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Propagation and stability of kinks in driven and damped nonlinear Klein-Gordon chains
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We consider the propagation of kinks in an elastic chain in a bistable or multistable potential
under the action of a driving force. Each element of the chain is subject to a damping force pro-
portional to its velocity. We show that both the propagation velocity of the kinks as a function of
the driving field, and the kink width as a function of propagation velocity, are determined by
characteristic functions which depend only on the form of the potential. These functions can be
found by considering a single particle moving in the upside-down potential of the chain. The gen-

eral properties of these functions are studied and illustrated by several examples. The stability of
these driven kinks is discussed. Interestingly we 6nd in addition to the expected discrete localized
eigenmodes a two-dimensional continuum of oscillatory modes with a localized envelope.

I. INTRODUCTION

We are concerned with the structure, propagation,
and stability of transition regions (domain walls) in one-
dimensional (1D) multistable continuous media de-
scribed by a field equation of the driven, damped, non-
linear Klein-Gordon type,

I a'8tat'+~ a8xat «a'8xax'= aV Za8, —

with I & 0, y ~ 0, ~ ~ 0. Here,

V(8) = Vog(8) F8, —

(l.la)

(1.1b)

FIG. 1. Bistable potential with driving force potential —FO.
The local minima are at 8&,82; the intermediate maximum is at
03.

where Vog(8) is a potential scaled by the amplitude, Vo,
which has at least two minima, and F is a constant driv-
ing force (see Fig. 1). The minima will be shifted by the
force F and will eventually disappear at critical values of
F by merging with an adjacent maximum. The function

g (8) is assumed to be analytic (unless stated otherwise)
and of such a form that the following conditions are
satisfied. (1) No new minima appear by the application
of F. This requires that g(8) consist of convex sections
around the minima, connected by concave sections
around the maxima. (2) The higher minimum at 8=8i
disappears at a critical value F,„ofthe force by merg-
ing with the intermediate maximum at 8=83,

g(8i)=g(8&); g"(8, )=0 for F=F,„. (1.2)

where we associate the time ~ with the variable
g=x —ut and where m, ri, and U are given by

Models of this type have been used to describe a
variety of driven and damped nonlinear systems. Exam-
ples are the 8 " potentials used in the theory of phase
transitions, and periodic potentials (see Ref. 1 for further
references). A particular realization consists of an elas-
tic string with elastic tension ~, mass per unit length I,
and damping constant y, under the influence of a spa-
tially uniform anharmonic force —8V/t)8.

%e are interested in transition regions connecting two
minima 8,(F} and 82(F) of V(8) of traveling-wave (TW)
form, i.e., in solitary TW solutions ("kinks") 8(x —ut) of
Eq. (1.1), which depend on x and t only in the combina-
tion g=x ut, where u—is the propagation velocity along
x. The TW's are solutions of the ordinary difFerential
equation

I(tt, —u ) 2+uyz d8 d8 BV
d(2

where u„de6ned by u, =a/I, is the sound velocity
along the string in the absence of the potential. This
problem is equivalent to the motion of a single particle
of mass m and friction ii in a potential U(8),

m d 8ldr +rid8ldr= —t}U/t)8,
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m=I(u, —& ),

The condition that the solution 8(g) connects two mini-
ma 8, and 81 of V(8) restricts the mass in Eq. (1.4) to
non-negative values, i.e., the propagation velocity It to
subsonic values

~

u
~

& u, . Kinks connecting two uni-
form states, at least one of which is a local maximum of
V(8), on the other hand, may have supersonic propaga-
tion velocities. Depending on the sign of u, the friction
constant rt can be of either sign. (We could actually also
restrict the friction to positive values by the
identification ~=" kg for u & 0 and u &0, respectively. }

We normalize the force F in such a way that for E =0
the two minima of V(8) under consideration are of equal
height. For fixed values of the mass m and the damping
constant rI and values of the force E below a critical
value F, ( m, Ir), the motion of the particle starting at the
maximum 8=81(F) of U(8) will not reach the maximum
a't 8=81(F), bllt will clld lip ln tllc llltcI'Illcdlatc
minimum at 8=8&(F), corresponding to an unstable
phase. For values E~F, (m, I)), on the other hand, the
motion will overshoot the maximum at 8=8&(F) and its
6nal course will depend on the details of the potential
V(8). For the case of a sinusoidal potential, the prob-
lem of determining F, ( m, t)chas been discussed in Refs.
2-5.

Thus, the kink solutions connecting two minima of
V(8), in which we are primarily interested, correspond
to the motion at F =F,(m, rI), starting for r= —oo with
zero velocity at the maximum 8=8& and terminating for
v =+ oo with zero velocity at the maximum 8=8& of
U(8). By using Eqs. (1.3) and (1.4), the dependence of
F, on rn and 1) yields the force E(u)=F, (I(u,~ —uI), uy)
at which the kink with propagation velocity u exists.
Note that in the usual terminology, the solitary wave
moving at I' ~0 with positive velocity is called an an-
tikink.

The TW solutions display two general types of degen-
eracy: (1}Since Eq. (1.3) is invariant under translations
g~(+a, any TW solution 8(g) is a member of a con-
tinuous family 8()+a), —oo &a &+ oo (Goldstone de-
generacy). (2) Since Eq. (1.3) is invariant under the
transformation g~ —g, u ~—u, there is for any TW
solution 8(g;u, E) a solution 8( —g —u, E}. In particular,
for any solitary TW with 8( —oo)=HI, 8(+ oo)=8, trav-
eling in a certain direction, there exists one with
8( —~ )=8„8(+a )=HI traveling in the opposite direc-
tion. In the mechanical analogy, with every motion
8(r, rj) there is associated a motion 8( —r, —1)). In par-
ticular, for any motion with positive damping starting at
~= —ao at the higher maximum 8=82 and terminating
at v'=+ co at the lower maximum 8=8& there exists a
motion with negative damping starting at 8& and ter-
minating at 82. Additional degeneracies occur if the po-
tential function g(8} is left invariant under some trans-
formation of the field variable 8; if g(8) is symmetric
about the maximum 8=0, g (8)=g ( —8) such that
8) = —Hp, tllcll thcrc ls fol' any TW solutloIl 8(g, II,F) a

u =uogs(F/Vo),
whcrc

(1.6)

is a velocity unit and the function P is determined by
the form of g (8}but is independent of the parameters of
Eq. (1.1). We will extend Eq. (1.6} valid for I =0 to the
general case I&0. We will show that, with very httle
algebraic calculation, the results for the purely viscous
chain can be used to derive the velocity-force charac-
teristic of the kinks propagating in a chain with iner-
tia."

