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Rotating oscillator shifted 1!Nexpansion and supersymmetric considerations
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The rotating displaced oscillator problem has been treated by the shifted 1/X expansion method.
Next, the Hamiltonian for this problem is framed in supersymmetric form for certain values of the
parameter. Exact eigenvalues and eigenfunctions are obtained. The eigenvalues obtained from the
shifted 1/N expansion method are compared with those obtained by numerical methods and super-
symmetric exact values, and are found to be in satisfactory agreement both at low and high values of
the coupling parameter.

I. INTRODUCTION

The rotating displaced oscillator problem, with the
Schrodinger equation

I(I + 1)
~

(r —1)'
~r2 40

and with g(0) =g( ao ) =0, has been known for many
years in physics literature, as it represents the sim-
plest model of a rotating-vibrating molecule. In Eq. (1), a
is the inverse of the coupling parameter assumed to satis-
fy O~a &1. In general, the exact analytical solution of
(1) cannot be obtained but, as will be shown later on, for
some particular values of the coupling parameter, the ex-
act solution could be obtained from supersymmetric con-
siderations. In recent years there has been a renewal of
interest in the problem and also some controversy.
Masson has reviewed the history of the problem. Unless
great care is exercised, formalism based on a three-term
recurrence relation can lead to erroneous conclusions '

about the eigenvalues 2 of Eq. (1). Killingbeck has
shown that the use of three-term recurrence relations can
lead to false eigenvalues.

The shifted I/N' expansion method proposed by
Sukhatme and Imbo' and Imbo et aI. " has proved to be
a powerful method for obtaining the eigenvalues of spher-
ically symmetry potentials. " ' It is nonperturbative in
nature and thus can be used in problems where the cou-
pling constant may not be small. The shifted 1/N expan-
sion method overcomes the slow convergence of' the
large-X expansion method' '

by modifying the expres-
sion of the expansion parameter. In the large-X expan-
sion, the expanding parameter is 1/k, where k =N+21,
X being the spatial dimensions; in the shifted 1/N ver-
sion, 1/k is changed to 1/k, where k =N +21 —a, where
a is a shift chosen by requiring agreement between the
1/k expansion and the exact analytic results for the har-
monic oscillator and the Coulomb potential.

In the present paper we shall employ the shifted 1/X
expansion method to calculate the energy eigenvalues for
the rotating displaced oscillator. Following Killingbeck,
we shall write the potential for this problem in a more
general form,

V = V)r+ V2r

where the parameters V, and V2 are related to o. by

V, = —2V2= —1/2a

and the eigenenergy E is connected to A, and a by

1

4a
(4)

We have also framed the Hamiltonian for the rotating
displaced oscillator problem in a supersymmetric form
for certain values of the parameter and obtained exact ei-
gen values and eigenfunctions which correspond to
ground states of supersymmetric Hamiltonians. In Sec.
III this will be discussed in more detail.

II. ENERGY EIGENVALUE EXPRESSION

Imbo et al. " have described the procedure for deter-
mining the energy eigenvalues in the shifted 1/X expan-
sion formalism. Hence, for the sake of brevity, we omit
the intermediate steps and give here only the final expres-
sions. %'e shall use the units in which Pi=2m =e = 1.

The effective potential in the shifted I/N expansion is
given by

k -'= 2 Vl r o+4V2r o,

and the position of the minimum ro is determined from

then it is assumed that V(r) is su%ciently well behaved so
that V,tt(r) has a minimum at r =ro and there are well-
defined bound states.

For the potential (2), one obtains the following expres-
sion for k
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1/23V]+8V2ro
(2l +1)+(2n„+1)

V) +2 V2ro

=(2V, r +4V r )', (7)

where n,„ is the radial quantum number.
The final expression for the eigenvalues is as follows:

k' 1 Viro+Vzro P"' Pz'—+ + + +O:—
ro, 'I 2V)r o+4V2r4 k k k

The quantities P" ' and P' ' appearing in the correc-
tions to the leading order of the energy expansion are

