformation U'&' between them. The reaction
matrix K,','' that is diagonal in J and connects alternative
states j and j' of the residual atom is defined. This sec-
tion also presents the subsequent passage to a reaction
matrix between asymptotic states I', in region III which
are characterized by MJ. The Clebsch-Gordan coefFicient

(A/IJ )
O',J ', which is the orthogonal piece of the frame trans-
formation for this part of the analysis, is defined as well

(MJ )

as the reaction matrix K;,', and its eigenvalues and
eigenvectors. Section III deals with the local coordinate
transformation between spherical and cylindrical bases,
the derivation of U, and the modulating factor H . In
Sec. IV explicit expressions for the cross section o (j)
into the difkrent j states of the neutral atom residue are
derived. Finally, Sec. V gives numerical results in graphi-
cal form for 0 and o.", showing the modulations in-
duced by the electric field. The discussion also includes
an analytical demonstration that for energies below the
zero-field photodetachment threshold, o goes over into
the result for field ionization of electrons from a negative
ion. Three appendices elaborate on alternative normali-
zation schemes for small-r radial functions, the derivation
of U, and the evaluation of 0 .

II. FRAME TRANSFORMATION FROM REGION I
( ~ Iso) TO REGION II (10-10ao)

The radial wave function for the I=O electron has been
written in its simplest form in terms of the scattering
length (doublet and quartet scattering lengths) and has
been normalized independently of the asymptotic energy
of the electron. This is appropriate for region I where the
asymptotic energy is an irrelevant parameter, being
dwarfed by the strong potentials that prevail in this re-
gion. This choice and the numerical factor in (2.1) are in

conformity with standard frame transformation theory
where the state described by (2.1) is denoted

~

a ). We
defer to Appendix A the minor modifications necessary
in all subsequent expressions were we to use energy-
normalized states

~

a ) which are related to (2.1) through

) k l/2
~

0)

where k is the wave number, k = (2pE/I )
'

(2.2)

B. Wave function at large r

%hen the electron separates from the sulfur atom and
passes into region II, jj coupling is appropriate and the
channels

~j ) in this domain are characterized as

~

(L'S')j, k ( I,s, j)„JMJ) . (2.3)

Superscripts a refer to the atom, subscripts e to the elec-
tron, and J is the total angular momentum of the atom.
Since the energy of the outgoing electron depends on the
state j of the residual atom, its wave number also depends
on j and is so denoted. J and MJ are once again the total
angular momentum quantum numbers of the system.

Denoting the wave function of the atom, together with
the angular and spin functions of the photoelectron in jj
coupling by /~~M, the total wave function of the complex

J
in region II is

the complex. Further, let J and MJ be the total angular
momentum and its azimuthal projection of the (e+S)
complex. Representing the angular and spin wave func-
tion in LS coupling (together with the radial function for
the electrons in the sulfur atom) by Lz~, the full wave

J
function of the complex in region I can be written as

(2. 1)

This section is in the main a paraphase of the analysis
of photodetachment in zero field.

~, =4JM f, (r) y&,&"4~i~ g,'(r) .—
j

(2.4)

A. %ave function at smaB r

The initial negative ion has an electron distribution
confined to a few a.u. The absorption of the photon puts
enough energy to create a complex, (e + S), which subse-
quently fragments and the electron and atom separate to
infinity. In viewing this complex initially at small r (re-
gion I), the electron is highly coupled to the remaining
electrons in the neutral atom and an appropriate descrip-
tion of the complex is provided by LS coupling. For our
near-threshold analysis (dominated by I=O for the elec-
tron), the only value of L that is of interest is L = 1 as in
the ground state ( P) of sulfur. Two alternative values,
5 = —,

' and —,', are, however, involved for the total spin of

jj(r)=(2/~k, )' sink, r,
g (r)= —(2/mk )' cosk r .

(2.5a)

C. Definition of the K matrix

To obtain an expression for the K matrix, (2.4) has to
be matched to (2.1). All but the radial part involve the

A superposition of regular f (r) and irregular g(r) radial
functions rejects the eft'ect of the short-range core e8'ects
on the wave function in this region. K, the reaction ma-
trix, is diagonal in J. Our choice for the radial functions
are the energy-normalized free-particle functions" for
1=0,
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orthogonal LS +—jj transformation„'

&J'3r, = g (("J3r,U,'s' (2.6)

g (J) ~ U(J)k ]/2g k ]/2U(J)ii' ~ P
8

(2.7)

The frame transformation matrix U is given for U(&

and U(&/ ', respectively, by'

whereas the radial connection follows from matching the
small-r forms of (2.5) to (2.1). We have

Likewise, if escape into the channel j= 1 is of interest, the
subscripts in (2.11) are interchanged.