In Sec. II we reduce the problem of finding the
velocity-force characteristic of kinks of Eq. (1.1} to
determine a characteristic function Ps(FlVo). We dis-
cuss the meaning of the characteristic function in terms
of the single-particle problem, Eq. (1 4), and investigate
the general features of this function. An additional
characteristic function is introduced to discuss the width
of kinks as a function of propagation velocity. In Sec.
III we consider analytical examples of periodic poten-
tials and discuss the velocity-force characteristic and the
width-velocity characteristic. In Sec. IV we investigate
the stability of the kink solutions and examine to what
extent characteristic functions can be used to obtain the

solution —8(g;u, E—). If g(8) is periodic with period
A, g(8)=g(8+A), then any TW solution 8(f) is a
member of a family 8(g)+nA, n =0,+1,+2, . . . .

Propagation of kinks and domain walls in driven and
damped multistable systems is an old problem and the
following citations can represent only a small portion of
this work. Bistable systems have been studied in Refs.
6-10. Montroll and West have given the analytical
solutions of domains in a driven and damped 8 chain.
An extended discussion of this system has been provided
by Nitzan et a/. Magyari's paper9 extends the work of
Refs. 7 and 8 to include inertial efFects and represents an
application of the ideas presented in Sec. II of this pa-
per. I.andauer' discusses the motion of domain walls in
the ballast resistor and gives a simple recipe for the cal-
culation of domain-wall velocities in the presence of
small driving forces.

The propagation of kinks in a sinusoidal potential has
found interest repeatedly. " ' Nakajima et al." have
studied the initial value problem of the partial
differential equation (1.1} numerically. McLaughlin and
Scott' treat the damping perturbatively. Marcus and
Imry' integrated the traveling-wave equation for the
chain with inertia, on the computer. Besides the
velocity-force characteristic, they also study the width of
the kink as a function of the field. It is characteristic of
the numerical work of Refs. 11 and 13 that the calcula-
tion has to be repeated if the parameters in Eq. (1.1) are
changed. Adams' also uses numerical methods but ar-
rives at a formulation which is closely related to the re-
sults presented in this paper. Biittiker and Landauer'
calculated the velocity of kinks in a purely viscous chain,
with I—+0, u, —+ 00, such that m —+Iu, =~. The
velocity-force characteristic obtained as the inverse of
F(u) was found to be of the form
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eigenvalue spectrum. Interestingly, our analysis shows
that the eigenvalue spectrum of a kink is more complex
than one might naively expect. In addition to the ex-
pected discrete spectrum of localized modes, we 6nd os-
cillatory modes with a localized envelope associated with
a two-dimensional continuous spectrum.

II. VELOCITY-FORCE CHARACTERISTIC
OF KINKS

A. Scaling behavior

We consider a family of potentials V(8) of the same
form, scaled by the amplitude Vp. The number of pa-
rameters in the single-particle equation of motion (1.4)
may be reduced by introducing the dimensionless time
g=( Vo/

~
il

~
)r. The resulting equation,

Since F, /Vo is a function of a, bg can be expressed as a
scaling function of Ps =1/a,

hg=hs(Ps) . (2.7)

For the kink width 5, we obtain by returning to the orig-
inal units

K —Iu orupby up —X u2 2 2 2 2

In a similar way, we can study the parameter depen-
dence of the kink width 5. The characteristic time scale
of a solution of Eq. (2.1) depends only on the parameters
a and F/Vo and on the form g of the potential. The
solitary motion between two adjacent maxima 8&,82 of
the potential u (8} at the critical field F, can be charac-
terized by a width b g on the g axis, defined by

(2.6)

a d 8/dg kd8/dg=g' F/Vo —(u yO, u &0), (2.1) 5=(
~
i)

~
/Vo)b(=50(

~

u
~
/uo)&g, (2.8)

depends only on the parameter a =mVO/ri2, the nor-
malized force F/Vo, and, of course, on the form g of the
potential. Hence, the critical 6eld E, becomes a product
of Vo with a function of a only. Alternatively„we can
consider a as a function of F/Vo and it is convenient to
introduce a scaling function P such that

r

0 s 2 2 2 1/2(uo —Xu )
(2.9)

where 50——(a/Vo)' is a unit of length. By solving Eq.
(2.5) for Ps and using Eq. (2.7), we find the form of the
velocity dependence,

1 F
a Vp

(2.2)

8. General properties of the scaling functions
where the index g indicates the dependence on the form
g(8) of the potential. From Eqs. (1.5) and (1.7) we have
the relation

In the static case F =0, u =0, Eq. (1.3) has a first in-

tegral

2 2mVp up u,—X =X —1
u Q

(2.3)
,'tt(d8/d g—) Vo[g(8)——g;„]=0

which yields a static kink width

(2.10)

where 7 is the dimensionless parameter
' 1/2

IVp upx=
y u

(2.4)

5(0)=50(82—8i )/[2(gm, „—gm;„)]' (2.11)

and a kink energy (relative to that of the uniform states
8„82)

Solving (2.3) for u and using (2.2) yields the velocity-
force characteristic'

u =+uogs(F/Vo)[ I+X'Ps(F/Vo)) (2.&)

The negative branch determines the velocity of the kinks
(d8/dg&0) and the positive branch the velocity of the
antikinks (d8/dg&0).

