
PHYSICAL REVIE% A VOLUME 37, NUMBER 7 APRIL 1, 19SS

Time dependence of variables in the quantum-mechanical
and classical Coulomb problems, and the dynamical algebra so(4,2)
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Hermitian tilted so(4,2) operators are constructed, acting on the bound states of the Coulomb

problem, and are shown to have simple time dependence in the Heisenberg picture. The periodic
time dependence of the corresponding classical variables can be regarded as a consequence of their
simple geometrical interpretation and their simple expressions in terms of action-angle variables.
Corresponding results are indicated for unbound states.

INTRODUCTION

The Coulomb problem with Hamiltonian

(here p =
~ p ~, r =

~

r ~, trt=rn =e =1), is one of the best
known and most important problems in quantum
mechanics. In particular, the solution of the eigenvalue
problem' for H and the determination of the Coulomb
Green's function have been known for a long time.
More recently, several authors have discussed related
quasicoherent states and their time evolution in the
Schrodinger picture. On the other hand, although it is

often remarked that the relationship between a quantum
system and its classical counterpart is brought out most
clearly by working in the Heisenberg picture for the
former, and although the classical Kepler-Coulomb prob-
lem is exactly soluble„ the time dependence does not seem
to have been explicitly determined for any nonconstant
observable of the quantum Coulomb system, treated. in
the Heisenberg picture, Indeed, Heisenberg's equations
of motion have been solved explicitly for only a few of the
"exactly soluble" problems of quantum mechanics.

A complete set of commuting constants for the
Coulomb system is given by H„L I., and L3, where
I.=rgp; the time dependence of other observables is
determined formally by„ for example,

I ii
———,'(rp~+r}, I"4———,'(rp —r),

T=f'p —/, I =fp „

A =—,
' (rp —r ) —(r p —i)p,

M=-,'(rp +r) —(r p —i)p .

(4)

The Hamiltonian H is not in this Lie algebra, but a simi-

larity transformation K exists, the so-called "tilt," '9

which carries I'z into

r; =Sr-'I ~ =(—2H)-'", (5)

thus relating the discrete spectrum of H to that of I'o and
I'ti. The eigenvalue of I ti is then n, the "principal quan-
tum number, " and accordingly we sometimes write N in
place of I'o in what follows. On an eigenvector 4)„ofI
with eigenv»ue ( —1/2n ), the tilt is given by

K =a( n )exp[iT ln(n )]

QUANTUM AND CLASSICAL so(4,2}VARIABLES

It is known that the linear span V of the (bound state)
eigenvectors of H carries a representation of the I.ie alge-
bra so(4,2), which can be used to calculate and character-
ize the discrete spectrum. The basis operators of an
equivalent representation, more convenient for calcula-
tions, are given by L and (in the notation of Ref. 11)

r(t)= e+'r 0() e

(where a is a function to be determined), and can be re-

(2) garded as an energy-dependent scale transformation. '

On V, X is therefore given by
but such formulas give no immediate information about
the nature of the time dependence particular to the
Coulomb problem.

Heisenberg's equations for r and p take the same form
as Hamilton's equations for the classical system,

and even classically these cannot be solved to get the time
dependence of r and p explicitly. However, in the classi-
cal case other canonically corrugate sets of variables
whose time dependence can be found, in particular,
action-angle variables, can be de6ned in terms of r and

p, and one may ask to what extent this is possible in the
quantum case.

T

g (iT)"[1n(N) ]"/k! a(X)
k=O

=exp[i:TI (nX)]a(X),

where the colon indicates the ordering: powers of T to
the left of powers of ln(N).