On the other hand, if only one of the channels is open
as, for instance, just above the threshold for photoabsorp-
tion by P3/2, when j=1 is still closed and only j=2
open, we have to set kl ———ill and "eliminate" this
channel by forcing its wave function to vanish (exponen-
tially) at infinity. ' This will leave behind for f in (2.9)
only contributions from j=2,

c$3/2[f 2(r}—g2(r)tan(3" "]
and the 2X2 reaction matrix is replaced by the simple
phase

l (g (3/2) )2
tan(3(3/2) g (3/2)

1+ .g (3/2)
11

(2.13)

(2.8)
The allowed values of J following photoabsorption are

J = —,
' and —,'regardless of whether the initial state of S is

or P3/2 A third value, J = —,', is allowed by dipole
selection rules upon starting from the —,

' state of the nega-

tive ion but is only compatible with the quartet state of
the (e +S) L =1 complex. Since the spin of the complex
is substantially unchanged upon photoabsorption (spin-
orbit coupling being small in a few-electron system such
as this), we drop J= —,

' from further consideration as

negligible.

0. Imposition of boundary conditions on the ~ave function

In general, two difterent j values contribute to each J.
Thus, for any J, the full wave function is a superposition
of functions (2.4); for instance, for J=—'„

P=c()I)(+c21()2 . (2.9)

When both j channels are open, i.e., k, and k2 are real,
lt)( 2 take the form

~l ( 3/2f)(r) 43/?gl(r)+ll 03/?S2(r)+21

(2.10a)

42 =43/2f 2(r ) —03/2g i (r)&')z"' —03/?g2 «)&22"'

Eg (3/2)
12

1+ .g (3/2) (2.11a)

1+iX ""'
[1 It (3/2)I(. (3/2) +(g (3/2) )2]+l (~(3/2) +g (3/2)

)ll 22 12 22

(2.11b)

(For convenience of display, the subscript MJ on the (}}'s

has been dropped. )

If the photoelectron escapes in, say, channel j=2, the
coeflicient of the outgoing wave in (2.9) in the other chan-
nel (j= 1) must be set equal to zero and, at the same time,
for purposes of energy normalization the coeN[cient in the
channel j=2 must be ( —,)))(2/)rk2)' . These boundary
conditions require

Note that (2.13) is explicitly real in spite of the appear-
ance of i in two places; this imaginary element is compen-
sated by the imaginary elements introduced in (2.7)
through k, . The normalization constant c in (2.12} so
that (t/ is energy normalized, as are f2 and g2, is given by

( 1+tan2g(3/2) )
—l/2 (2.14)

Similar expressions obtain for J = —,
' where j=0,1 play

the role of j=1,2 in the above expressions. As an exam-
ple, when j= 1 is open but j=0 closed, the reaction ma-
trix is replaced by the single real phase, the analog of
(2.13),

l ( I(.( l /2)
)
2

5""'=K""'—
1+)g (1/2) (2.15)

in which any closed-channel components which might be
present are exponentially small at large r. For the situa-
tions involving only one open channel, the one by one
matrix T is, of course, unity and the collision eigen-
phase-shifts are given by either (2.13) or (2.15). At higher
energies for any J, both contributing channels j are open
and the eigen-phase-shifts 5' ' are the arctangents of the
eigenvalues of the (at most 2X2) reaction matrix (2.7).
Successive columns of the orthogonal matrix TJ are sim-

ply the corresponding eigenvectors of this reaction ma-
trix. These eigenparameters succinctly describe the wave
function of the photoelectron as it escapes spherically
from the residual atom, prior to experiencing the external
Aeld.