P"'= —,'(1—a)(3—a)+(1+2n„)Ez+3(1+2n„+2n, )E4

——[Z i+6(1+2n„)Zg&+(1)+30n„+30n„)Z&],

p' '=(1+2 n)S +z3(1+2n„+2 n)84+5(3+Sn„+6n„z+4n, )86

—cu '[(1+2n„k z+12(1+2n„+2 ng &zz+2(21+59 n+51 n+34 n)&4+2&, 5,

+6(1+2n„R,5&+ 30(1+2n„+ 2n, R,Ss+6(1+2n„)'fz5, +2(11+30n„+30n„)Zz5&

+10(13+40n„+42n„+28n, k&S&]

+co [4Z ifz+36(1+2n, )E,'Ez'K&+8(11+30n„+30n„)Czar &+24(1+2 n)Z, E4

+ 8( 31+78n, +78n, )Z,ZzZ~+ 12( 57+ 189n, +225n, + 150n„k ~E~]

[8E ~Kz+ 108(1+2n„k ~E &+48(11+30n„+30n„Rid &+ 30(31+ 109n„+141n„+94n„k&],

(9)

(10)

TABX.E I. Energy eigenvalues obtained from the shifted 1/W expansion method are compared to
those obtained by Froman et aI. by a numerical solution of the Schrodinger equation.
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E
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—2348.9
—2252.6
—261.23
—229.90
—199.61
—168.49
—135.78
—101.34
—90.127
—87.716
—71.368
—67.288
—51.928
—46.050
—30.902
—8.337
15.54

—19.962
—17.463
—9.651
—5.793

1.950
6.775

14.634
28.11
42.17

(Froman et a1. )

—2347.8
—2247,7
—261,11
—227.78
—194.44
—161.09
—127.67
—94.002
—89.998
—87.68
—69.974
—66.72
—49.798
—45.18
—29.12
—7.476

+ 15.40
—19.925
—17.46
—9.42
—5.74

1.98
6.75

14.37
27.59
41.44
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in which

a =2 —(2n„+1)cu,

e, =E, /+", 8, =5, /cu'~',
1 /2

3V, +SV2ro

V& +2Vz

Q I
ij'j&=Q

~

@&=0.

From (14) and (15) it can easily be seen that

(t, (x)=exp + I W(t)dt

(18)

6, = ——', 52 ———(1—a)(3 —a)/2,
Now we come to the rotating oscillator. To show that its
Hamiltonian can be cast into the form (1), we chose

53 ————', 6~=2@&———-", c.2
——2I 2 —a), W(r) =+V2(r —1)—

1+gr r
(20)

Froman et a/. have obtained eigenvalues for (1) for
certain values of a, In Table I we have compared the ei-

genvalues obtained from the shifted 1/X expansion
method with those obtained by Froman et al.

III. SUPERSYMMKTRIC CHARACTER
OF THE ROTATING OSCILLATOR

Before casting the rotating oscillator in supersym-
metric form, let us recall brieAy some salient features of
supersymmetric quantum mechanics (SUSYQM) in one
dimension. 2 ' ' In one dimension the Hamiltonian of
SUSYQM is given by

H+ 0

0 H (1 1)

then it can be easily seen that V (r) can be written in the
form

V' (r)= V2r + Vir +1(1+1)/r (22)

( 2+ V, +2g Q V, +2gc )
V'~(r) = V,r' —2v, r +

1+gr

2+V, +2g+V~+2gc
V (r) = V2(r —1)2+

1+gr

2c(g +QV~) c(c + 1)+ + V~(2c —3) .
r

(21)

Therefore, the effective potential appearing in the
Schrodinger equation corresponding to (2) and that ap-
pearing in the radial Schrodinger equation corresponding
to (21) are, respectively, given by

H+ = — + V+(x),
cifx

V+(x)= W (x)+W'(x),

W'(x) =
4(X

(12)

(13)

2c(g+')/ V2) C(c+1)+
r r2

For V, = —2V2, i.e. , for the rotating oscillator, (22) and
(23) can be identified provided we take

W(x) is called the superpotential and Q, Q are the su-

percharges, whose explicit forms are given below:
(25)

0 0
Q =(P +t'W)

1 0 (14)
[the negative value of c is chosen to ensure the normaliza-
bility of exp( —j"W(t)dt)) and

