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Relativistic theory of spontaneous emission
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We derive a formula for the relativistic decay rates in atoms in a formulation of quantum electro-
dynamics based upon the electron's self-energy. Relativistic Coulomb wave functions are used, the
full spin. calculation is carried out, and the dipole approximation is not employed. The formula has
the correct nonrelativistic limit and is used for calculating the decay rates in hydrogen and muoni-

um for the transitions 2P ~ 1S&» and 2S l » ~ 1S&». The results for hydrogen are
I"(2P~lS»2)=6 2649)&10 s ' and I (2S»2~1S»&)=2.4946&(10 s '. Our result for the
2P~1S transition rate is in perfect agreement with the best nonrelativistic calculations as well as
with the results obtained from the best known radiative decay lifetime measurements. As for the
hydrogen 2S&» ~1Sl» decay rate, the result obtained here is also in good agreement with the best
known magnetic dipole calculations. For muonium we get I (2P~1S»&)=6.2382X10' s ' and

(2S»2 1Si»)=2.3997~ 10 s

I. INTRODUCTION

At present, the rate of spontaneous emission (or
partial-decay lifetimes) in atoms is not among the list of
precision tests of quantum electrodynamics. The 2y and
3y decay rates of the 'So and 5& states of positronium,
respectively, are part of that list. In positronium one
tests the annihilation rates of the e+e pair, albeit in a
bound state. However, in hydrogen or muonium there is
no annihilation and we are talking about the rates of
atomic transitions in, ssy, the H ~H+ y transition.

The reason for excluding the rates of spontaneous
emission from the list of precision tests of @ED is partly
due to the absence of very accurate theoretical calcula-
tions because the decay rates are usually calculated in the
dipole approximation, with nonrelativistic wave func-
tions. Also, accurate experiments may not be easy to per-
form, but with the new techniques of trapped and cooled
atoms it might now be possible to make accurate lifetime
observations in hydrogen and muonium if corresponding-
ly accurate theoretical numbers existed.

With this goal in mind, we have calculated all spon-
taneous decay rates in the relativistic Coulomb problem
using full Dirac-Coulomb wave functions and without
making the dipole approximation. The results are thus to
all orders in Za. The full spin calculation is rather
cumbersome and to our knowledge has not been carried
out before.

In Sec. IE we give a new derivation of a general
spontaneous-emission formula in which the decay rate,
I „/2, appears as the imaginary part of a complex energy
shift hE„, the real part being the Lamb shift and the vac-
uum polarization. ' Section III contains the full spin
and angular integrations as well as the radial integrations
with some of the details collected in the appendixes. Fi-
nally, in Sec. IV we present a number of numerical results
and compare them with the available nonrelativistic data.

II. RELATIVISTIC THEORY
OF SPONTANEOUS EMISSION

A general formula for spontaneous emission from an
electron in an arbitrary external field A „'"' can be derived
in a very simple way directly from the action of @ED
(fi=c =1 and dx =d x ),

W= J dx[?TI(y"i?)„m)?P+—J"A„,'F„,,FI'"], (—1)—

where J"=—e%'y"0' is the electron current and A„ is
the total electromagnetic field, A„=A„'+ A„', with the
superscripts e snd s standing for external and self, respec-
tively. Here A „' is treated as a given nondynsmicsl func-
tion. On the other hand, F„=A' „—A„', satisfies the
Maxwell equations, F"'„=J"which csn be used to put Eq.
(1), after a single integration by parts has been performed
on the last term, into the following form:

W= I dx [I+[y"(id„eA'„)—m]?ll+——,'J"A„'I . (2)

Next, we complete the elimination of A' from the actionP
by inserting into (2) the solution of the wave equation, '

UA„'=J„=—e%y„%,

namely,

A„'(x)= A'„' ' —e I dy D„„(x—y)?lE(y)y'?ll(y) .

