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Charge transfer and ionization in collisions of a)M with all elements
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Cross sections are determined for stripping (charge transfer and ionization) of the ap ion in col-
lisions with a number of elements. The calculations are done with the classical-trajectory Monte
Carlo method using the Thomas-Fermi model for the neutral-atom target. The total stripping cross
sections are shown to difFer only slightly from those for collisions with the bare nuclei. A simple an-

alytic formula is given for evaluation of the stripping cross section for any target element. Finally,
the results are applied to stopping and stripping of ap ions in several metallic foils.

I. INTRODUCTION

Over a hundred d tfusio-ns have been experimentally
observed to be catalyzed by a single negative muon. '2
Under optimal conditions of density, tritium fraction,
and temperature, the number of fusions is most strongly
limited by the probability co, that the muon sticks to the
fusion a particle to form muonic helium. The value of co,
has been indirectly obtained by analysis of the time inter-
vals between successive neutrons. ' There is now in-
terest in a direct determination of co, by detection of the
charged particle products of the fusion reaction; ' bar-
ring corrections, then co, =n „/(n +n „). However,
corrections are generally required because of the diferent
stopping rates of the singly and doubly charged ions as
well as the possibility that the muon may be stripped
from o;p, For example, in one proposed experiment, the
charged particles will pass through a thin ~indow and be
detected in coincidence with the neutron. To design and
correct for the window, its stopping and stripping proper-
ties are required. The stopping power is already well
known since the small (a)Lt)+ ion behaves like a proton in
this respect. The stripping has been previously calculated
for only the hydrogenic isotopes present in a pure muon-
catalyzed fusion target, ' and not for the higher-Z ele-
ments of suitable materials.

In the present work, the cross sections for stripping of
ap by several elements with 1 ~ Z & 92 are calculated. At
high velocities (in particular, at the recoil velocity of
5.83ctc in d tfusion), ioniz-ation of the muon is the most
probable stripping mechanism. At lower velocities, de-
pending on Z, charge transfer dominates. The cross sec-
tions are found to vary smoothly with Z, so it is not actu-
ally necessary to carry out the scattering calculation at
every Z. The Thomas-Fermi model is used for the target
atom, and the ionization and charge-transfer cross sec-
tions are calculated by the classical-trajectory Monte
Carlo (CTMC) method. For comparison, the analogous
cross sections for two bare nuclear targets are also calcu-
lated. The CTMC method has been used previously for
ap collisions with hydrogenic targets and found to give
good results except at low velocities, v & lac. The inac-
curacy at low velocities is due in part to transfer into
classical orbitals of hydrogen more bound than the true

ground state. This situation does not occur in transfer to
higher-Z elements, and the cross sections are expected to
be more reliable for the full range of velocities.

II. THEORY

A. Potential energy

V =—P(1+/ '
)

r

with derivative
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The actual atomic targets are approximated by the
Thomas-Fermi atomic model. Qf course, the Thomas-
Fermi approximation is not accurate for low-Z atoms and
does not reAect the shell structure of actual atoms. How-
ever, these limitations are not expected to aft'ect the
present calculations adversely. Previous calculations
have sho~n that electron shielding has a negligible e6'ect
on the stripping of ap by hydrogen, and the same con-
clusion can be expected to apply to other low-Z atoms.
For high-Z atoms, the electron shielding is important,
but the electron binding energies per se are not; hence the
lack of she11 structure and the overestimate of electron
density very near the nucleus in the Thomas-Fermi atom
are not expected to be serious defects.

For use in CTMC calculations, which require large
numbers of evaluations of the derivative of the potential,
it is convenient to have a simple analytic approximation
to the potential. Such a form was derived by Sommer-
feld and is used in the present work. The Thomas-Fermi
potential (for a positiue singly charged particle at distance
r from the charge-Z nucleus of the neutral atom) is ap-
proximated by
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This approximation has the correct (Thomas-Fermi) be-
havior in the limits r~0 and r~~ and is within ap-
proximately 10% of the exact Thomas-Fermi result over
the entire range.

8. CTMC method

The CTMC method has been described in detail many
times so will only be sketched here. The initial condi-
tions of the o,p system are selected at random from a mi-
crocanonical distribution having the energy of the
ground-state muonic helium ion. The impact parameter
(squared) of the collision is selected at random from a
range of distances, and this range is increased until con-
vergence is attained. Enough trajectories are run in each
range to keep the relative error [1 unit of standard devia-
tion (s.d.)j of the total stripping cross section at 5% in
most cases. The total potential energy is the superposi-
tion of the Coulomb potential between the u and p with
the Thomas-Fermi potentials of the a and p in the field
of the atomic target. Hamilton's classical equations of
motion for the three-body system are numerically in-
tegrated until the outcome of the trajectory ls clear. The
final-state determination is analogous to that depicted in
Fig. 1 of Ref. 10 with the factor y there, used to compare
internal energies with the external potentials, set to 0.2.
In the calculations done with a bare-ion target, consider-
ably longer integrations are required and y was increased
to 0,3.