III. TRANSFORMATION FROM SPHERICAL
TQ CYLINDRICAL SYMMETRY

The primary feature of photodetachment in an electric
Geld is that the photoelectron passes from a domain of
spherical to one of cylindrical symmetry as it goes from

Finally, regardless of the number of channels open, it is
useful to extract the large-r form of the collision eigen-
channel wave functions,

(I)/&T'. [fj(r}cos5 —gj(r}sin5 ], r~ 0()

j open

(2.16)
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region II to III. In this section the appropriate transfor-
mation factor will be derived so that the wave function i}/

of the final-state eigenchannels can be adapted to the (cy-
lindrical) symmetry that pertains at infinity. This will
then give through the density of states D
=[( i(l

i
i)'l ) '] the modulating factor that expresses the

eRect of the electric Geld on the cross sections.

A. Transformation at E=o

Region II is the region of overlap between both sym-
metries. %'e will first derive the orthogonal transforma-
tion that connects free-particle wave functions in the two
descriptions. The regular, energy-normalized spherical
solutions for a free electron are'

Fl. (r) =(2~) {/28™~N-l.I'I (cose)r i/2Jl+ {/2(kr),

UF=0 (k )
—{/2

qo (3.5)

( ) (2 2
)

i/2 slnhlCP
(3.6)

The simple derivation of the transformation (3.4) is valid
at least locally (at reasonably small r) and that will suffice
for our purposes when we later extend to F&0. The gen-
eralization of (3.4) to arbitrary lm is given in Ref. 6.
Note also in this context that the result in (3.5) also per-
tains if q were to be imaginary, q =iq . The result is, of
course, not meaningful for all r and, in particular, for
large distances, but cosiq'z remains bounded so long as
q'z is small. Finally, again for later extension to F&0 we
need the analytic continuation to negative energy,
k = —s &0. The l=0 (real) energy-normalized function
is chosen as

1){{m{+m)/2 ~ I 2l+1 (l —lm I
)!

2 (l+ im i)!

' j/2

(3.2) g 0(r)=(2»r q)
'/ Jo[i(s. +q )' p]cosqz, (3.7)

Correspondingly, with q & —~, which is necessary so
that the kinetic energy in p remains positive (the argu-
ment of Jo below is real) we have

For l=O, this coincides with (2.5a) except that the angu-
lar part of the wave function [which is (4»r) ' foi l=O]
is also included in (3.1). In expressing spherical and cy-
lindrical solutions in terms of one another, we need in
general all values of I, although in the 6nal expressions
for cross sections only the coeScients involving I=O will

appear, rejecting that the initial "feed" into region II is
only in the s wave.

On the other hand, the regular energy-normalized cy-
lindrical solutions are

(r)=, /2
J [(k' —q')'/'p]

(2~)'"
cosqz, II, =+1
sinqz, Il, = —1 . (3.3)

The two different forms are for even and odd "z parity. "
Since ihe reAeciion z~ —z corresponds to 8~m —8,
clearly II, =( —)'+, so that the expansion of f (r) in
terms of Fl (r) will involve either only even or only odd
terms in I +m. The index q in (3.3) is the wave number
for the z motion; that is, we have apportioned the total
energy ( —,')k into ( —,')q2 for the z motion and ( —,')(k —q2)
for the p motion. Note also that in expanding (3.1) and
(3.3) in terms of each other, for a free particle we expect q
to run from 0 to k; however, for later applications when
an external 6eld F is present with its potential Fz which
runs to —m, q can also range over negative values.

The expansion coeScients in

iliq (r)= g Uql= Fl (r) (3.4)

can be obtained in several ways. Relegating alternative
procedures, as weH as the general expression for all I, to
Appendix 8, perhaps the simplest step to obtain the I=O
coe%cient that is of interest to us is to examine 10th sides
of (3.4) for r~O (that is, p-. z =r =0). As expected, for
I=0 only H, = 1 is relevant, and simple inspection gives

The passage between them, again valid at least at small r

and obtained as before by inspection, is

F 0 (~q) 1/2
qo (3.8)

8. Transformation at Anite Seld

X(4/F)'/6A [(2F)'"(z —q'/2F)], (3.9)

where A is the Airy function; '
q can now range from

—(x) to k . The crucial step is now the recognition that
in computing a transition dipole matrix element
( g» ~

z
~

'I'0 ) for photoabsorption, where 0'0 is the
ground-state wave function of S, the relevant region is
at small r only (region I) which is where %'0 is apprecia-
ble. Therefore, apart from normalization factors, F does
not a8'ect the structure of the matrix element itself. %e
can reexpress P at small distances in terms of the F=O
functions ll{» in (3.3),

@F (r)=A+/+ (r)+A f (r), (3.10)

where the superscripts on f on the right denote the value
of H, . Note, of course, that both z parities are involved
in representing the mixed-parity object in (3.9), this pari-
ty being no longer a good quantum number when F&0.
The coeScients A + are obtained by setting z =0 because
the emphasis in this expansion of the F&0 function in
terms of the F=O ones is that it need only be valid at
small distances. %e have

A =(qrq)' (4/F)' ~A[ —q /(2F) '],
=( /q j'/222"F'/6~ [—q'/(2F)'"] .