Here A„' ' is a solution to the homogeneous wave equa-
tion. Since our system is supposed to be completely iso-
lated, this one can safely be dropped, because it depends
upon the boundary conditions at infinity. Also,
D„(x—y) is the causal Green's function in the covariant
gauge A" „=0,which we take as

d4k —&it. (x —y}D,,(x —y) = —g, , I
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Thus Eq. (2) now becomes

dxq'x yP l'Bf, —ed' —m q'(x

y 4k —ik*(x —y )

~ j —4(y)y„+(y)
(2n) k

=80+8'i .

O(x) = $, P„(x)e

where the Fourier coefticients are yet to be determined, is
substituted into (3) and after the time integrations over
ko, yo, and xo have been performed, in this order for con-
venience, we get

8'0=2ir ]', f 1 x f„(x)(y E —y p —eA' —m)P„(x)

%hen the Fourier expansion of the matter field 4' in the
time variable, namely,

5(E„E.+E—, E, ) f—~'x i(„(x)y~q. (x)
n, m, r, s

x f &'y g„(y)y„tt~, (y)

j3/ e lk't x —g)

X f — —5(E„E,+k)—+5(E„E,—k)—
(2~)3 2 k

P 1

2k E„—F., —k E„—E +j
Here P stands for the principal-value integral and $I implies a sum over the discrete part and an integration over
the continuum part of the system s spectrum. In carrying out the ko integration, the contour is closed in the upper half
plane for yo&xo where it encloses the simple pole at ko= —k (k =—

~

k
~

), and in the lower half plane for the case

yo gxo where it encloses the pole at ko=+k. 8 functions are used in order to distinguish between the two cases. The

yo integrations turn out to be simply Fourier transforms of the 8 functions which give rise to the principal-value in-
tegrals and the 5 functions in (61).

Now, the 5 function 5(E„E+E„E—, )can be —satis. fied by the two choices: (1) n =m and simultaneously r =s,
and (2) n =s and simultaneously r =m. With this, 8', becomes

e2
), f d'x tT„(x)y"g„{x)f a{'y p, ( y) yp, ( )y

n, s

d k eik (x —y) iir [5(I )+5( I )]+
(2 2k

+ +
2k

2

2n— $t f—1 x. @„(x)y"g,(x) f d'y ti(~)y„y„i{tiy{)
tf, S

y f e'"'" "' [5{E, E„+k)+5(E,—E„—k)]-
2k

P 1 1

2k E, E„—/. E, E. —„+k—
Notice that the term proportional to 6( k )

+6( —k)=26(k) does not contribute because of the in-
tegration over k. From here, one could proceed to the
derivation of the equations of motion by minimizing the
total action and subsequently solving the coupled
Hartree-type equations thus obtained for the energies and
wave functions. Instead of following this path, though,
we can avoid the nonlinear equations and use the follow-

ing approach. If we find the equations of motion and in-
sert them back into the action, the action will assume its
minimum value, which is 8'=O. In other words, an ex-
act solution to our problem would be to find that set of
wave functions I it„(x) I which would make Wo+ W, =0.
Now, in the absence of the nonlinear self-energy part 8 „
which is proportional to e, 8'o vanishes precisely for the
solutions of the Dirac equation of an electron in the
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external nondynamical field A „'.
If we, therefore, take for

jinni„(x)

j the complete set of
solutions of Dirac's equation in such a field, jP'„(x)j,
with their corresponding energies I E~ j, alld set
E„=E„'+hE„,then as a Srst iteration of the action, 8'o
will contribute a term 2n Q„AE„and W, is evaluated
with the functions I 11'„(x)j. Thus we get from the van-

ishing of the action in the first iteration,

W', "=—2~y SE„,

where the superscript on 8', is added to indicate that
we are considering a first iteration of the action. In par-
ticular, for our problem A„' is a Coulomb field and

t i''„(x ) j and I E„' j are therefore the sets of Dirac-
Coulomb wave functions and eigenenergies, respectively.
From (7) and (8) we immediately identify the shift in the
nth energy level as a sum of three terms having the fol-
lowing physical interpretations. (From here on we shall
drop the superscript c on P„.)

