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%'e have computed the excitation probabilities of the T2 molecules in the crystal surrounding the

P-decaying tritium. The influence of this effect on the neutrino mass determination has been stud-

ied. For a neutrino mass of the order of a few eV the e8ect has been shown to be very important.
Its importance decreases, however, with increasing neutrino mass. In addition we consider the
infiuence of the high-energy portion (E p 164 eV) of the probability distribution on the neutrino
IQass.

I. INTRODUCTION

In a series of papers' we have presented theoretical
results needed to interpret the measured P spectrum of T2
and to extract information on the neutrino mass from
this spectrum. The results are complete if T2 is in the gas
phase, as in Ref. 6. If, however, frozen T2 is used, as in
Ref. 7, additional problems arise due to the close proxim-
ity of nearby molecules. In Ref. 3, henceforth referred to
as paper III, we have argued that most of the solid-state
eftects are small. %e pointed out, however, two effects
which might be non-negligible. The first one is due to
multiple scattering of the emitted P electron on the other
T2 molecules in the solid. This effect can be experimen-
tally determined by varying the source thickness. The
second efkct arises from possible molecular excitations in
the solid caused by the sudden creation of a net positive
charge due to the transformation of a neutral T& molecule
into a HeT+ molecular ion. This e8'ect and its inhuence
on the neutrino-mass determination is studied in the
present work.

A perturbation-theory approach is used and the
relevant formulas are derived in Sec. II. In Sec. III corn-
putations of the excitation probabilities are reported. In
Sec. IV we show the results of our calculations. The im-
portance of high excitations (E~ 164 eV}, neglected in
our previous work, ' is discussed in Sec. V.

The total probability amplitude for a T2 molecule un-
dergoing a P decay in a crystal is given by an expression
analogous to that used in paper III,

~here now the initial and final functions for the whole
system are defined as

The notation above is consistent with that of paper III.
denotes the imtial wave function of the active (decay-

ing) Tz molecule, while the wave functions PP describe

the inactive (spectator) molecules of the crystal. After
the decay the active molecule transforms into the HeT+
ion and the P electron. This system of two nuclei and
three electrons is described by Vg,z. In the initial state
all the molecules are in their ground states. Since in the
final state the active Tz molecule changed into HeT+, a11

the spectator T2 molecules are now perturbed by the field
of the ion. Some of them will also be excited by the
time-dependent perturbation due to the sudden creation
of the charged HeT+ ion. All interactions between triti-
um molecules and any inAuence of the spectator mole-
cules on the wave function of the HeT+ ion are negligible
and have been neglected. The experimental source thick-
ness allowed us to assume infinite dimensions of the crys-
tal.

Since H& acts only on the coordinates of the decaying
T2 molecule, we immediately have
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where Tf is the probability amplitude considered in pa-
per III, i.e., that of the free decaying T2 molecule. Since
the effect of nuclear motion is small even in the active
molecule, we can safely neglect it in the spectator T2
molecules, snd we may write

Since the denominator in Eq. (10) is the same for all {x,we
do not use the index a for the energy of the unperturbed
T2 molecules. The initial wave functions on the ath
center are assumed to form an orthonormal set and the
final wave functions to be normalized to unity. Thus the
coefricients c„I, fulfill the relation

where go is the ground-state electronic wave function for
a Tz molecule at equihbrium separation and P are the
wave functions of the finsl electronic states of the polar-
ized spectator rnolecules. To simplify the notation we
have suppressed the index T2 in the wave functions and
introduced instead an index specifying the electronic
state of the molecule. Notice that due to the clsmped-
nuclei assumption there is now no distinction between T&
and other isotopic species of the hydrogen molecule. We
will, however, refer to the T2 molecule for consistency.