0 1

Q =(p iW)— (1

The relations obeyed by Q, Q and H are the following:

[H, Q]=[H, Q ]=0,
Q2 Qt2 ()

The eigenstates of H are of the form

(26)

The relation between the corresponding energy eigenval-
ues is [Eti is the energy as given in (4)]

Eti + V, +Q V, (2c —3)=E"

Now the ground-state wave function corresponding to
the Bosonic sector ( —) is found to be

r

(r)-exp —f W(t)dt

If supersymmetry is unbroken the ground-state energy is
zero and the ground-state wave functions are of the form
i' [x]

(o ) or ( „, ,
). The choice will depend on the normal-

izability of (()+(x). Now if
~
g) is a ground state then

grI+ I( 1 +gr)e 2

where 3 is a normalization constant. It is clear that

lim P (r)= limg (r)=0 .r~ ct. r~o
(29)
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TABLE II. Comparison with exact supersymmetric eigenval-
ues. n, =1 state, V2 ——1/(I+2) .

TABLE III. Comparison with exact supersymmetric eigen-
value. n, =2 state, V, =(9+41)'/[(1+2)-'((+3)'].

F.
(Shifted 1/X
expansion)

2.223 39

2.187 84

2.160 13

2. 138 94

2. 122 48

(Supersymmetric)

2.222 22

2.187 50

2.16000

2, 138 89

2.122 45

1.173 61
0.722 50
0.490
0.354 31
0.21007

E
(Shifted 1jÃ
expansion)

8.594 92
8.634 58
8.613 18
8.575 86
8.536 27

(Supersymmetric)

8.576 39
8.627 50
8.61000
8.574 26
8.535 39

Hence P (r) is an acceptable ground state, and in this
case

Hence from (27) we have

Co being a normalization constant. Again if we compare
(36) with the results of pure oscillator, it can be seen that
(36) gives the n„=2 excited states for all values of 1. In
Tables II and III a comparison has been made between
the exact supersymmetric values with the energy values
obtained from the shifted I/N expansion method.

Ftt ——Q V2(5+2l) —V2 ——

I +2 (30)
IV. DISCUSSIQN

A comparison with pure oscillator ensures that (30) gives
n, = 1 excited state when V2 ——1/(1+2) . Now the gen-
eral ansatz for 8'is

8'=QV2(r —1)+ g — + —.
C

1.+g, r r
(31)

W(r) =QV2(r —1)—— — + —, (32)
1+g )r 1+g2f r

1
(gi g2)= ——«~+ V2—

2

4+V,
3+I (33)

(9+4I)'
(1 +2) (I +3)

—.QV2(r —1) l2
$0 (r)=Cor e (1+g,r)(l+g2r),

The g s can be so chosen as to make (22) and (23) identi-
cal (with V, = —2Vz). As n„= 1 case has been shown in

detail above we just state the results for n„=2 here for fu-
ture comparison with 1/X shifted expansion result. We
have

In this paper the shifted 1/X expansion method has
been applied to find the energy eigenvalues of the rotating
displaced oscillator. Since this method is applicable to
any spherically symmetric potential it will not give rise to
any problems such as those encountered in the use of
three-term recurrence relations. The numerical re-
sults obtained are in good agreement (Table I) with the
published results for small values of a. As is expected,
the agreement is better for nonzero values of I. Further-
more, it has been shown that the rotating oscillator has a
supersyrnmetric character for certain values of the cou-
pling parameter. This property has been exploited suc-
cessfully to find exact energy values and eigenstates of the
rotating oscillator Hamiltonians which correspond to the
ground state of SUSY Hamiltonians. Thus we have
checked the accuracy of the 1/N method in another way.
The energy values given by the shifted 1/X method
match the exact SUSY values extremely well especially
for values of I )2. This occurs (Tables II and III) when
V2 is small, i.e., a is large. Thus SUSY provides a check
for the numerical calculation of the energy eigenvalues of
the rotating oscillator by any method. Also we find that
the shifted 1/X expansion method is able to provide ener-

gy eigenvalues which are of reasonable accuracy both at
low and high values of the coupling parameter.
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