III. RESUI.TS AND MSCUSSION

The total stripping (muon transfer plus ionization)
cross sections calculated for o.p coHiding with several
neutral atoms are shown in Fig. 1 over the range of veloc-
ities of concern in muon-catalyzed fusion. The cross sec-
tion tends to peak at velocities of -2 a,u. and is rather
Aat for the higher-Z elements. For comparison, the

stripping cross section for ap + H obtained by conver-
sion of He+ + H+ experimental data, which is presum-
ably more accurate than the CTMC method, is shown by
the dashed curve. It is in quite satisfactory agreement
with the CTMC calculation except at velocities —1 a.u.
The main reason for the discrepancy at low velocities is
that muon transfer, which tends to go into orbitals be-
tween those that would preserve the energy and size of
the original orbital, leads classically to orbitals more
tightly bound than the true ground state of the lower-Z
target. This illicit transfer causes the cross section to be
overestimated. Such a situation does not arise in col-
lisions with atoms of equal or higher Z. Empirically we
obtain n =Z at the higher velocities and
n =Z /v 2 at U= l. Hence the stripping cross sections
at u —1 are expected to be more rehable for elements with
Z~1 than for hydrogen but should still be used with
some caution since molecular efkcts become important at
velocities below the muon orbital velocity (2 a.u. ).

Though the energy dependences of the stripping cross
sections are fairly Aat, the same is not true of the separate
transfer and ionization cross sections. The ratios o.;,„/o.„
are shown as a function of velocity in Fig. 2. The passage
from transfer to ionization occurs over a fairly narrow
velocity range. The CTMC method is particularly advan-
tageous here in that it treats the charge transfer and ion-
ization processes simultaneously. %bile for hydrogen
charge transfer is rather unimportant as a stripping
mechanism, it is important even at U-6 a.u. for the
high-Z elements. Of course, an ionized muon will usually
be subsequently captured by the host element; however,
the orbital into which a free muon is captured can be
quite diff'erent from the orbital to which transfer occurs.
Direct capture tends to preserve the energy and size of
the disp/aced electron. For example, capture of a free
muon by hydrogen' occurs with IT.=14 rather than the
n = 1 of transfer from ap.

The calculations discussed thus far were done using the
Thomas-Fermi model for the target atoms. Though the
actual collisions do occur with neutral targets and the
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FIG. l. Cross sections for stripping of ap by &H, 2He, 48e,
80, »Al„26Fe, &7Ag, and»U as a function of velocity (units of
pa.u.}. The data points with statistical (l s.d.) error bars are
from CTMC calculations. The dashed curve is the o.@+H
cross section obtained by conversion of He+ + H+ data.
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FIG. 2. Fraction of stripping cross section that is ionization,
as a function of velocity.
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scattering calculation is simpler in the absence of the
long-range Coulomb interaction, it is of interest to in-

quire into the effect of the electron shielding. For this
purpose, the CTMC method was also applied to the col-
lisions of ap with bare Al and U ions. For Al, the charge
transfer and ionization cross sections obtained with the
bare target agree with those for the neutral target within
statistical errors (-5%%uh). The results for uranium, which
should be most extreme, are shown in Fig. 3; here the to-
tal stripping results differ slightly but significantly. The
stripping by the bare ion is greater except at the lowest
velocity. At the higher velocities, little deAection of the
(ap)+ ion occurs and the stronger potential of the bare
U + enhances stripping. However, at U= 1 the efFect of
deflection of the (ap)+ by the long-range repulsive
Coulomb potential becomes more important and starts to
prevent the ion from penetrating to distances where the
field is strong enough for stripping. The separate transfer
and ionization components depend much more on the
electron shielding than does their sum. The stronger at-
traction of the bare nucleus is able to bind some muons
that escape the shielded nucleus. The type ionization
that is occurring in the latter case is sometimes termed
"charge transfer to the continuum. " It is amusing to no-
tice that the similarity of the cross sections for neutral
atoms and bare nuclei ofFers an experimental possibility
not easily achieved with normal atoms, namely the mea-
surement of a cross section for an efkctively bare high-Z
nucleus.