Not only mill the spectator T2 molecules change their
energies due to polarization interactions, one or more of
them can also be excited from the ground state. The shift
of the total energy of the crystal caused by the polariza-
tion of the spectator molecules by the net charge of the
HeT+ ion is independent of the final state of the latter
snd has no effect on the deduced neutrino mass; it only
leads to an overall 0.88 eV shift of the P spectrum (paper
III). The excitations of the polarized Ti molecules, how-
ever, may be of some importance. To determine this
efFect we must solve the electronic Schrodinger equation
for various excited states of a Tz molecule in the external
field,

Ha+a Efaga

where H contains the clamped-nuclei Hamiltonian H0
for the oth Tz molecule plus the Coulombic interaction
terms between the particles of HeT+ snd T2, If not stat-
ed otherwise, atomic units will be used throughout this
paper. Since the distance between T2 snd HeT+ is large,
we may replace the interaction part of the Hamiltonian
by the interaction of T2 with s positive charge located at
the center of HeT+,

Upon substitution of the first-order wave function (8) into
Eq. (5) for the probability amplitude we see immediately
that the only contribution to T,f comes from

V =(r, +r2} n R (13)

where r; is the radius vector of the ith electron of the T2
molecule under consideration, and a is the unit vector
pointing from the center of the ath molecule towards the
external charge.

Using the potential given by Eq. (13) we can write

I c„o I
'=a„R

where for n &0,
a'=

I & Po I (ri+rz}'n
I

{t(" & I ~(Eo —E' }

snd 8 denotes the distance of the ath molecule from the

charge.
Obviously

I c„o I
represents the probability of exciting

the o,'th molecule to the state n. One csn also introduce
the transition probability for the molecule a to be excited
to any state„

The coefficient coo [not defined by Eq. (10)] is obtained
from Eq. (11). Since c„o———c o„, the sum of all

I
Tf(n)

I
is equal to 1 [cf. Eq. (11)].

In our calculations we further assumed that the in-
teraction with the external charge in the Hamiltonian csn
be approximated by the 6rst term of its multipole expan-
sion. This approximation is justified by the large inter-
rnoleculsr distances in the T2 crystal. Thus

1 18 =H
RT RT

=Ho+ V, (7)
1 1

r r~
1 2

I
c„'o I'=R g a„=R a

n (&0) n {&0)

where 8 T snd rj denote the distance from nucleus i and

from electron j, respectively, to the charge.
Because the interaction with ihe charge is small, the

above problem can be best solved by using first-order per-
turbation theory, i.e., by approximating the perturbed
function of a Tz molecule in its nth state by

Due to the small snisotropy of T2 snd s fairly free rota-
tion of the molecules in the crystal we msy neglect the
explicit orientations of the rnolecules and average over
the directions of n~. This average gives

a„=(a„)= —,{(Xo„+I'o„+Zo„),

X,„=( E„' —Eo )
- ' ( 0o I,+, ', f'. ), (18)

pa{ {) g Ca /la
k (+=a)

The coefficients c„k are given by the familiar
perturbation-theory expression

c„k (E„' E/, ) '(p'k
I
v——|(l'„)—for n&k .

and similarly for Yo„and Zo„. In Eq. (17}we assumed
that the transition moments X0„, F0„, and Z0„sre real.
Since the choice of the coordinate system for each mole-
cule is now arbitrary, we have chosen the z axis to coin-
cide with the molecular axis. %e have also suppressed
the index a in the unperturbed wave function because for
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the body-fixed coordinate system the transition moments
are independent of e. Similarly we introduce the con-
stant a obtained by averaging a over orientations or
summing a„over n.

The energy of the perturbed T2 molecule is given by

Efa Ei +Ea(2i Ei + y ~

a
~

2(Ei Ei )

k(~n)

With the approximation to Eq. (13) the first-order energy
vanishes due to symmetry reasons. If the exact V of Eq.
(7) were used, the first-order correction would appear in
Eq. (19). This correction would, however, become zero
after averaging over Tz orientations.

%hen Ef is averaged over orientations of the T2 mol-
ecules, we find that E I =E„' —TItT„E. , where c7„ is the
isotropic polarizability of the nth electronic excited state
of T2. Assuming that only one spectator T2 molecule can
be excited (it will be shown later that double excitations
appear with negligible probabilities), the energy E of the
final state of the crystal is given by

P,f ~ Tf ~:P(j,n„n2, .—. )=P'(j.) ff P (n ), (21)

where j labels the final states of the HeT+ ion and n the
final states of the o.th spectator molecule. The probabili-
ties P'(j) are given in Ref. 4 and P (n) are obtained by
averaging

~

T f(n )
~

=
~

c 0„~ over molecular orienta-
tions,

P (n)= '
1 —aR " for n=0,
a„R for n&0.