(3.1 la)

(3.11b)

In the presence of a static electric 6eld, the exact
energy-normalized cylindrical solution for a free electron
of energy ( —,')k, with again ( —,')q apportioned to the z

motion, is

qF (r j (2~)—l/2eimPJ [(k2 q2)i/2
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On combining with (3.4), we have the transformation
between cylindrical and spherical symmetry valid for
F~O

(3.12)

with

3+ for I +m even

UqI
——UqI= )&

'
~

The presence of the factors A+ makes U a nonorthogo-
nal transformation. By combining (3.5), (3.8), (3.1 la), and
(3.13), the only coefficient that is relevant to later sections
can be summarized as

k ' for a~0
UF i/2(4/F)l/6~ [ q 2/(2F)2/3]

qo x-'" for z ~O .

(3.14)

Further, the I=O wave function in (3.1) can be written as

Foo(r)= f d(q'/2)[(U ) ']«1(~,(r) . (3.15)

Although this formal inversion of (3.12) involves the in-
verse matrix U, we will see that its explicit construc-
tion will be unnecessary, all our computations being func-
tions of (3.14) alone.

lems where there are many (infinite number) bound states
and a substantial inner well. In our problem, ho~ever,
where most negative ions have no more than one bound
state (and that too with low binding energy), and the
inner-well region is limited and small, we will ignore this
complication. %hat this amounts to is that our matching
of F&0 and F=O solutions as in (3.10), even though car-
ried out at small distances, lies nevertheless already out-
side the barrier, the electron having tunneled out through
the Fz barrier (clearly all this is only relevant to q gO).
The F+0 regular solution in (3.9) and the conjugate ir-
regular one involving the irregular Airy function, which
oscillate 90' out of phase at z~ —~ are still in the
matching region similarly 90' out of phase, as are the
cosqz and sinqz functions to which they are matched.

With (3.15) and (3.17) now in hand, we can rewrite it

in (2.22) in terms of the cylindrical functions,

k,. /2
iI'/ = g T, cos5~ f d(q /2)it/qo[(U ) ']Oq

k,. /2—sin5 f d (q /2)Xq&U&& . (3.18)

Calculation of D ~ = (4
l

ip ~ ) ' leads to the same form
given in Ref. 6,

(g l g ~ ) = g [cos5 T, (H; } 'T; cos5 ~

C. Transformation for irregular functions +sin5 T;H; T; sin5&], (3.19)

The wave function in (2.22) for the collision eigenchan-
nels requires both the regular function f and the com-
panion irregular function g. %e need, therefore, a similar
recasting of the irregular spherical functions G& (r) in
terms of the irregular cylindrical functions X (r). In the
main the equality of %ronskians of pairs of solutions in
the iwo symmetries allows us to write as the conjugate to
(3.12)

X (r)= g [(U ) '], G, (r),
I

along with the inverse relationship

k /2
G& (r)= f d(q /2)Uq&X» (r) .

(3.16}

(3.17)

A subtle approximation is implicit in writing these ex-
pressions because, in common with the usual ambiguity
in defining irregular functions, ' these expressions can in-
volve additive pieces proportional to the regular solutions
(this will change neither the irregular behavior at the ori-
gin nor the Wronskian). Stated diff'erently, when tunnel-
ing through an intervening barrier is involved, a pair of
conjugate regular and irregular functions defined, say, at
small r will in general upon continuation through the bar-
rier not emerge at large r with the proper 90 out-of-
phase relation between their oscillations. The amount by
which the phase difference differs from 90 is represented
by the coefficient of the additive pieces in (3.16) and (3.17)
that involve the regular solutions. This coeeicient, called
cosecy by Harmin, and analogous to the quantum defect
parameter 9, is quite important in photoionization prob-

IV. PHQTODKTACHMKNT CRGSS SECTIONS

The field dependence of the cross section is isolated in
the density-of-states matrix D