(1) Vacuum polarization

2 3k ik i x y)—
gEvp= —— $, f d'x tji„(x)yi'll„(x)P f , , f d'y g, (y)y„i', (y)

(2n )3 k

(2) Spontaneous emission and absorption (including bremsstrahlung)

2

hE„' = $, f d'x 11„(x)y~11,(x) f d'y p, (y)y„g„(y)f,e'"'" "' [5(E, E„+k)+—5(E, E„—k—)]
(2m)

(3) The Lamb shift

2 dk e'""
$, f d'& 0„(x)y"4,(x) f d'y itj, (y)y„i'„(y)f,— P

s s n s n+

The vacuum-polarization term has been treated else-
where and so has the Lamb-shift term. %'e therefore do
not discuss them here any further. The spontaneous-
emission term is evaluated in detail in Sec. III and nu-

merical examples are presented in Sec. IV.

III. REI.~TIVISTIC DEC~V RWTES

some system of energy c decays in time, the time depen-
dence of its wave function is written as

—i{a —i 1"/2)t —lC. t=e "e

where I is the decay rate of the state or twice its inverse
mean lifetime. In other words,

The focus of our attention in this work is Eq. (10) of
Sec. II. The first thing to notice is that the first 5 func-
tion, 5(E, E„+k), impli—es that E„yE„and hence cor-
responds to the decay of the state n to a set of lower
states s. On the other hand, the second 6 function, by the
same argument, corresponds to the absorption of radia-
tion by the atom in the state n, causing it to be elevated
to a higher state s. We choose the second 5 function for
treating the phenomenon of photoexcitation. The fact
that both of these terms come out in a single equation is
one of the advantages of using an action approach.

%'e make two remarks at this point. First„ it should be
emphasized that the choice of 6 function we have just
made is in no way as arbitrary as it may seem at first
sight. In fact, it is dictated by the remaining k integra-
tion over the interval (0, oo ), and choosing one of the two
functions automatically precludes the other. If it is an
emission process that we study, then E„~E, and, since k
is positive, only the function 5(E, E„+k) contribute—s
and not 6(E, —E„—k). Conversely, in the case of ab-
sorption, the other 5 function will contribute.

The second remark concerns the relation of AE„ to
the decay rate of the nth level. %'hen the atomic state of

I = —2Im(e) . (12)

s&n
f d'x i'„(x)y"f,(x)

x f d'yg, (y)1'„0.(y)

I'k i x —P) 5(E E + k )fX 3 2I s 8
4, 2m)

(13)

The total decay rate of a state n is an incoherent sum
of rates of decay to all states s whose energy is less than
E„. It follows that only the ground state is stable. All
other states g'„(x) (which are not true eigenstates of the
total Hamiltonian) acquire shifts and are unstable.

So, taking the correct 5 function in (10) and using (12),
we get the following general formula for the decay rate of
the nth level:
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At this point it is instructive to digress a little and try
to recover the decay rate in the dipole approximation
which is familiar from old-fashioned perturbation theory.
In this approximation,

ik (x—y)

I „=——$I, f d x g„(x)y"d, (x)
4m,

I
'„)

x f d'y g, (y)y„P„(y)

y f g(E, E„—+k)k dk d&k .

and hence (13) becomes
Carrying out the integration over k and using
'V Xp='Vo 'V "V~ we get

f d'x 1(„(x)y'l(,(x) f d'y g, (y)y, e„(y)
4n',

(
'„)

f d x P„(x)yg, (x) f d y tt, ( y)yP„( y) dpi, ,

where co„,=E„E,. —Also, gy =Q and gy =g a.
These, together with the orthogonality of the wave func-
tions, yields

form (e =4na):

I „= 4ma $—, g co„, „T,"(co),T„„(~),
(s&n) f ~

(14)

$, f ~„, I & n
I
a

I
s & I

'dIi„.
s( gn)

cg„, I v„, I
dQI„(v=ca, c =1) .

s( (n)
Gn the other hand, the Heisenberg equations of motion
give

v„, =i (n
I [H, r)

I
s & =in)„,r„, .