To connect the probability (21) with experiment it is
convenient to use the quasicontinuous parameter E rath-
er than j and n. Thus we can write

Pf P(j,n, , n2, . . ) =P——(E. ), —

Ef+E +EI + s ~ ~

J nl n2

It should be recalled that all T2 molecules are initially

E, =Ef+E„'——,'c( g R + —,'((T —a„)R, , (20)
y

where j and n specify the excited states of the HeT+ ion
and T2 molecule, respectively, and 8 denotes the dis-
tance between the excited T2 molecule and the HeT ion.
The third term on the right-hand side of Eq. (20) was es-
timated in paper III to be equal to —0.88 eV. This term
shifts only the energy scale and has no influence on the
neutrino-mass determination. The last term on the rhs of
Eq. (20) does depend on the final state of the crystal but it
can be neglected since it is much smaller than the excita-
tion energies E„'. Thus our 5nal energies are approxirnat-
edasE =E~+E' {orE=EI+E' +E' + ifmul-

1 2

tiple excitations are also considered).
Now we can easily calculate the probability distribu-

tion. The probability corresponding to the amplitude
given by Eqs. (1) or (4) can be expressed as

P = g (1—aR, )=1—a gR, =1 afd— (25)

In Eq. (25) we used the fact that g R, =fd, where d
denotes the nearest-neighbor distance in the crystal lat-
tice and f=25.3383 (see Ref. 8). Similarly, for P„and
P„we obtain

P„=gP (n) g Pr(0)=fa„d
a y(~a)

P„= g P (n)P~(m) g P~(0)=f a„a d
a, f3 y(~a, P)

(a~P)

Due to the small value of the fa„d factors (see Secs.
III and IV) we neglect terms of the order of d in Eq.
(26), and the probabilities of all multiple excitations, as
given, e.g., by Eq. (27).

III. TRANSITION MOMENTS

To evaluate the probability distribution (24), we need
transition moments given by Eq. (18) and the correspond-
ing energies of the excited states. From the symmetry it
follows immediately that z0„&0 only if n denotes a 'X+
state, whereas xo„(=y((„)&0only if n denotes a 'II+
state. The three lowest 'X+ states are usually denoted as
8, 8', and 8" in spectroscopy; for the lowest 'H„+ states
the notation C, D, D', and D" is used.

As in our previous work (Refs. 1, 3, and 5) all wave
functions for the singlet states under consideration were
assumed in the form of expansions

I S-+S +kqi= g C [4 (r„r2)x, +(—1) ' ' (Ii.(r2, r, )x2],

with the basis functions de6ned by

in their ground states. This lowest energy will be taken
as the reference value, and therefore E represents the ex-
citation energy of the whole system.

By performing a summation over all Anal states of the
crystal corresponding to the total energy E, one gets the
probability distribution

P (E)=P'(E)PO+ g P'(E E„'—)P„
n( ~0)

+ g P'(E E„' —E' )P—„
nim

(0&n &m)

where I'0 is the probability that no T2 molecule is excited,
I'„ is the probability that only one T2 molecule is excited
to the energy E„', I'„ is the probability that two mole-
cules are excited to the energy E„'+E', etc. , and P'(E) is
the probability distribution listed in Table I of Ref. 4.

Using Eqs. (21) and (22) we easily find that
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TABLE I. Energies and transition moments, zo„
=Zo„(F.„' —E„') (and similarly for the x component), for the
three lowest 'X+ and 'H+ states of the hydrogen molecule at
8 = 1.4 bohr (all quantities in atomic units).