4K CO
2

d' ~ d'
3(137)(2JO+1)

(4.1)

The relevant zero-field reduced dipole matrix element in-
volved is

(4.2)

with

H (k)= f d(q /2)(U 0) (3.20)

The modulating factor H", depending then only on U,
encapsulates the entire eFect of the external field. Al-
though intermediate steps in the analysis involve the ma-
trix U '„it could have been anticipated from the struc-
ture of (3.15) and (3.17}that, since physical significance is
attributed only to the ratio of the coefficient of irregular
to that of the regular function in a collision wave func-
tion (it is for this reason that tan5 or the E matrix are the
objects of interest}, such a ratio will involve the ratio of U
to U ', that is, U . Therefore, H can be computed
from only the single element UqI with /=0. Analytical
expressions of 0 for limiting values of energy and field
strength are provided in Appendix C; in particular
HF~1 for F~0 as expected.
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The dependence of the density-of-states matrix on J has
been suppressed for notational brevity in (4.1). Here we
treat the final continuum state of the negative ion in jj
coupling, and make use of the %igner-Eckart theorem to
sum over magnetic quantum numbers analytically. This
is permitted because the detachment cross section is in-
dependent of the incident light polarization, a conse-
quence both of the negligible efkct of the field on the
atomic ground state and of the strong dominance of s
waves in the photoelectron wave function. '

The number of relevant collision eigenchannels it de-

pends on both J and the Anal-state energy E. For in-
cident photon wave numbers in the range 16 755-17 152
cm ', only the j=2 channel is open. The relevant J
values are then —,

' and —,', with the latter giving no appre-
ciable contribution to the photodetachment cross section
because of spin conservation within region I. As dis-
cussed in Sec. II, the upper j=1 channel must be elim-
inated to give a single collision eigenchannel whose

l

eigen-phase-shift 5' = ' is given by (2.13), thus deter-
rnining a 1 X 1 density-of-states matrix,

D =H (kz)/[cos 5z '+[H (k2)sin5' '] I (4.3)

d =c[U' 'k' +(c, /cz)( —i«, )' U', (~z]do (4.4)

with c as in (2.14} and ci /c2 as in (2.11a). Note that be-
cause of the dependence on k], ———i~& through E,z, the
ratio c&/cz carries a compensating i ' factor and the
second term above is also explicit1y real. %e have 6nally
in this energy range from (4.1)-(4.4),

F ~F =ODF
sa ' (4.5)

where the field-free cross section is the same as in Ref. 10,

The eigenchannel dipole matrix element to be used in
(4.1) involves only an S = —,

' region I reduced matrix ele-

ment d which can be regarded as a constant over the
whole energy range considered in this paper,

F=o 5 4~'~ o 2
k2(1 —«, a~ }

[1—«i(ad+5a~)/6] +k2[ —«ianna +{5a&+a )/6]

The eigen-phase-shift required in these formulas is given explicitly by

tan5& ~ ' ——k2[ —«,ada~+(Sad+a» )/6]/[1 —«, (a&+5a~ )/6] .

(4.6)

(4.7)

Next, in the range 17 152-17329 cm ' photon energy, both channels j=2 and j=1 are open. Tvvo values of the to-
tal angular momentum are now relevant, J=—,

' and J = —,'. For the J = —,
' contribution, the Snal state has both j=1 and

j=2 channels present and open, and described by the two-channel reaction matrix (2.7). Since neither of these channels
is closed, neither requires "elimination" in the quantum-defect-theory {QDT) sense. The two collision eigenchannel
phase shifts 5' ~i' and reduced dipole matrix elements d' ' are found by diagonalizing the matrix (2.7). More
specifically, the two eigenvalues of E,'~' are just tan5'J =3~2', and the corresponding eigenvectors are just the T of Eq.
(2.17) needed to determine the density-of-states matrix (3.19). If we denote these two tan5' = ' by A, , they are the
roots of

A, +(A+B)A, +k, k2ada~=0,

3—:kz(5ad+aq)/6, B =k, (ad+—5a~)/6 .