For a "chain without inertia, " one has X=O, and Eq.
(2.5) reduces to Eq. (1.6}. We could also have gained Eq.
(2.5) through similarity laws which connect the "purely
viscous chain" and the chain with inertia. According to
Eq. (2.1), every traveling wave is of the form 8=8((Vo/
uy)g, a,F/Vo}. For a purely viscous chain (subscript
vis), the parameter a is given by a„;,=u 0/u „;„[X=Oin
Eq. (2.3)]. For a chain with inertia (subscript I), the pa-
rameter a is given by Eq. (2.3), at ——(uo —X ut )/ut.
solution of the chain with inertia is thus similar to a
solution of the purely viscous chain if aJ ——a„;,. Using
Eq. (1.6) for u„;, and solving for ut yields again Eq. (2.5).
A solution of the pulely viscous cha1n 1s transferred 1nto
a solution of the chain with inertia by replacing K by

E, =a f (d8/dg) dg

=(2' Vo)' f [g (8)—g;„)'~ d 8 . (2.12)
1

Thus, the scaling functions Ps and hs satisfy Ps(0) =0
and bs(0) = ao such that Pshs =5(0)/50=const.

For F« Vo, one expects that P varies linearly with
F/ Vp i.e., that there exists a kink mobility

p =du /dF
~ ~ o=(uo/Vo)P' (0) . (2.13)

p=(82 8&)~/(yE, ) . —

Comparison with (2.13) yields

Ps (0)=(82—8, )(x Vo)' /E, ,

(2.14)

(2.15}

A simple and elegant way to calculate the mobility has
been given by Landauer in Ref. 10. By equating the to-
tal energy loss due to dissipation in the particle picture,
il J8 dt, to the total work done by the external force,

FJ8dt =F(8—z —8,), inserting the static kink solution,
and using the first integral (2.10), one obtains
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which is indeed parameter independent by Eq. (2.12).
We go on to consider the behavior of the function Ps

at larger 6elds. Because the potential U= —V changes
continuously as we increase F, P (F/Vo) must be a con-
tinuous function. Furthermore, we show now that
Pg(F/Vo) is monotonically increasing. It is sumcient to
consider the single-particle problem, Eqs. (1.4) and (2.1).
Consider the critical trajectory belonging to the parame-
ters a and F, . If the force is increased by 5F, a particle
started at a local maximum of U with "mass" a will

gain enough kinetic energy to reach the next potential
maximum with nonzero velocity. The particle will,
therefore, continue to follow the potential gradient. In
order to have a critical trajectory at F, +5F the particle
has to dissipate an additional energy

~U= {a[U(8,}—U(8, }]/5F]5F=(8,—8, }5F~0.
This is achieved by decreasing the mass a . Thus, ac-
cording to Eq. (2.3), Pz(F, +5F)&gz(F, ). A formal
proof of the monotony of P can be found in Ref. 2.

Finally, we consider the situation at the field

F,„=Vog', „where the higher minimum of V(8) at
8=8, merges with the maximum, i.e., where V(8) has a
turning point with horizontal slope at 8, (existence limit
of 'tile state 8)). We show that, at F =Fm~„, $s becoiiles
indeterminate, taking on any value between a positive
number 1/a, and inSnity. Indeed, for constant damp-
ing, a particle starting at the maximum U(8) at 8=82 at
time g= —ao will overshoot the horizontal turning point
at 8=8, if its mass a is larger than a critical value a,
but will approach the turning point asymptotically for
g~+ ao if a ~az. The above statement then follows
from Eq. (2.2). For a=O, i.e., ((}s

——ao, Eq. (2.1) becomes
kdH/dg=g'(8) —g',„, which shows that the scahng
function b,z assumes the asymptotic value

C. Hamiltonian hmit

Finally, we discuss the Hamiltonian limit, i.e., y~O,
F~0 for the chain with inertia. The resulting propaga-
tion velocity, Eq. (2.5), depends on the way in which this
limit is carried out. We find limF Ohmr Ou =u, and

lim„ohmr Ou =0. On the other hand, if we take the
limit y~O but with Xgg(F/Vo)~F/y held constant,
then the velocity u can take on any value' between —u,
and Q

Therefore, for small damping and F/y =const, the
kink in the driven and damped chain will differ from a
kink in the Hamiltonian chain traveling with the same
velocity only by a small perturbation. In fact, an ap-
proximation to the velocity-force characteristic
may in this limit be obtained from the balance between
power dissipated and work done by the external force,

y t x=F t x, (2.19)

by evaluating the integrals for the Hamiltonian kink 8+.
This power-balance equation yields the solvability condi-
tion for the lowest-order perturbation equation. Because
of the formal Lorentz invariance of the Hamiltonian
part of Eq. (1.1a}, the kink moving with velocity u is ob-
tained from the static kink 0, by a Lorentz transforma-
tion,

8 (x, t;u)=8, (x), x=(x ut)/(—1 —u /u, )'

(2.20)

g=(x —ut) Vol(y i
u

i
)~—( Vo/y)t for u ~ ao,

the kink solution (2.17) represents a purely temporal
structure describing the advancement of the uniform
chain from 8, to 8).

bs( m )=(8,—8, )/(g', „—g';„) (2.16) whence

(2.17)

Since g'(8) —gm, „~8—82 and ~ —(8—Hi)2 near Hz and
H„respectively, 8(g) starts exponentially from 82 but ap-
proaches 8& as a power law 8—8, aa 1/g. Actually, this
is true for any a in the interval 0&a&a„as may be
seen from Eq. (2.1) with g'(8)=F,„/Vo+ —,'gI '(8—8&)