—0.705 772 68'
—0.705 774 71
—0.628 662 95"
—0.628 673 05
—0.602 492 58
—0.602 543 32

0.9813
0.9814
0.3979
0.3980
0.2305
0.2345

C —0.688 662 35
D —0.623 525 15'

—0.623 545 92
D' —0.601 10613

'Reference 11.
Reference 12.

'Reference 15.

0.7433
0.3389
0.3395
0.0018

where g and q denote the elliptic coordinates; p=2r, 2/R;
r ~2 and 8 denote the interelectronic and internuclear dis-
tances, respectively; a, a, P, and P, as well as ci. in Eq.
(28), are variational parameters; r, , r, si, s, , and p,, are
integers; k =0 for X and H„states; k = 1 for X„and H
states; and I=0 or 1 for 2 and II states, respectively. For
the ground state we used a 69-term wave function ob-
tained from the 80-term expansion by neglecting terms
with the third powers of the interelectronic distance. In
this wave function we optimized all four nonlinear pa-
rameters, thus getting E = —1.1744736, only 1.1 phar-
tree higher than the most accurate value. ' For the 8,
8', and 8" states we used the 88-, 80-, and 76-term ex-
pansions, " respectively. In the previous work" ' the
exponents for these states had not been optimized in the
above full expansions but rather in some shorter ones.
Since this might affect the accuracy of the transition
probabilities, we reoptimized the nonlinear parameters
using the full expansions.

The results of our calculations are shown in Table I.
For both the energy F. and the transition moment
zo„=Zo„(E„' Eo), th—e upper entry corresponds to the
literature wave functions as described above, whereas the
1ower one has been obtained using wave functions with
exponents optimized in the present work. The change in
transition moments is seen to be insignificant. The value
of zo„ for the 8 state is in agreement with the recent re-
sult of Dressier and %olniewicz' who obtained zo~
=0.9821 with somewhat di6'erent wave functions. The
small difference between their and our value may be due
to a more accurate ground-state wave function used in
their work. %e may also point out that our new energies
listed as lower entries in Table I are the best known
values for these states. They indicate that by improving
the clamped-nuclei potential-energy curves one can de-
crease the still existing discrepancy between theoretical
and experimental term values. '

For the 8" state we found that the energy given for the
internuclear distance 8=1.4 bohr in Ref. 12 represents

the fourth eigenvalue rather than the third one. In that
work the complete diagonalization of the Hamiltonian
matrix was not performed, and only a single eigenvalue
was computed, located in an assumed region of energy.
It happened that for 8= 1.4 bohr the computation' con-
verged to the four eigenvalue. Hence for this state also
the upper entry in Table I differs slightly from the pub-
lished value. ' %e checked, however, that for larger in-
ternuclear distances the 8"-state energies published in
Ref. 12 correctly represent the third eigenvalue, though
they are certainly improvable. Thus, e.g., for the equilib-
rium internuclear distance E.=2.025 bohr, by only optim-
izing the exponents in the 76-term expansion we lowered
the energy by 50 phartree (= I I cm ').

Using the optimized exponents and the 88-, 80-, and
76-term expansions determined for the three 'X+ states,
respectively, we computed and diagonalized the Hamil-
tonian matrices. This gave us three sets of eigenvalues,
denoted I, II, and III, and the corresponding eigenvectors
which were used to compute the transition moments.
These transition moments are for the molecular axis
parallel to the direction of the electric field. The comput-
ed energies and the values of Zo„, which divided by R,
give the transition probabilities„are listed in Table II.
For brevity, we give results only for those values of n for
which Zo Q 0.0005. It is seen that for all three expan-
sions the total probabilities of excitations are not much
different. However, their distributions, as functions of
excitation energy, di8'er considerably. The 8"-state wave
function has the smallest exponents for one of the elec-
trons. Therefore, one may expect that this expansion is
best suited to describe not only this particular state but
also the higher singly excited Rydberg-type states. Con-
sequently„ it seems that from the available data the most
reliable description of excitations is given by column III
in Table II, provided the first two entries are replaced by
the more accurate values for the 8 and 8' states, from
columns I and II, respectively. This gives g Z 0„
=6.1039.