The regular dependence of the stripping cross sections
on Z is already suggested by the curves in Fig. 1. This
dependence can be generalized in a form convenient for
interpolation. In Fig. 4, o „/Z for all the elements in Fig.
1 is plotted versus U /Z. In order to fill in this plot, cal-
culations were also done at V=10 and 0.6 a.u. For
U /Z~4 the stripping cross section is proportional to
Z /U . This usual classical relation is expected to be
suSciently accurate for velocities up to -6 a.u. though
the quantum-mechanical dependence in the true high-
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FIG. 3. Cross sections for stripping, charge transfer, and ion-
ization of ap by the neutral uranium atom (solid curves) and the
completely stripped uranium ion (dashed curves).
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FIG. 4. Reduced ap stripping cross section (o„/Z) as a
function of U2/Z (units of pa.u.). The solid curve is Eq. (5) with

reduced mass M~00. The dashed curves are Eq. (5) with I
calculated from the atomic weights of &H, 2He, &Be, 80, &,A1,

26Fe, 47Ag, and 9zU, from right to left.
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with e=5.4, b=0.4, and 0=0.44 for M in amu. Note
that this form becomes e/X at large X, be at intermediate

velocity limit has a logv factor. At lower velocities, ex-
perience with stripping of the normal H atom' would
suggest that the cross section becomes linear in Z and in-
dependent of U, i.e., constant in terms of the reduced vari-
ables in Fig. 4. The beginning of such behavior is clearly
seen in Fig. 4; however, as U is decreased further the cross
section starts to fall in a Z-dependent fashion. This
fallofF' turns out to be due to deAection by the repulsive
Coulomb potential and hence depends on the reduced
mass as well as Z. At first glance this might be con-
sidered surprising, since it is well known that straight-line
trajectories are a good approximation at even lower ve-
locities in normal ion scattering and, furthermore, that
the cross sections for normal and muonic atoms are fre-
quently related by simply scaling to the appropriate
atomic unit. The explanation is that such a relation real-
ly requires scaling of the interatomic reduced mass, as
well as the intraatornic reduced masses. However, in the
actual collisions the distance of approach is smaller (by
m, /m„) but the nuclear masses are unchanged; hence
deflection is much more important for muonic atoms
than for normal atoms.

Nevertheless, the plot in terms of the reduced vari-
ables, o„/Z versus U /Z, is useful. We generalize the
usual analytic form, which behaves as (U /Z) ' at high
U /Z and approaches a constant at lo~er U-/Z, by add-
ing a third factor to cut ofF the cross section at low U /Z.
The analysis in the Appendix suggests a factor
exp[ —a/(MZ X)], where M is the interatomic reduced
mass, X is the reduced variable U /Z, and a is a constant.
In practice, we find that a slightly dift'erent exponent of Z
gives a better universal 6t. The fit obtained, shown in
Fig. 4, ls
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X, and bc exp[ —a /(MZ X)] at small X.
This fit can be seen in Fig. 4 to be quite adequate ex-

cept fol exp + H at, U 1 a.u. (Tile statistical ullcertaili-
ties in erst are 5% except for U=0.6 where they are 10%.}
The unreliability of the classical method for ap+ H at
U ~ 2 a.u. has already been commented on. The inadequa-
cy of Eq. (5) for even the CTMC results on ap+ H at
U=1 is for a similar reason —transfer to the lower-Z hy-
drogen atom, unlike all the other atoms, is energetically
uphill. Classically there is no rigid threshold, but the
cross section still cuts ofF at low energies though not as
abruptly as the true quantum-mechanical behavior.

In light of the small di8'erence between the bare-ion
and shielded-ion results, Eq. (5) can be further general-
ized to include excited states of the ap projectile. The
exact scaling relation for the pure Coulomb problem
(which we do not rigorously have here since the electrons
are not simultaneously excited) states that n a'„" (U/n)
is constant' (for given Z}. Hence for ap excited to prin-
cipal quantum level n with a statistical mixture of I, we
can obtain o'„"'/(n Z) simply by reinterpreting X in Eq.
(5) as X=n 2U /Z. The CTMC method is not as good for
I-specific cross sections, but this is not a drawback as long
as the I-mixing cross sections are large.

IV. APPLICATION

The above results can be applied to stripping by impur-
ities or in uniform materials. Compounds can be accu-
rately described as linear combinations of the constituent
atoms since only the shielding close to the nuclei is
effective. If the ap ion is to be stripped, the action must
occur before the ion is slowed to U 51 a.u. since the
Coulomb repulsion causes the cross sections to decrease
rapidly at lower velocities and also the range at low ve-
locities is short. Hence the fate of op depends on the
competition between the stripping and stopping cross
sections. The energy loss (per unit distance x) is de-
scribed by

(6)

where S is the stopping power of the medium at number
density N. Designating the unstripped fraction of ap by
I', we have

Note that S and o „depend on E; the stopping powers are
taken from the tabulation by Andersen and Ziegler. '

The results for stripping in several elemental materials
are shown i.n Fig. 5. The densities are taken to be the
usual densities of the metals and the liquid densities of
the normal gases. The initial energy of exp is 3.47 MeV;
the circles on the curves designate where this energy has
been degraded to 3.0„2.5, 2.0, 1.5, 1.0, and 0.5 MeV.