+ I ~ ~

Thus, at I' =I' there exists a whole family of kinks
with propagation velocities given by Eq. (2.5). In the
chain with inertia (I+0, X&0},the maximum propaga-
tion velocity belonging to a=O, i.e., Ps ——ao, is given by
the sound velocity u, =uo/X (sonic kink) and the corre-
sponding kink widths is given by

5(u, )=5&kg(ao )/X . (2.18)

u, increases with decreasing inertia I, and in the purely
viscous case (I =0, X=O) one has u, = ao, i.e., 5= ao.
Since

and the solution 8(g) connecting the states 8, and Hz is
obtained from

58~/at = —[u/(1 —u'/u, ')'"](d8, /dX) . (2.21)

f (dH, /dX) dx
y I (dH, /dX)dx

~0

u&gz(0) p
(2.23}

on account of Eqs. (2.12} and (2.14}. Similarly, the per-
turbation approach yields a kink width

2 X2u2 1/2

5(u)=5o(1 —u /u, )' =5o
Qo Q

(2.24)

It must be stressed, however, that the validity of this ap-
proximation is restricted to small damping (large X}. In
fact, comparison of Eqs. (2.22) and (2.24) with the exact
results, Eqs. (2.5) and (2.9), shows that the scaling func-
tions P (F/Vo} and hg(z} are replaced by Pg(0)F/Vo
and z, respectively.

Substituting into Eq. (2.19) and solving for u yields

u=k uPo(s)0( F/V)0[1 +Xgz(0)(F/Vo) ]

=kpF /[1+(pF/u, ) )'i (2.22)

where we have used that
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III. KXAMPI.KS

We will discuss three versions of Eq. (1.1) given by the
periodic extensions of the following examples:

(a) g+(8)=+ 8, —m &8(ir,1 2

2m

V+ (8)= Vog+ (8) F8, — (3.1)

and

V (8)= Vog (8) F8, — (3.2)

On the other hand, for small driving force ~&& Vo,
the kink in the driven and damped chain may be ob-
tained by a perturbation from the static kink for any
value of the damping. This leads to the same power-
balance equation (2.19). The results u =+)MF
+O((F/Vo) ) and 5=5o+O((F/Vo) } coincide to
lowest order in F/Vo with Eqs. (2.22) and (2.24).

2 F/Vo
v'~ [1—(F/V, )']'"+(F/Vo)= (3.7)

It has a zero-field slope P'+(0) =2/v'n and diverges like
(bF/Vo) '/ as bF~O, where bF/Vo=1 F/V—o. The
function {(i+ is shown in Fig. 2 (X=O curve). Note that
Eq. (3.6) at F =Vo is the solution of Eq. (2.17) with

g =g+. The single particle in the potential V with the
cusps at the local minima does not exhibit overdamped
motion no matter how small the mass a . This has the
consequence that P+ exhibits a power-law singularity at
I' = Vo.

The function P+ determines, with the help of Eq.
(2.5), the u (F) characteristic

describing an antikink. Here,

A, ,=[1+(1+4a /m)'/ ]/(2a'),

with 1/a =P+ (F, / Vo). The scaling function P+ is
found from the continuity condition for d8/dg at (=0
as

(c) g(8) = —cos8, V(8) = —Vocos8 —F8 . (3.3) (3.8)

Kinks and their propagation in the potential, Eq. (1.1b),
with the periodic function, Eq. (3.1), have been studied
in Ref. 20. A single-particle problem, Eq. (1.4), with a
potential specified by the periodic function, Eq. (3.2), has
been considered in Ref. 5. Examples (a) and (b), while
simple and analytically tractable, exhibit atypical
features due to the cusps of the periodic functions at
8=(2n +1)m. For the sinusoidal potential, " ' exam-
ple (c), we will use the numerical results presented in
Ref. 15.

In all three cases, the function g (8) has the symmetry
property g(8) =g ( —8). Therefore, kinks retain their
form under F~ F, and the s—caling functions b and P
satisfy

b+(P+)= [ir1 +4/( Pir)+]' =rr/(F/Vo), (3.9)

of the kinks in a chain with inertia subject to the poten-
tial V=V+, i.e., V speci6ed by g+. The rise of the
characteristic with F is stronger than linear, strictly
linear, or weaker than linear, depending on whether
Pi&ir/4, =ir/4, or &~/4, respectively (Fig. 2). For
F~ Vo the u (F) curves reach the values uo/X =u, .

The scaling function b+ defined by Eq. (2.7) has the
form

&( P)=b(Q), $—( F/Vo)= —P(F/V—o) . (3.4)

A. Example (a)

The periodic function g+ gives rise to the single-
particle potential

U(8)=V (8)=— Vo8i+F8, —m &8&ir,1 2

1,2

O

O,e

which has cusps at the local minima 8„=(2n+ 1)rr.
The motion connecting the maxima of U at 8~ =mF/Vo
and 8&+2m is given in terms of the dirnensionless time
0=(Vo/

I n I
)r by 0.2

8(g)=8„+(n 8q )e ', g&—0,
8(g)=2ir+8„(rr+8„)e ', —g) 0,

describing a kink, and

8(g) =2ir+8~ (m+8„)e ',—g &. 0,
8(g)=8„+(n 8„)e '—, g&0,

(3 5)

(3.6)

0.2
FrVO

FIG. 2. Propagation velocity of driven kinks as a function
of the force in a chain subject to the potential, V+, Eq. (3.1).
The u(F) characteristic for the purely viscous chain Q'=0)
defines the characteristic function P+. Additional curves ob-
tained with Eq. {2.5) for 1/7=0. 9,0.6,0.3 give the u (F)
characteristics for the subsonic kinks in the chain with inertia.
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alld the killk width ls follnd froln Eq. (2.8) as
1/2

5+(u)=2v'tr5c 1+ ——X (u/uc) (3.10)

It increases anth u, is independent of u, or decreases
with u, depending on whether X & Ir/4, = Ir/4, or
& Ir/4, respectively (Fig. 3). The limiting values for the
static kink and the sonic kink are 5+(0)=21/m5c and