A similar procedure has been employed to compute the
transition moments for the Il+ states. For the C and D
states we have used the 80-term expansions selected pre-
viously. ' For the D' state the same expansion has been
used as for the D state. For each of the three states the
exponents have been independently optimized resulting in
some improvement over the best previous energies. The
computed energies and the transition moments are listed
in Table I. These transition moments are for the molecu-
lar axis perpendicular to the direction of the electric Beld.
For the C state our result is very close to the value ob-
tained recently by Dressier and %olniewicz, ' xo„
=0.7432, using somewhat difFerent wave functions.

In Table III we list the energies and the values of Xo„
(= F0„) computed using three diS'erent expansions for
the 'H+ state. The columns denoted I, II and III corre-
spond to 80-term wave functions with exponents opti-
rnized for the first, second, and third eigenvalue, respec-
tively. Although the probability distributions among
various states diN'er considerably for the three expan-
sions, the total probability of transitions to all II+ states
is much less sensitive to the expansion used. Some spe-
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TABLE II. Energies and probabilities of excitations (multiplied by 8 ) to the 'X+ states of the hydrogen molecule, at R =1.4
bohr, computed using wave functions with exponents optimized for the 8 (I), 8' (II), and 8" (III) states, respectively; only states with

Zo„» 0.0005 are included (all quantities in atomic units).

3

5

6
7
8

9
10
11

—0.705 774 71
—0,626 366 56
—0.563 863 99
—0.561 993 72
—0.386 360 85
—0.37458906
—0.043 15048

0.057 032 17
0.106 833 81
0.125 766 98
0.216009 69

4.3844
0,6476
0.6366
0.0077
0.4361
0.0028
0.0057
0.0097
0.0032
0.0126
0.0012

1

2
3

5

6
8
9

10
12
15
25

—0.705 748 45
—0.628 673 05
—0.602 120 55
—0.579 28S 43
—0.508 601 60
—0, 142 396 92
—0.017 884 90

0,052 413 20
0, 145 585 24
0.245 595 23
0.670 239 72

4.3805
0.5318
0.18S1
0.2761
0.5900
0.1492
0.0065
0.0009
0.0008
0.0005
0.0011

1

2
3
5

7
8

9
10
11
22
23
25

—0.705 346 84
—0.628 530 35
—0.602 543 32
—0.576 848 90
—0.373 742 23
—0.019667 47

0.067 313 10
0.072 695 78
0.103 940 90
0.643 81627
0.705 420 83
0.788 46002

4.2783
0.5157
0.1681
0.3783
0.6316
0.0016
0.0007
0.0008
0.0014
0.0011
0.0006
0.0009

Remaining
states

Zon

0.0014

6.1490

0.0024

6.1249

0.0026

5.9817

cial features of the probability distribution are also repro-
duced in all three expansions. For example, the probabil-
ity of transition to the third state is practically zero in all
three cases. Similarly, as for the 'X„+ states, it seems that
the probabilities listed in column III, with the first two
entries replaced by those from columns I and II, respec-
tively, would represent a judicious choice for describing
transitions to the 'II+ states. This gives g X0„=3.9314.

IV. EFFECT ON NEUTRINO-MASS DKTKRMINATION

To study the effect of crystal excitations on the
neutrino-mass determination a new probability distribu-
tion was obtained according to Eqs. (24) —(26). First, the
155 probabilities P,& from Table I of Ref. 4 were multi-

plied by the probability of nonexcitation Po given by Eq.
(24). The total excitation probability was obtained from

TABLE III. Energies and probabilities of excitations (multiplied by R' ) to the 'H+ states of the hydrogen molecule, at 8 =1.4
bohr, computed using wave functions with exponents optimized for the C (I), D (II), and D' {III)states, respectively; for n & 3 only
states ~ith Xo„~0.0005 are included (aB quantities in atomic units).