We now define tilted so(4,2) operators I 0,
I 4

——E 'I"4j', etc. To calculate the forms of these
operators on V, we note firstly from (6) that K ' on any
eigenvector of I o with eigenvalue n must be given by
exp[ iT ln(n)]/a(n—), since Kg„ is a typical such eigen-
vector. Then, for example, since (I 4+iT) shifts the
value of I o up by one unit, we have
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{I 4 +i T')P„=exp[ —iT ln(n +1)][—,'(I 4+ I o)+ —,'(I 4
—I 0)+iT]exp[iT In(n)]13(n }$„

=
I —,'(I"~+ I o)exp[ —i ( T +i}ln(n +1)+iT In(n )]

+ —,'(I 4
—I o)exp[ —i ( T —i}ln(n + 1)+iT ln(n )]

+i T exp[ iT—ln( n + 1 ) +i T ln( n ) ] IP( n )P„

=[—,'(I +I )(n +1)+—,'(I —I „)(n +1) '+iT] exptiTln[n/(n +I)] aP{n)$„,

where {{3(n) =a(n)/a(n + 1). Here we have exploited also
the so(4, 2) commutation relations between T and
(I ~+I o). It follows from (8} that on V,

I 4+iT*= ,'rp F—(N+1)—,'rF(N+—1) '+i {rp i)F-,
F =exp I i (r p —i):ln[N (N + 1) '] )P(N) (9)

using the same ordering notation as in (7).
Proceeding in this way we find that ' in addition to {5)

and {9),

L*=L=r&p, A* = —,
' p& L—L&p —2 —A,

I

is related to the Hamiltonian by (5). In particular, L*,
and 10 itself, are constants of the motion, as is A*,
which is, apart from the factor S, the Runge-Lenz-Pauli
vector. The nonconstant operators can be resolved into
shift operators for N and. we have, e.g. ,

I ~(t)+iT'(t)

=exp( —', itN —)[f'4(0)+iT*(0)]exp( „'itN —)

= [I 4 (0)+ iT*(0)]exp[ ~ itN —
—,
' it (N + I) ]

=[I 4(0)+iT*(0)]exp[it(N+ —,')N (N+1) ],

I"+iM'=rpF+i[ ,'rp —(r p —i)p]F—(N+1)

+ ,'i rF(N +—1)

I 4 iT*=—,'rp G(N —1)——,'rG(N —1) ' —i(r p i)G, ——
I'* i M*—=rpG i[ ,'r—p —(rp——i)p]G(N —1)

——,'irG (N —1)

G =expIi (r p —i):ln[N(N —1) ']
) [P(N —1)j

These expressions are consistent with general forms for
so(4, 1) operators in the Coulomb problem obtained by
Musto' and by Pratt and Jordan, ' who did not, howev-

er, consider the question of time dependence.
The choice a(N) =N, so that {t3(N)=N(N + I )

makes the tilted so(4,2) operators {5), (9), and (10) Hermi-
tian, as can be checked by evaluating their matrix ele-
ments in the coordinate representation. They satisfy the
same commutation relations amongst themselves as the
untilted operators although they are much more compli-
cated functions of the variables r and p. However, in
contrast to the untilted operators, they do have simple
time dependence, determined by equations like (2), be-

cause they all have simple commutators with I o, which

and in a similar way we find

I'( t )+i M*( t )

= [I'(0)+iM'{0)]exp[it (N + —,
' )N (N +1) ],

I 4(t}—iT'(t)

=exp[ it (N + —,
' )N— (N + 1) j[I 4 (0)—iT*(0)],

I *(t)—iM'(t)

=exp[ it(N+ ——,')N (N+1) j[I *(0)—iM'(0)] .

(12)
%hile the difference between the first and last lines of

{11),for example, may seem slight, it is only the latter
form which directly reAects the nature of time depen-
dence peculiar to the Coulomb problem. In order to ap-
preciate this more fully, it is necessary to compare {5),(9),
(10), (11), and (12) with the corresponding classical for-
mulas. These can be obtained by first introducing explic-
itly A, m, and e {replacing r by r/a, p by pa/A, H by
H/F. , E by XE', and t by tE/A, where a =A /me and
F. =me /fi ), then multiplying each so(4, 2) operator by fi
to give it dimensions of angular momentum, and finally
letting fi go formally to 0. For example, {9)becomes„ in
dimensional form,

I ~ +i T*= ,' rp ~F[N + (A/me ) ] ——,' rF [N + {fi/me ) ] —'+i(r p —ih')F,

N =( —2mB) ', F =expI —(i/fi)(r p —i'):In[1+(iri/me ")cV '])Ã[N+-{fi/me' )] ' (l3)-

and goes in the classical limit to

I 4 +i T*= ,' [rp N (r /N ) +2i r p]—U, —.