5+(u, ) =m5c/X, respectively.

x '=os

B. Example (b}

For kinks in a chain with potential V =V, speci6ed
by g, we study the single-particle motion, Eq. (1.4}, in
a potential U = V+ which has cusps at the local maxima
8„='lr(2lt + 1). A illotloIl collllec'tlllg the cusps at —1T

and Ir exists for F & Vc only in the case of underdamped
motion of the particle, a &Ir/4, and takes a finite time
T. The motion describing a kink is given by

—A.~g
A, ge —A, ie

8(g) =8s —(Ir+8s ) 0&((T,

U /Uo

FIG. 3. Width of driven kinks in the potential V+, Eq. (3.1),
as a function of propagation velocity (dark lines) using Eq.
(3.10}. The X=O curve determines the scaling function 5+, Eq.
(3.9). The width of the kinks with velocity u =u, is given by
the light line.

(3.11a)

and the motion which describes the antikink is given by

A]g A2$
A,le —A ie

8(g) =8s +(Ir—8s),0 & g & T,
2 i

(3,11b)

where 8s= —IIF/Vc is the maximum of the potential
V in the interval —n &8 & m, and

= I I+i [(4ct /Ir) I]'~
I /(2—a )

with a= I/P (F/Vc). The time T follows from the re-
quirement 8(T)=0,

A, i I ——[I+(I—4a /Ir)'~ ]/(2a ) .

Thus, at F/Vc=l, the function {() becomes indeter-
minate, taking on any value between 2/l/m and ao. The
solution for a=O is given by Eq. (2.17) with g =g
The function P is shown in Fig. 4 (X=0 curve).

The u (F) characteristic of the kinks in a chain subject
to the potential V= V, i.e., V speci5ed by g, is deter-
mined from the function P by Eq. (2.5),

4uo are tanh(F / Vc )
Q =k

l/Ir [n +4(1+4X / I)Iarrctanh (F/Vc)]'i

(3.14)

T=2Ira /[(4a /m) 1]'—(3.12)
and is shown in Fig. 4. For F-+Vc, the u(F) curves
reach the values

and the condition 8(T)=+Ir (for the kink and antikink,
respectively) yields the function P

arctanh(F / Vc )
(F/Vc) = (3.13)

l ~ [Ir +4arctanh (F/Vc)]'~

for F & Vc. It has zero-field slope P' (0)=4/m ~ and
reaches the value p =2/v tr at F/Vc ——1. For F = Vo
one has, in addition, a branch of overdamped motions
(a & n/4) starting at. the upper cusp at finite time (/=0)
and reaching the lower cusp at g=ao, which are also
given by Eq. (3.11) with 8s =m and

u'=(2uc/l/Ir)(1+4X /n)' &u, . '

For the scaling function di, one Gnds

(p )='
21/m exp(Q 'arctanQ)

1+tanh[lr/(2Q)] '

1/m.
exp(Q 'arctanhQ), P & 2/l/n.

(3.15)

with Q=
~

1 —4/(mp )
~

' . This yields a kink width

I,zz exp(Q 'arctanQ)
1+tanh[n /(2Q)]

'

l/n5c[1 —(u/u, ) ]'~~exP(Q 'arctanhQ),
~

II
~

&u', (3.16)
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C. Example (c)

0.8
O

0.6

0.4

0.2

0.20 0.6
Fl Vo

FIG. 4. Propagation velocity of driven kinks as a function
of the force in a chain subject to the potential V, Eq. (3.2).
The u {I)curve for the purely viscous chain Q'=0) defines the
characteristic function P . The X=O curve is tangent to the
vertical line F = Vo at P =. 2/i/n. The curves for
l/7=0. 9,0.6,0.3 give the u (F) characteristics for the subsonic
kinks in the chain with inertia.

0.4 I.Q

where Q has to be expressed in terms of u,

Q=
i

1 —(u/u')
i

'

The kink width 5 as a function of u is shown in Fig. 5.
The limiting values are 5 (0)=2~ir5o, 5 ( u '

)
= iire5o/( —,'m+7 )'~ =—,'ne5ou /uo and 5 (u, )=m5o/
X=&5oQ /Q o.

In addition to the symmetry cos( —8}=cos8, this ex-
ample has the property that cos(8+~r)= —cos8, i.e., a
translation of half the period yields the periodic poten-
tial turned upside down. Therefore, the potential U can
be obtained from V = Vo(1 co—s8) F8—by changing the
sign of the force and translating the field by m. The
function P has been computed numerically in Ref. 15.
The slope at F =0 is P'(0)=ir/4. (()z increases mono-
tonically with increasing field to a value ' ' P'=1. 19
at I' = Vo and diverges on the vertical line I' = Vo to
infinity. The corresponding u (F) curves following from
Eq. (2.5) are shown in Fig. 6. For F~ Vo they reach the
values u ' =uoP'/[1+(X((*)2]'~ ~ u, .

The limiting solution, Eq. (2.17), at F = Vo and a =0,
corresponding to the sonic kink for the sinusoidal poten-
tial, is given by'

8o(g) = ——,'m+2 arctang,

for the kink and antikink, respectively, where g = —( Vo /
yu, )g. It varies algebraically both for g~+ ao and
g~ —ao, because both maxima of U (8), connected by
the kink and antikink, disappear simultaneously for
F = Vo. Solutions in the neighborhood of 8o(g), i.e., for
small a and I= Vo, can be obtained by perturbation
theory. With the ansatz 8(g}=8o(g)+68(g), where
b,8(g) is a small correction, Eq. (2.1), to linear order in
b 8, becomes

db8/dg+[2(/(I+( )]68=a [4g/(I+/ ) ] . (3.19)

0.9

o
40
40

00 0.2 04 0.8 I.O

FIG. 5. Width of driven kinks in the potential V, Eq. (3.2),
as a function of propagation velocity (dark lines) using Eq.
(3.16). The 7=0 curve determines the scaling function 6, Eq.
(3.15). The width of the limiting kinks with velocity u =u, is
given by the light line. The region between the dashed hne and
the light line corresponds to kinks at I' = Vo with algebraically
decaying tails.