The J=—,
' density-of-states matrix is

(4.8)

b d
D =(ab —d ) (4.9a)

where we have defined

H"(k, )(A, , +B)[l+AiH (k2) ]+H (k2)(A, , + A)[1+kiH (ki) ]

H (k, )H (ki)(1+A, , )(A, i
—Ai)

b:—a with k&~A2,

(Ai+ A)(A. , +B) 1+A, , A2H (k, )

(1+A, , )(1+k22) H (k, )

1+X,A2H (k2)

H'(k, )

(4.9b)

when F=O, H =1 and D ~ reduces to the unit matrix as it should. The reduced dipole matrix elements again pick out
only the S = —, contribution as in (4.4), giving explicitly

(4.10)

The J = —, part of the photodetachment cross section involves now the two channels j=1 and j=O, of which the latter
must be eliminated since it is a closed channel. The resulting formula for the lone collision eigen-phase-shift 5' =' ' is

P
then obtained from (2.15), and the contribution to the cross section from J = —,

' is
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cr"(J =—')=sr =(J=—')H (k )/leos 5"~ '+[H (k, )sin5" '] ] (4.1 1)

2 4 k, (1—«Oaq )
F=0(J l )

qr ~ (do)2
15 137 [1 go—(ad+2a )/3] +ki[ «O—agaq+(2ad+uq)/3]

(4.12)

tan5 =ki[ «Onda +(2ad+a )/3]/[1 —«o(ad+2a )/3] (4.13)

Finally, above 17329 cm ' all channels are open for
photoabsorption from S in the P3&2 ground state.
Again two values of the angular momentum contribute,
with o (J =—', ) still given by the result derived in the pre-
vious paragraph. The J = —,

' part of the cross section in-

volves a two-channel calculation closely analogous to
that derived for J =—,

' in the previous paragraph. and will

not be given explicitly here. Transitions from the P, zi
state of the negative ion to the j=2, 1, and 0 continuum
channels are analyzed identically. The only numerical
difference is in the short-range dipole matrix element d,
a common factor in all the above cross-section formulas.
This d is now evaluated with the wave function ap-
propriate to the P, &i state of S . The resulting change
in the numerical values is as in Ref. 10.

All expressions for the cross section o close to a
threshold j show a term proportional to H (k ). Exam-
ination of the proportionality constant in the vicinity of
threshold, k 0, shows [see (C3)] a 1/k behavior. This
cancels the dependence on k~ (Wigner threshold law) con-
tained in this portion of o.~ so that the field-dependent
cross section o starts at a 6nite value at each threshold.
For instance at the lowest threshold j for a given J,

(4.14)

V. RESULTS AND SUMMARY

The key quantity for photodetachment in an electric
field is the modulating factor H in (3.20). Figures 1 and
2 show a plot of this function as a function of the energy
for two representative values of the field strength„
F=10 and 5X10 a.u. (5X10 and 2.5X10 V/cm).
H is a continuous function from —oo to 00. For nega-
tive energies, the tunneling region, there is a rapid fallofF'.

At positive energies, the function oscillates, with damped
oscillations dying down to the asymptotic value of unity.
The spike at k=0 represents the contribution froin (C3),
with its 1/k and ]/«structure on either side of this limit.

Figure 3 shows the cross section for photodetachment
from the P&zi state of S (likewise, Fig. 4 for detach-
ment from the P, zz state) for the two field strengths. In
comparison to the F=O cross section, shown by dashed
lines, note the modulations superimposed by the factor
H . The characteristic "square-root" dependence on the
energy of the F=O results at the threshold are also absent
now in o". In gathering together the expressions for o,.
derived in Sec. IV, we have used ad ——3.5 a.u. and
a = —10 a.u. , values drawn from Ref. 10. Note that just
as in that analysis of field-free photodetachment, these
two parameters that characterize the short-range interac-
tion of the electron with the S atom (and, therefore, they
remain the same for F=O and F&0) are the only ones

Note the proportionality to I''~. The same limiting
value of o. applies when the threshold is approached
from below. Therefore, unlike in the F=O case, the cross
sections now go smoothly through each threshold. Far
below threshold, the expression (C6) for H (~, ) shows a
rapidly falling exponential dependence on x3/F. This
arises as expected from the tunneling through the barrier
formed by the electric field. In fact, (C6) is essentially the
well-known expression for the field-ionization cross sec-
tion, when writing it as

t'

(qrF/«) exp( 2~ /3F), —
2z'K

(4.15)

where the second term in parentheses expresses our nor-
rnalization per unit energy. Standard textbooks' quote a
result which has instead of this factor the factor (2qr)

that is relevant to normalization to unit current density
of the outgoing field-ionized electrons.