U=exp( ir p—/me. ~N } .

Similarly (11) goes to

I 4(t)+iT*(t)=[I (0)+4iT'(0)]e p(itx/V),

j/'=I-e X ' . (15)



2306 D. S. McANAI. I.Y AND A. J. BRACKEN

Altogether, we find in the limit

ro ——~e'iV, I.'=I.=rgp „

A'=[p~ I. m—e (r/r)]N,

I 4+i T' = ,'[rp—X (r—/X)+2ir p.]U

I '+iM'=[rp+ —,'i(rp' —2(r p)p)N+ —,'i(r/&) ]U-',
with I 0, I ', and A* constant, and w'ith

I z (t)kiT'(t) =[I ~ (0)+iT'(0)]exp( kit /V),

I '(t)kiM'(t)=[I'(0)kiM'(0)] exp(+it/V) .
(17)

flp3 me /J3 1 / V =const ~ (19)

We find that the classical tilted so(4,2) variables can be
expressed (with L + —L', kiL z, etc.) as—

I o =J3, L3 =J„L~=hi(Jq —I) )' exp(kit0)),

»1 3 ———(J2 —Jf )'» (I3 —J22)'» (sino)2)/J~,

A ~ ——(J3 —J2 )' (cosa@2+iI&sine@2/J2 )exp( kit0~ ),
I 4+iT'=(J3 J2)' exp(+it0—3),
I 3 klM3 ———(J2 —J~ ) {cost0~RIJ3slnCd2/J2 )

Xexp( kltip3 ),
1 ~++iM+ ——[—(J2+J,J3/J2)sinco2+i(J3+J, )cosco2]

Xexp[i(co3+a), )] .
Their periodic dependence on co3 gives rise, through (19),
to the periodic time dependence in (17).

These classical tilted so(4,2) variables have simple
geometrical meanings. Figure 1 shows a typical orbit
with the particle at P and the center of attraction at S,
and the standard construction of the Kepler angle 4
("eccentric anomaly" ) from the "true anomaly" %. Also
shovrn is the "mean anomaly" ~3, which varies linearly
with the time as shown ln (19), and which changes in

These classical tilted so(4,2) variables are equivalent to
ones obtained in the context of the classical problem by
Gyorgyi. However, he did not explicitly derive the time
dependence of the corresponding quantum-mechanical
observables. The classical variables can be expressed sim-

ply, in a way that clarifies the nature of their time depen-
dence, in terms of the classical action-angle variabless

J, =L3, I,= ~I.'~, J,=me'Ã,

t0, =P+ arctan[ I,cos8/( J22sin'8 —J2t ) '»~],
18

tuz ———arccos[(Jz —me r)J3/[me r(J3 —J2)' ]I,
—arctan[ J2cos8/( I2zsin28 —If ) '»2],

co3 arcc——os[(J3 me r)—j[J3(J3—J2~)'» ]]
[2me r/J ——m e r /J —J /J j'

are the polar angles of r. Since
H = ——,'me /J,', it follows that not only the actions but
also co& and m2 are constants, and also that m3 satis6es

FIG. 1. Typical orbit and "anomalies" for the classical prob-
lem.

value by 2~ as the particle completes an orbit. It is con-
structed from 4 using the formula co3=4—@sin@, where
e={1+2HL /me )'» is the eccentricity of the ellipse.
The ellipse in Fig. 2 has the same orientation as the orbit,
but has been scaled by a factor N ' so that the Runge-
I.enz vector runs from the center to a focus S' as shown.
The construction of the time-dependent variables M' andI' is also shown in Fig. 2, where OQ and OQ' are per-
pendicular, and 14, T' are given from the figure by
@OX,eOY, respectively. It follows that I"4 and T' are,
apart from a factor e, the Cartesian coordinates of the
moving point Q, relative to the axes OX, OY through the