FIG. 6. Propagation velocity of driven kinks as a function
of the force in a chain subject to the potential specified by the
sinusoidal function, Eq. (3.3). The X=O curve of the purely
viscous chain defines the characteristic function Pg (from Ref.
15). It is tangential to the vertical line F = Vo at /= 1.19. Ad-
ditional curves for 1/X'=0. 9,0.6,0.3 give the u (F) characteris-
tics for the subsonic kinks in the chain with inertia.
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with the parameters X =IVoly and a =a.Vo/(uy)
—7 introduced previously.

To test the stability of the kink solution 8 r (g), we put
8(g,s)=8&(g)+58{(,s) and study the time evolution of
the perturbation 58 to linear order. Since the kink is
stationary in the moving frame, it is suflicient to consid-
er perturbations of the form 58(g,s) =({)z(g)exp(As).
Linearizing Eq. (4.2) with respect to 58 yields the gen-
eralized eigenvalue equation

L(A, )P),——A(1+X A)$), ,

where the linear operator L (A, ) is given by

(4.3)

M/Ll0

FIG. 7. %idth of driven kinks in the sinusoidal potential as
a function of propagation velocity (dark lines). The curve la-
beled X=O determines the sealing function bt{P) and the other
curves are generated by Eq. {2.9). The width of the limiting
kinks with velocity u =u, is given by the light line. The region
between the dashed line and the light line corresponds to kinks
at I" = Vo vnth algebraically decaying tails.

Equation (3.19) can be integrated and yields

Q —Q

ge(g) 2
s in{ 1 +g ) const

u() 1+$2 1+/
(3.20)

IV. STABILITY OF KINKS

Here we have used Eq. (2.3), a =(un —X u )/
u'=(u, —u )/u(). The last term is proportional to
den((+go)/dgo

~ & o and thus represents a shift of the

time origin or a translation of the kink in space, i.e., the
Goldstone mode (see also Sec. IV). Note that the limit-

ing kink with velocity u =u, is antisymmetric in g,
whereas the kinks with u &u, also acquire a symmetri-
cal part, leading to a diS'erent shape of the leading and
trailing edge of these kinks.

The function 6 (P) is obtained from the numerically
determined maximum slope de/dg t,„by Eq. (2.6), and
is shown as the curve labeled X=O in Fig. 7. The other
curves in this figure giving the kink width as a function
of velocity for various values of the parameter 7 are gen-
erated from bs(({))by Eq. (2.9). From the exactly known
shapes of the static kink and of the sonic kink (3.18},one
obtains the limiting values 5(0)=m5o and 5(u, ) =~5o/X.
Minima in the kink width as a function of the propaga-
tion velocity have also been found by Ferrigno and
Pace ' but the scaling behavior is not addressed.

L(A. ) =a'd2/dg~k(1+2X'A, }d/dg g "(H—r ),
u «0, u &0 . (4.4}

A. The purely viscous kink

For the purely viscous case [case (a)] X=O, one ob-
tains the ordinary eigenvalue problem

L (0)y(0) A
(0)~(0)

where

L' '=a d /dg +d/dg g"(Hz). — .

The transformation

(4.6)

(4.7)

The kink Hz(g) breaks the translational invariance of
Eq. (1.1). With Hz(g) also any translated kink Hr((+go)
is a solution of Eq. (1.3). The infinitesimal translation
58=(der/dg)5go restores the broken symmetry and is
an eigenmode of Eq. (4.3) with eigenvalue A, =O (Gold-
stone mode), A kink Hr(g) is stable if all eigenmodes of
Eq. (4.3) besides the Goldstone mode have eigenvalues
with ReA, &0.

For de6niteness, we assume in the following, u g0.
Further, the analysis is carried out for the case that the
restoring force g"(8) at the more stable uniform state
8=82(F) is higher than that at the less stable state 8,(F),

g "(8,) &g "(Hz) for V(8, ) «V(82),

Vog"'(8(,z}=F .

At the send of this section, we indicate the changes
which occur if this condition is violated. %e further as-
sume F & Vo, which guarantees an exponential decay of
the kink tails Hz (g)~8) z for (~+ 0().

We now investigate which parts of the u(F) charac-
teristic correspond to stable kink solutions. First, we
transform Eq. (1.1) into a frame moving with the veloci-
ty u of the solitary TW, 8&(x —ut), and introduce di-
mensionless coordinates

(t)' )(g) =tt)(g)exp( —g/2a )

yields

with the Hermitian operator

(4.g)

(4.9)

g=(Vo/~ rl
~

)(x —ut), s =(Voly)t . (4.1) i=a d /dg —[1/4a +g "(Hr)] . (4.10)

Then Eq. (1) takes the form

X'(a'8/as'+ 2a'8/asap) —a'a'8/ag'+ae/a W ae/ag

g'(8)+F/Vo, u «0—, u &0, (4.2)

This has the form of a Schrodinger equation with mass
A' /(2a ), potential 1/4a +g "(8&), and energy eigenval-
ue —A,

' '. Since Hr(g) is monotonous, the Goldstone
mode (de&Id/)exp(g/2a ) is nodeless, and represents,
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therefore, the ground state. For /~Woo, ez(g)~8~ z,
g"(&, z)=g", z, the Schrodinger potential approaches the
values 1/4a +gi'z. Thus the bound states and the
scattering states of E have the following two eigenvalue
spectra: discrete spectrum,

—( 1/4a +g", ) & A,
' ' &0,

and continuum,

(a3

—~ & A,
"'& —(1/4az+g", ), (4.11)

W W & W 'W W W W W W

respectively.
However, because of the exponential factor in Eq.