0
-1.0 O-O &.0

ENERGY (qi. u. } )0
FIG. 1. Modulating factor H in Eq. (3.20) for a field of

I' = 10 a.u.
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F =5x)Q

ENERG Y ( a.u. } 1Q

FIG. 2. Same as Fig. 1 for F=5&10 a.u.

not determined by our analysis. Everything else is han-
dled as a series of frame transformations and the depen-
dences worked out analytically.

The presence of the electric field F is thus seen in Figs.
3 and 4 to overturn the square-root threshold singulari-
ties observed at each fine-structure threshold in zero field.
The cross section is now finite and smooth near each such
threshold. In more physical terms, the field-induced
modulations can be regarded as an interference between
two paths leading to photoelectron escape. For the first
path ihe photoelectron moves "downstream" from ihe
atom toward z = —Oo immediately after the photoab-
sorption. For the second path the photoelectron initially
heads "upstream, " moving to z -F/E before being
rejected backward and escaping to z = —Oo. Fabrikant'
has shown that this interpretation can be combined with

(a)

F=1Q
2 p

lp

t2

LaJ
CO

CO
CO

O
p~ z-
LLj
CO

CO

17400 0
~6~00 )6500 16900

PHOTON ENERGY (cm-~}
PHOTON ENERGY (cm )

F'= Qx|Q (b)
'

U

Xl

C)

Laf
CO

(n &-
V)

~tee

O

C)

PHOTON ENERGY (cm-'}

FIG. 3. Photodetachment cross-section froIQ the P3g2 state
of S in fields of (a) 10 ' a.u. (b) 5X10 a.o. Dashed lines in-
dicate the zero-field cross section. The incident radiation is po-
larized linearly along the field axis.

0
)6500

PHOTON ENERGY (cm-')
FIG. 4. Same as Fig. 3 but for the 'I'&~& state.
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a semiclassical analysis to predict that the nth maximum
of these interference oscillations occurs st an energy
E„=(0.067Fn) cm ', where F is the electric field in

V/cm. (This result neglects the electron-atom interaction
altogether, in contrast to our frame transformation
analysis. )

Bryant et al. have recently observed these field-
induced modulations, ss well as detachment below the
zero-field threshold (caused by tunneling), in H photo-
detachment. The theoretical treatment developed in this
paper applies to H photodetachment, with a few
modifications associated with the fact that the photoelec-
tron escapes with /=1 rather than /=0. Another paper
shows that this analysis accounts for the experimental
spectrum of Ref. 4 quantitatively.
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APPENDIX A: ALTERNATIVE NORMALIZATIONS
AT SMALL r

Our use of radial functions in Sec. II for regions I and
II has followed the now-standard form for the quantum-
defect theory of functions (2.1) defined independent of the
energy in region I and normalized per unit energy scale in
region II, as in (2.5). This choice also conforms to the
one adopted in Ref. 10 for the zero-field photodetach-
ment of S . With this choice, the functions (2.S) upon
examination in the r~0 limit display energy-dependent
factors, k&

—'~ . An alternative procedure, used in the
companion paper, is to use functions wherein these fac-
tors have been Ntered out so that critical energy depen-
dences do not appear at the step of matching (2.5) to
(2.1). [As noted in (2.2), the same goal can also be at-
tained by modifying suitably the functions in (2.1).] In
the main, for our problem, this removes some of the fac-
tors k in some of the expressions in the text, to reappear
elsewhere. %e catalog these changes here.

Replacing (2.5) and its counterpart (3.6) at negative en-
ergies by

(2/m)'~ k 'sinkr, g (r)= (2/n)—'~ coskr, a~0
(r)= '

(2/n)' ~ 's.inhar, = —(2/ir)' coshar, s ~ 0
(Al)

the reaction matrix in (2.7) is now smooth and analytic at
c, =0,

& ' = —QUJs&sU, s
(J)o (J) (J)

S

A wave function, such as in (2.12) takes the form

i/ =c P(f g tan5 ),
where the analog of (2.14) still applies;

c'=(1+tan'S')-'"

tan6 =k 'tan5 .

Similar changes occur elsewhere in Sec. II.
Turning to Sec. III, the definitions in (Al) now lead in

place of (3.8) to

numerical results of Secs. IV and V are, of course, un-
changed.