1

2
3

5

6
7

10
19
23
25
26
28
33
34
35

—0.688 662 35
—0.62075056
—0.58105104
—0.559 380 77
—0.447086 69
—0.425 129 24
—0.104 453 26

0.122 863 79
0.494944 87
0.742 11507
0.777 11561
0.835 064 80
0.931 057 35
1.128 766 45
1.175 661 38
1.261 051 17

+On

2.3408
0.4939
0.0000
0.5437
0.0010
0.4405
0.1734
0.0007
0.0017
0.0012
0.0019
0.0016
0.0022
0.0009
0.0007
0.0008

—0.688 S72 05
—0.623 545 92
—0.599 474 39
—0.598 866 62
—0.567 187 44
—0.56461028
—0.486 550 78
—0.111260 80

2.3287
0.3798
0.0004
0.1823
0.3043
0.0014
0.5197
0.2617

—0.687 908 55
—0.623 31952
—0.601 106 13
—0.600 276 24
—0.588 371 95
—O.S71 205 96
—0.464 852 08

2.2441
0.3674
0.0000
0.1290
0.0847
0.2162
0.7760

Remaining
states 0.0024

4.0074

0.0022

3.9805 3.8222
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the values listed in columns III of Tables II and III, re-
placing the first two entries with those from columns I
and II, respectively. Using for the nearest-neighbor dis-
tance in T2 the value (see paper III) ot=6.68 bohr, we ob-
tained Po =0.940 757.

To compute the probabilities of single excitations„we
applied in Eq. (26) the values a„=Zo„/3 for the 'g+
states from Table II and the values a„=2Xo„/3 for the
'H+ from Table III. Only eight states with Zo„p0.001
were taken into account. For the 8 and 8' states we have
used the values from columns I and II of Table II, respec-
tively. For the 8" state and the five higher X+ states we

employed the values from column III of the same table.
For the C and D states we have used the results from
columns I and II of Table III, respectively. For the D'
state the probability is zero, and for the four higher 'H+
states we have used the probabilities from column III of
Table III. Thus, in total, eight 'X+ and six 'H+ states
were considered. The energies and probabilities for these
states are given in Table IV. The 155 probabilities from
Table I of Ref. 4 were multiplied consecutively by each of
the 14 probabilities and, in accordance with Eq. (23), the
corresponding energies were shifted by the excitation en-
ergies of T2.

The resulting probability distribution P(E), given by
Eq. (24), was thus composed of 155 values of P'(E, )Po
and of 2170 values of P'(E; )P„. Probabilities smaller
than 10 were rejected and the remaining 1580 values
were used in the computation performed similarly as in

paper III. The new probability distribution was used to
construct the reference spectrum for various assumed
neutrino masses and the spectrum determined by the
probability distribution of Ref. 4 was fitted to it. The
spectra have been convoluted with a Gaussian resolution
function of 4.7 eV width. No statistical deviations have
been added to the reference spectrum since we hav'e

checked in paper III that this procedure has practically
no efFect on the final conclusions, and it consumes sub-
stantially more computer time due to the necessity of per-
forming a large number of fits with di6'erent sets of ran-
dom numbers. The fits were made in a 400-eV range be-
ginning from 50 eV above the endpoint. The integration
step was 0.1 eV. The reference endpoint energy for zero
neutrino mass 8'o was 18 580 eV as in paper III.

The results of our computations are listed in Table V,
where m and m, denote the neutrino mass used in the
reference spectrum and in the fitted one, respectively. It
is seen that for a large neutrino mass (30 eV) the efFect of
crystal excitations, although not negligible, is not very
significant. It becomes, however, progressively more im-
portant for smaller neutrino masses.

To check the sensitivity of the results to the accuracy
of the probability distribution we rejected 528 probabili-
ties that were smaller than 10, and used the remaining

TABLE IV. Probabilities P„of Eq. (26) used in the calcula-
tion of the P-decay spectrum. The ground-state energy of T2 is
assumed ta be Eo ———1.174475 677 a.u.