For hydrogen, helium, and beryllium, Fig. 5 shows that
slgnlficant fractions of the Ap lons are stopped un-
stripped. For silver and gold, the up ions are completely
stripped while they still have weil over l MeV of kinetic
energy left. Aluminum and iron lie in between, the stop-
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FIG. 5. Surviving (unstripped) o'p, fraction as a function of
depth in gold, silver, iron, aluminum, and beryllium foils, and in
liquid helium and hydrogen. The initial ap ion energy is 3.47
MeV; the circles on each curve show where the ion energy has
been degraded to 3.0, 2.5, 2.0, I.5, 1.0, and 0.5 MeV.

ping and stripping distances being about equal. Unfor-
tunately for muon catalyzed fusion, which is done with as
pure a deuterium-tritium mixture as possible, stripping is
least in hydrogen. (Deuterium and tritium difFer only
slightly from protium in this respect. ) However, the
heavy metals do offer interesting possibilities for strip-
ping the op ion and subsequent observation of the free a
particle or of muonic x rays from the captured muon.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of
Energy, in large part by the Division of Advanced Ener-
gy Projects.

APPENDIX: BEHAVIOR OF THE CROSS
SECTION AT LOW ENERGY

This appendix derives the analytic dependence of Eq.
(5) used to give a general fit of all the muon stripping
cross sections (except that of ay+ H at U 51). A bare
target is sumcient for this purpose. At high energies, it is
well known that o „-Z /U classically, so no further dis-
cussion is needed for this regime. At low energies, we
consider the muon "reaction coordinate" as the ion Z ap-
proaches the ap at a velocity slower than that of the
muon in the ground state of op. %e start by assuming a
straight-line trajectory and will later consider the
modification imposed by deflection in the repulsive
Coulomb field. FoHowing Ha8'et ai. ,

' we take a model
in which the muon is transferred to the higher-Z nucleus
when its energy just exceeds the barrier between the nu-
clei as shown schematically in Fig. 6(a). By symmetry,
the saddle point through which the muon is transferred
must lie on the a-Z axis„ the potential of the muon along
this axis is given by

V(R, r)= ———2 Z
r /R r/—

where r and 8 are the positions of the muon and Z, re-
spectively, relative to the a. The largest R at which this
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Ro ———', [1+(2Z)' j .

In this crude model, muon transfer occurs if R &Ro is
reached. Remember that this description is only valid for
U &2 a.u. and Z~ 2. Because of the latter condition we
take simply

Z'". (A6')0—

Now we turn to the reduced-mass dependence. Muon
transfer is assumed to occur in all collisions at impact pa-
rameters b ~bo, where bo is the maximum impact pa-
rameter that will allow the distance E.o to be reached as
shown schematically in Fig. 6(b). Hence

Z Mboo
—,'MU =—

28. o
(A7)

Solving (A7) for bo and using (A6' } for R o, we obtain an
approximation to the cross section at low energy,

FIG. 6. Schematic diagrams of (a) barrier for transfer be-
tween nuclei and (b) trajectory deflection.

sm 3 Z'"
0 JQw Kb O Z ~2 MU

(A8)

transfer can occur is obtained by setting

(A2)

For Mv ppZ', this gives oi,„/Z=2.8, in rather good
agreement with the peak in Fig. 4. Of course, the actual
cross section does not go identically to zero as this ex-
pression does. We remedy this defect by noting that (A8)
is the first term in the expansion of an exponential, so

V(R, ro)=E„
for Ro. Equation (A2) gives

(A3)

for Axed R, to obtain ro as a function of R, and then solv-
ing 8~ z 1/2

&iow= 9
Ze"p ~2 MU

Finally, we generalize this expression to include the
high-energy behavior as well by writing

i+(Z/2)'"
The muon remains much closer to the a particle until the
barrier is suppressed and transfer occurs (i.e., the transfer
cross section is much larger than the size of the ap, ion),
so we have

(A5)

where E& is the binding energy of the op ground state.
In the classical microcanonical distribution, an average of
half the muon orbital kinetic energy is in angular motion,
which does not contribute to the transfer, so it is ap-
propriate to increase Et, in (A5} from 2 to 3 pa.u. Equa-
tion (A3) then yields

=—exp — (1—e "~),
MZ'X (A10)

where X=U /Z and we have replaced the constants by
adjustable parameters. In the numerical 6t, it was found
that Z ', instead of Z, in the middle factor provides a
somewhat better representation (this minor difference ap-
pears to be due to the electron shielding that has been ig-
nored in this simple derivation).

It should be emphasized that the purpose of this ap-
pendix is merely to motivate the analytic form used to 6t
the stripping cross sections and perhaps to contribute
some physical insight. The crude approximations made
here in no way a6'ect the CTMC calculation of these
cross sections.
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