X 4

FIG. 2. Tilted so(4,2) variables for the classical problem in
the case of a closed orbit.
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It can be seen that these so(4,2) variables are not all

functionally independent: For example, the size and
orientation of the orbit can be determined from I. and
A' (which provide five independent constants since
L A' =0), while the value of co, , and hence the position
of the particle on the orbit, can be determined by T' (or
I 4 ). The remaining variables I o, I 4 (or T'), M*, and

are then determined. In the quantum-mechanical
model, the corresponding feature is the degeneracy of the
representation of so(4,2) involved; in such representations
not all basis operators are functionally independent. '

On the subspace corresponding to continuum states of
the quantum-mechanical problem we can transform I 4
into I 4

——K, ' I ~K, =(2H) ', where

E i
——exp[iT:ln(X) ]a i(X), (21)

and X =(2H) ' = I 4, which is well defined for the un-
bound states. We find (in dimensionless form)

center of the ellipse. From Fig. 2 we can easily see that
each of I', I', T', and I 4 is a constant multiple of
cos~3 or sinco3, and so is periodic in time, with the same
period as the particle s motion. Not shown with Fig. 2 is
the (constant) angular momentum vector L, directed per-
pendicular to the plane of the ellipse, and the remaining
so(4,2) variable, the constant

I o
—me ( —2mH)

=I =fg p~ I 4 =Pfl8 X

M~=[p&&L —me (r/r)]X,
I o'+T'= ,'(rp —X+(r/X)+2rp)U,*',
I"yA'=[rp+ —,'(rp2 —2(r p)p)X+-,'(r/X)]Ui ',

(24)

X=(2mH) ', U, =exp(r. p/me X)j

with time dependence

I;(t)+T'(t) =[I,'(0)+T'(0)]exp( W t /V, ),
I"(t)k A'(t) =[1"(0)k A'(0)]exp( kt /V, ),

(25)

V, =m eX

and I 4, M*, and 1. are constants of the motion. The
variables in (24) also have simple geometric meanings for
hyperbolic and parabolic orbits.

CONCLUSION

M', »d &'(=&) are constants of the
motion.

The corresponding classical variables in dimensional
form are

IORT'=2' E+{XTi)+2rE+(X+i) 'k(r p i)E+,—
(22)I"+ A'=rpE~+[-'rp' —(r p —t)p]E (Xyi)

+ —,
' rE~ (X ki)

Eg ——exp I i (r.p —i):in[X(X+i) '] Ia, (X)[a,(X+i)]

[where a, (X) has to be chosen to make the tilted so(4,2)
operators Hermitian, and it appears that analogously to
the bound case, a, (X)=X] with time dependence

I;(t)+T'(t) =[1,*(0)+T*(0)]

X exp[+ t (X+ ,' i)X '(X +—i) '],
I"(t)+ A'(t) =[I *(0)+A. '(0)]

X exp[+t (X+ ,'i)X (X—+i) ],

I-'=l-=rXp, M'=-,' pXI.—I.Xp —2—X, I,'=X,
L

We have shown that tilted so(4,2) operators can be
defined on the bound states of the Coulomb problem,
with a simple time dependence which is clearly analogous
to that of corresponding classical variables. These classi-
cal variables have a simple geometrical interpretation. In
the quantum case, since the representation of so(4, 2) on
V is irreducible, all operators on V can in principle be
expressed in terms of these tilted so(4,2) operators, and
we can therefore claim to have erat'ected a complete in-
tegration of Heisenberg's equations of motion for the sys-
tem, at least on V. The rather mysterious tilt transfor-
mation has been revealed to be, at the classical level, a
transformation of the original so(4,2) variables into ones
which are simple functions of action-angle variables.
Corresponding results have been indicated for the un-
bound case.
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