Thus,

ln $ ~as f I ra~ s( gn)

If we then introduce the photon polarization via the two
polarization vectors ezra (A, = 1,2), orthogonal to the prop-
agation vector k, we get

$. ~'., X f le~'r. , l'«k
~ s( ~n)

Finally, after carrying out the angular integration, we ar-
rive at

where the indices i and rn have been temporarily
suppressed in, T,"and, T,", which in turn are form factors
defined by

„T,"= f Y; j&(cur)g„(x)y"g, (x)d x,
, T„"=f Y)*jl(cur)P, (x)y4$„(x)d'x,

(15a)

and where co =cu„, =E—„E,and x =—(r, 8,$). From (15) it
can easily be shown that, T„o——„T, and that, T„=„T~,
which together simplify (14) into

(17a)

I„=—4mcx Q, ga)(I„T, I

—I„'f,
l

)

(s gn) f, m

Using relativistic Coulomb wave functions {see Appendix
8), „T, and „T, can be pu. t into the following forms:

(2J„+1)(2J,+1)
„T,'= (O'„',"R', +8'„'",R', ),

4m

I „=—,'a Q, a)„',
I r„, I

' .
s( gn)

T—
n s

(2J„+1)(2J,+ 1)
(K'„,8' —K'„,R' ),

Still, relativistic wave functions are to be used in the eval-
uation of the matrix element

I r„, I
. The squared matrix

element
I r„, I

thus has implicit in it a spin dependence
contributing ultimately the factor

g L„X„=g5„„=2.

(2J„+1 )(2J, + 1)

4' f Y( Q„A,do,

(17b)

Hence, the famous factor —', in the electric dipole formula
is automatically restored.

Now we go back to our general formula (13) and evalu-
ate it exactly. In the next step, the expression for I is
simpli6ed by expanding e'"'" "' in terms of partial ~aves
and subsequently carrying out the integrations over k (see
Appendix A). When this is done, I takes the following

(2J„+1)(2J,+ 1)
O„CTAs QO

4m i'm

(2J„+1)(2J,+1)
4m

Q„o.B,do

(2J„+1)(2J,+ 1)
Y& Q„Q, do,

4m Prn
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(do = sinO d O d |t ) and

R, = f jI(cur)g„'(r)g„(r)» dr,
0

R2= f "jI(~r)f;, (r)f, (r)» dr,

R, = f 1&(~r)g„'(r)f, (r)r'd»,

R 4 = f j&(cur)f„*(r)g,(r)r dr .

8'„', can readily be found from (22) by merely letting
/„~/„' and /, ~/, '. The same transformation, of course,
applied to the condition (23), yields the values of I that go
with 8 „,. For the K matrix elements, we find

/„ l,
' l

X o () () [(0 i
—02 )t —l(0 i+02 ))

With the help of Eqs. (17), Eq. (16) becomes

I „=—a $, co(2J„+1)(2J,+1)
(s gn)

+(b, +b2)k], (24)

X g( ~ W„, R, +W„,.Rq ~2

In Eq. (19) there is a sum over M„and M, (these are the

total magnetic quantum numbers of the initial and final

states, respectively) which we have suppressed all along.
Moreover, since the electron has a probability 1/g„of be-

ing in any one of the magnetic sublevels
~

nJ„M„),where

g~ is the degeneracy given by

g„=2/„+ 1,
we have to multiply the total decay rate of level n by this

probability. %ith the above considerations taken into ac-
count, the decay rate of the nth atomic level finally be-

COIIles
2

7

~

Kl'mR'I KTm R I
~

2) (21)

74

In the remainder of this section, we elaborate upon the
various terms appearing in Eq. (21). %e shall refer to the
8 s and K's as the angular matrix e/ernents and to the