3

5

6
7
8
9

10
11
12
13
14

Symmetry

II
X

X
II
II
X
II
II
X
X
X
x

F. —F.„' (eV)

12.75405
13.219 70
14.852 11
14.991 62
15.563 14
15.624 83
15.948 76
16.262 32
16.415 88
19.309 94
21.789 18
31.42412
34.787 70
49.478 58

0.018 598
0.019 858
0.002 256
0.003 222
0.000 713
0.001094
0.000 719
0.001 605
0.001 834
0.006 583
0.002 679
0.000007
0.000006
0.000005

1046 values to determine the neutrino mass. This had
practically no e6'ect on the result, changing m by only
0.03 eV for m =4.0 eV. The negligible efkct of the small

probabilities also shows that the double excitations, due
to the factor f /d =0.00016 [cf. Eq. (27)], could be
safely neglected.

V. EFFECT OF TRANSITIONS TO HIGHLY
EXCITED CONTINUUM STATES

Another problem connected with the accuracy of the
neutrino-mass determination using the probability distri-
bution given in Ref. 4 results from truncating the proba-
bility distribution. These probabilities are listed for exci-
tation energies smaller than 164.173 eV. They corre-
spond to the lowest 100 eigenvalues obtained in computa-
tions involving 200-term expansions, accounting for
99.489% of probability. The remaining 100 eigenvalues,
accounting for 0.511%of probability, are spread over the
next 600 eV. How accurate is a neutrino-mass deter-
mination performed without the high-energy transitions
occurring with a total probability of 0.511%'? To answer
this question we have performed our fits with spectra
modified to include 100% of probability.

From the 200-term computation performed at the equi-
librium internuclear distance R=1.4 bohr we took the
100 highest eigenvalues and the corresponding probabili-
ties. These are distributed in the region between 167.8
and 759.3 eV, and account for 0.333% of probability. To
obtain the remaining probability of 0.178% an averaging
over the nuclear motion mould have to be performed.
%'e included this eA'ect in the simplest possible way,
namely, by multiplying the probabilities by a factor
0.511/0.333. These "renormalized"' values were added to

TABLE V. Influence of crystal excitation on the neutrino-mass determination; m, is the reference
mass while m, , is the mass obtained with the neglect of the crystal excitations.

3.25
0.000 0.33

3.5
0.86

4.0
2.02

5.0
3.47

7.0
5.81

30.0
29.08
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TABLE VI. InAuence of the high-energy tail of the excitation spectrum of HeT+ on the neutrino-

mass determination; m, , is the reference mass while m, , denotes the mass obtained neglecting the proba-

bilities for F. g 164 eV.

2

1.68

the P f probabilities of Ref. 4 resulting in a probability
distribution I',I that is distributed in the region
0 g E g 759.3 eV and which sums up to 100.000%.

To check the importance of the high-energy tail of the

P,f probability we took it as the reference probability dis-

tribution and proceeded in the usual manner. For an as-
sumed neutrino mass m a reference spectrum was com-

puted and the spectrum obtained from the truncated
probability distribution P f was fitted to it. The best fit

yielded the neutrino mass m . The results are shown in

Table VI. It is seen that for small neutrino masses the

high-energy tail of the probability distribution is not
negligible.

%'e also tested the applicability of some approximate
probability representations to account for the "missing"
0.511%. These representations have been used to con-
struct spectra that have been fitted to the reference spec-
trum obtained with the Pf probability distribution. Since
the sensitivity of the neutrino mass to this eft'ect is
significant only for small m, we performed these tests
only for m =1 eV.

%hen 0.511 k was simply added to the last probability
(0.002) at 164.173 eV in P,'f, we obtained m =1.55 eV,
which shows that not only the incompleteness of the
probability but also its distribution in the high-energy re-
gion is of importance for this small neutrino mass. Next

we approximated the probability distribution for an exci-
tation energy E g Eo with the formula obtained using the
asymptotic behavior of probabilities for the hydrogen
atom (cf. Ref. 16),

P(E)=2.5R (E, )E, E (30)

where R (E, ) is the residual probability for E &E, . If
E, = 164.173 eV, then R (E, ) =0.513% (see Ref. 4).

If the spectrum obtained with the above probability
distribution is fitted to the reference spectrum corre-
sponding to P,f and m =1 eV, one gets m =1.02 eV.
Hence we are convinced that Eq. (30) satisfactorily
represents the probability distribution at high energies.
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