(4.8}, only those eigenfunctions of E which for g~ —oo

decay more strongly than exp( —
j g ~

/2a ) yield eigen-
furictions P' ' of L' '. On the other hand, there exist
eigenfunctions of L ' ' corresponding to solutions of
fP=A, '0)f which increase exponentially for g~+ oo.

In order to gain insight into this situation, we study
the asymptotic behavior of the solutions of Eqs. (4.6) and
(4.9),

(b3

-OSCILLATORY

CRETE
DES
SSISLE

P' )(g)-exp(a, zg), g-++a&,

1(")(g)-exP(e, zg), g

where

(4.12} MONOTONOUS

DECAY FOR
zg)

GM

k; z
——x, z+1/2a 2

on account of Eq. (4.8). ti z is related to I,' ' by

aztz» —(1/4 z+g", z) =X'" .

The solution P' '(g) is bounded if

Rex& &0, Rex'&&0 .

(4.13)

(4.14)

(4.15)

W W W W Wl
-(I/4g2 4 ~&t )

2 1

DISCRETE
MODES
POSSIBLE

—g~ 4A. (4.16)

If gz' —g", &1/4a, this condition is satisfied for bound
states of E only; if gz' —g", ) 1/4a, it is satisfied in ad-
dition by scattering states with wave numbers qi

——Imki,
a q i &gz' —g", —1/4az.

On the other hand, unbounded solutions of L g =A,
' 'g

giving rise to bounded P' '(g) require

Thus an eigenstate yields a bounded P' '(g) only if
i~z) 1/2a, i.e., if FIG. 8. Eigenvalues of a driven kink in the purely viscous

chain, Eq. (4.6}, for (a) g 2' —g", g 1/4o. and I'b)

gz' —g&' &1/4a . Discrete eigenvalues (wavy lines), localized
modes with monotonous decay for taboo and for g~+ao,'

continuum C,
'dark line}, monotonous decay for t ~ ao and

g~ —00, oscillatory decay for g~+ ao, shaded area, localized
modes with oscillatory decay for r ~ ao and g~+ ao', boundary
of shaded area, modes extended at g~+ oo (outer boundary)
aud g~ —00 (inner boundary).

0 & Rek i ( 1/2u (Rekz . (4.17)

If these conditions are used in Eq. (4.14), one obtains
after elimination of I~, 2

—gz' &Rel, ' '+a (ImA, ' ') & —g", . (4.18)

For any A,
' ' different from an eigenvalue of E, there are

two linearly independent unbounded solutions of Eq.
(4.9) with asymptotic behavior described by (k, ,kz) and
(—k„—kz}. From this fact it follows that to any eigen-
value parameter A,

' ' satisfying Eq. (4.18) there exists a
bounded P' ' mode. For A.

' ' values inside the region
bounded by the two parabola, the modes are localized;
for A,

' ' values on the right (left) boundary, the modes are
extended for g~+ ao( —oo}. The complete spectrum of
Eq. (4.6) is shown in Fig. 8(a) for the case gz' —g", &1/

4a, and in Fig. 8(b) for the case gz' —g i' & 1/4a .
The eigenvalue problem for a purely viscous kink in a

sinusoidal potential was briefly discussed by Buttiker and
Landauer. ' In this case the restoring forces of the two
states 8i and 6)z are equal, gi' ——gz' ——g". The P modes
corresponding to unbounded P(g) are extended for
g~+ ao and form one-dimensional sets described by the
eigenvalues A, on the parabola Rel, +a (Imk, ) =g".
For the speci5c case of a purely viscous kink in a 8 po-
tential the eigenvalue problem was studied by Schlogl,
Escher, and Berry. Except for the fact that they over-
looked the possibility of complex k' ', their results are
compatible with ours.
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8. The kink with inertia

For a chain with inertia, X+0, the transformation

(4.27a)

(4.27b)

P(g) =g(g)exp[ —(1+2X A, g'/2a ] (4.19)

(4.20)

A.
' '= —(1 cr—'1/1+A, /k z)/ 2X i, (4.22)

with cr=kl and A,z ———,'(X +a ). Thus, each solution
of the Schrodinger equation, Eq. (4.20), gives rise to two
solutions P'~'(g) of the original equation (4.3). In partic-
ular, the two modes corresponding to the ground state

italo of E with 0=0 have a simple physical interpretation;
one (v=+1) is the Goldstone mode $0'+'(g)~d8r/dg
with Az+'=0„ the other (cr = —1) is the "universal iner-
tia mode" Poi '(g) =/~0+'(g)exp( —g/a ) with Ao'

= —1/X', which has been established by Magyari 3 and
which describes the relaxation of a perturbation of the
kink velocity u. Below, we show that this mode has the
strongest relaxation rate, i.e., all other modes have
Rek, & —1/X .

However, again, not all eigenstates of f yield bounded
solutions P' '(g), and on the other hand, there exist P
modes corresponding to exponentially increasing f(g).
An asymptotic analysis similar to the one presented in
Sec. IV A, where Eqs. (4.13) and (4.14) are now replaced
by

(4.23)

a ti 2
—(1/4a +gi'i)

=( )+X'/a'g. "'(I+X'Z") (4.24)

yields the following results. The behavior depends in an
essential way on the parameter X =IVO/y, which is a
measure of the inertia effects.

with the same Schrodinger operator as in Eq. (4.10) and
an eigenvalue parameter R which is related to A, by

k=(1+X2/a )A,(1+X I, ) .

Solving for A, yields

Res'*'= —1/2X', — & Imz"'& (4.30)

Unbounded solutions of EQ= A, Q giving rise to bound-
ed P'*'(g) require [see Eq. (4.24)]

ReA, & —1/2X, 0 (RW, & (1+2X Rek, ) /a & Rekz .