APPENDIX B: EVALUATION
OF THE TRANSFORMATION MATRIX Uq(

=

The key element of Sec. III is the transformation from
spherical to cylindrical symmetry. Once established for
F=O we saw how it is readily adapted to the form
relevant for F&0. The first part of this result, namely

U~&
= in (3.4), was obtained in Sec. III for /=0 very sim-

ply by inspection of the small distance behavior of the
wave functions. Here we will consider alternative routes
to this results and some generalizations.

Considering /=0 first, the right-hand side of {3.1) is ex-
plicitly independent of angles, leading to

U&g= Foo(r)= j 18sinOJO[(k —q )'~ r sing]

y yO, F=0 —] /2
Uqo

so that in (3.20)

0'(k)o=kH'(k) .

(A5) X(n.q) ' cos(qr cos8) .

Evaluating the integral, we have

U = F (r)=(2q) ' (kr) '~ 1, (kr);
Likewise, the cross-section expressions in Sec. IV are
modified;

p 47T co dJD' d'
3(137)(2JO+1)

replaces (4.1), where D is evaluated from (4.2) or (4.9)
after using (A4b) and (A6) to replace quantities by their
superscript-zero counterparts. The f]Inal expressions snd

k /2
Foo(r)= I d(q /2)g«&(r)U~~=

which is the inverse of (3.4).
Finally, although unnecessary for our purposes in the

paper, note that more generally for any l, we can write
from {3.4) upon using the orthonormality of the angular
functions contained in (3.1),



37 NEGATIVE-ION PHOTODETACHMENT IN AN ELECTRIC FIELD 2403

Uq'I
='r '"Jt+

i iz(«)

(trq)' ~2 f d 8 sinOJ [(k —q )' p]

Note immediately that as k~O only the first term sur-
vives and will be proportional to 1/k. In fact, the in-
tegral involved can be worked out analytically and we
have

cosgz
XPI (cosO)X ';„ H'(k-0) =( , )—'"F'"I'(', ) j-~k . (C3)

The integral on the right-hand side can be worked out in
closed form for special values of m. For example, for
rn =l, when Pt -sin'(9, the integral is proportional ' to
J, +,~z( kr), so that matching coefficients on both sides of
(B4) gives

U, = =( —i)'[(2l+1)j(2l)!]' (kq) '~ P,'(qjk), m =l .

(BS)

APPENDIX C: EVALUATION OF THE
MODULATING FACTOR H

In the final expressions for detachment cross sections
in an electric field, the modulating factor encapsulates the
entire inhuence of the 6eld. %'e will derive here expres-
sions in various limits for this factor. As given in (3.20),
with U taken from (3.14), we have for z y 0

HF(k)=(4/F}'~'(mjk) f" "A[—q' j(2F)'"]d(q'/2) .

(C 1)

It is useful to split the range of integration into two
pieces, and rewrite as

H (k) =(4/F)'"(~/k)

X f d (q'/2)A'[q'/(2F)'"]
0

+f d (q'/2)A'[ —q' j(2F)'~'] . (C2)

The second term in (C2) can be evaluated numerically
for some value of k. %hen F~O, it is this term that
dominates because, as follows from (C3), the first term in

(C2) vanishes in this limit. In this limit, the second term
and therefore H (k) can be shown to reduce to unity as
follows. For the Airy function with large negative argu-
ment, write A ( —x)=(1/sr)x ' sin (2x /3+sr/4)
and replace the rapidly oscillating sin function in the in-
tegrand by its average value of —,

' to get

g 2y(2p)2/3(2F)'"(2k)-' dx x -'",
which reduces to unity.

Below the threshold, we have from (3.20) and (3.14),

H (tt)=(4/F)'i (trjtt)

X f d (q'/2)A'[ —q'/(2F)'~'] . (C4)

Once again, clearly as tt~0, this reduces to (C3) except
that k is replaced by ~. On the other hand, for x large,
that is, far below threshold, the Airy function of large
positive argument can be approximated by A (x)
=(4') 'x 'r exp( —4x rz/3) so that (C4} takes the
form

H (a ~&1)=F' '(12) ~ f, e "u ~ du . (CS)
2K /3F

The integral is proportional to the Whittaker function

, zi, z6 (2tt /3F) whose known asymptotic properties
give finally

H (n&&1)=(F/4tt')exp( —2tt'/3F) .
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