(4.31)

If these conditions are used in Eq. (4.24) one obtains
after ehmination of Imt, 2

1 —4X g2' ((1+2X Rek, ) +4X (a +X )(Imk, )

(4.32)

with ReA, & —1/2X2. Again, to any eigenvalue parame-
ter satisfying Eq. (4.32), there exists a bounded P mode,
which is localized for A, values inside the region bounded
by the two ellipses and the line Rek, = —1/2X and ex-
tended for A, values on the boundary. The complete
spectrum for the strongly damped kink in a chain with
inertia is shown in Fig. 9(a) for the case
(1+X /a )gz' —g", & 1/4a and in Fig. 9(b) for the case
(1+X /a')g~ —g", & 1/4a'.

)L,I 2'= —[1+(1—4X g", 2
)' ]/2X (4.28)

If (1+X /a )gz' —g", & 1/4a, the condition, Eq. (4.25a),
is satisfied for bound states of E only; if
(1+X /a )gi' —g'i' & 1/4a, it is satisfied in addition by
scattering states with wave numbers q, = Imk, ,
n q i & (1+X /a )gz' —g", —1/4a . In the latter case we

have localized P modes with oscillatory decay for
g~+ 00 in the interval A,~z+'&A, '+'&Ao'+', where A,o'+' is
determined by Eq. (4.22) taken at the continuum limit
2 = —(g", + I /4a ) and is thus given by

ko+'= —
I 1 —[(1—4X g", )/(1+X /a )]' I /2X

(4.29)

The condition, Eq. (4.25b), is satisfied for bound states of
E only in the region 4X g2' & 1.

In the case of Eq. (4.26), which is satisfied for scatter-
ing states only, the P'*' modes are extended and have
complex eigenvalues covering the whole axis

Strongly dumped kink

In the case of strong damping [case (b)]
4X gi' &4X g2' &1, only those states of E yield P'*'
modes which have eigenvalues X satisfying either

(4.25a)

(4.25b)

2. Intermediately damped kink

In the case of intermediate damping [case (c)]
4X g", & 1&4X g2', Eqs. (4.25a) and (4.27a) are replaced
by

(4.26)

In the Srst case, Eqs. (4.25a) and (4.25b), the P'*' modes
have real eigenvalues in the intervals

i.e., all eigenstates of E give rise to P'+ ' modes. Further,
the lower bound in Eq. (4.30) is replaced by zero [Fig.
10(a)].
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FIG. 9. Eigenvalue spectrum of a strongly damped kink in a
chain with inertia, (4X g &' pe g2' ~ 1). (a) is for
(1+7 /a')g 2' —g &' g 1/4o.' and (1) is for (1+X'/a )g 2' —g &'

y 1/4a2. The shaded area between the two half ellipses corre-
sponds to a continuum of localized modes. In addition to the
Goldstone mode (GM), the location of the universal relaxation
mode (RM), discussed in Ref. 20, is also indicated.

—1/X &A, ' '&1/2X &k' '&0 (4.33)

Res'*'= —1/n',
~

1m', ' '~ &(1/2X )[(4X g", —1)/(1+7 /a )]'

(4.34)

The scattering states yield

3. 8'eakly damped kink

In the case of weak damping [case (d)] 1&47 g",

&4X g2, a/I eigenstates of E give rise to P'+' and P'
modes, and there exist no P modes corresponding to un-
bounded P(g). Bound states of E yield P

' modes with
eigen values

FIG. 10. (a) Eigenvalue spectrum of a kink in the intermedi-
ately damped chain (4P'g&" ~1&4+ g2'). (b) Eigenvalue spec-
trum of a kink in the weakly damped chain
(1g4g g)' (4g g2').

Rek, ' ' = —I /2X

~

Imk, ' —'
~

&(1/2X )[(4X g'&' —1)/(1+X /a )]'~

(4.35)

The spectrum for this case is shown in Fig. 10(b).
The presence of a two-dimensional set of eigenvalues

in the cases (a), (b), and (c) will give rise to a very com-
plicated time dependence of an initial perturbation.
However, since ReA, &0 for all P modes, we arrive at the
important conclusion that kinks connecting two stable
uniform states 8& 2 are stable in the whole range
0&F( Vo.

If g2' ~g &', i.e., if the more stable uniform state has a
sma/her restoring force than the less stable state, the
spectrum is obtained by interchanging g ]' and g 2',

changing the sign of o., and a reAection at the line
Rei, = —1/2+ .

If g &' ——g2' ——g", i.e., if the restoring forces of the two
states 8, and 82 are equal, the P modes corresponding to
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unbounded g(g) are extended for (~200 and form
one-dimensional sets described by eigenvalues A, on the
parabola

Rek. +a (ImA, } = —g" (4.36)

in case (a), and by the fu/I ellipse

(1+27 ReA, ) +4X (u +X )(Imk, ) =1—4X g" (4.37}

in case (b). The situation g", =g2' occurs in particular in
the case of a periodic potential V(8)„which has been
studied for X &0 by Burkov and I.ifsic. Our results
for this specific case are in agreement with their con-
clusions.

The kink velocity u and the kink width 5 of a kink in
the chain with inertia can be obtained through a scaling
procedure if these quantities are known for the purely
viscous kink. In contrast, for the eigenvalue spectrum a
scaling procedure exists only for those eigenvalues of the
kink with inertia which satisfy Eqs. (4.25a) and (4.25b)

or Eq. (4.26). In this case the eigenvalues A,
' ' of the

kink with inertia can be obtained from the eigenvalues
A,

' ' by using Eq. (4.22) with A, =A. ' '.
%e emphasize that the stability of the kinks in the

whole region of existence rests heavily on the assump-
tion that the medium is described by a single-component
6eld 8 and on the restriction to one space coordinate.
For a Hamiltonian kink described by a two-component
6eld, an instability was found to occur against a noncol-
linear mode, and for a uniformly driven domain wall

an instability occurs against a branch of waves of wall

displacements with the wave vector in the plane of the
mall. 6
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