R 's as the radial matrix e/ements. In their calculation the
angular matrix elements involve a number of 3j and 6j
symbols. This calculation is quite lengthy and most of its
details can be found in Appendix C. Only the main re-
sults are given here. The first 8' matrix element is given
by

with the range of l defined by

&1&1„+I,', I„+I+I,'=an even integer . (26)

Here, too, the expression for K„., as well as the de6ning
equation of / that goes with it can trivially be written
down from (25) and (26), respectively, by letting I„~I„'
and /,'~/,

Qn the other hand, a11 the radial matrix elements can
be calculated exactly with the help of the substitution

The range of / in this expression is restricted to the values
given by

~

I„—I, !l & I & I„+I, , I„+I+I»,. =an even integer . (23) The final results are

J(+( i z2)~~r ~ .
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1/2

1+
PFl

*

f„+/~+@+q —I —2b=—
2

(27a)

&& (I i +Iz -I i -14 l

. 1/2

1+ U„U,
m

&& Ir i 12+Ii——I4 l

where

I, =n„s„(2A,„) "
(2A, , )

'

'
( n, +—1) ( —s„+1)» (D,„) (2A, , )»

I
& n„(N, —x,——)(2A,„) " (2&, )

'

( n, +—1)p( —s„)» (2A, „}(2&, )»

o» 0 (2y„+1)~(2y., )» p!q!

(27b)

The definitions of the remaining parameters in Eqs. (27)
and (28) are collected in Appendix 8 [Eqs. (83)j.

%e now have expressions for all of the matrix elements
needed for the calculation of relativistic decay rates using
Eq. (21). Owing to the restrictions imposed upon the
values of the index f, Eqs. {23)and (26), the sums over the
indices I and rn are no longer infinite. In fact, Eqs. (23}
and (26) can be regarded as the selection rules of the
theory. The first part of (26), namely,
&I &I„+I,', is similar to the selection rule familiar from
the electric field multipole expansion, because we can
effectively interpret Tas the carrier of the photon angular
momentum, although we did not use the concept of a
photon as such. In this respect, Eq. (26) is an expression
of the Iaw of conservation of angular momentum. In Sec.
IV we apply Eq. (21) to the calculation of some decay
rates in hydrogen and muonium. Notice that the depen-
dence of the decay rate I upon the atomic number Z is
solely in the radial matrix elements E.;, i = 1, . . . , 4.

IV. EXAMPLES

I& ——{N„—a'„)s, (2A,„) "
(2A,, )

*

'
( n„} ( —s„+—I)» (2A,„}P(2A,, }»

I4 = (N„—a„)(N, —a., )(2A,„) " (2A,, )
'

"r r ( n ) ( s ) (2g ) (2g )»

o (2y„+1) (27, ) P!q!

In this section, we apply our equation to some of the
radiative decay processes of some of the low-lying excited
states in hydrogen and muonium. Our aim in presenting
these examples is to demonstrate the correctness of the
approach as it stands in comparison with the standard
well-understood theory.

As has been explained in Sec. III, when it comes to a
specific calculation of the decay rate using Eq. (21), the
sums over the indices I and m are finite. In fact, for each
allowed value of the index I, the remaining sums over m,
M„, and M, can easily be carried out explicitly without
the need to evaluate the 3j and 6j symbols in most cases
as will be shown shortly. The general procedure for cal-
culating a decay rate is outlined as follows.

—(y„+y, +p+»+I+ & &

(A.„+A,,
X y„+y, +p+»

X 2F, (a, b, l+ ,', —x ), —

(a) Identify the quantum numbers n, 1„,and J„ofthe
initial and Anal states and calculate the derived ones,
namely I„', a.„,and n[s eAeppendix A and Table I].

(b) Use Eq. (23) and similar ones to calculate the al-
lowed values of the index I for each of the angular matrix
elements. The results of doing so for the examples we
study are collected in Table II.
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TABLE I. Quantum numbers of the states under investigation.

1S»/2

~~1/2

2~1/2

2P3/2

(c) Use the results of (a) and (b) in order to write out
Eq. (21) with the sum over l carried out explicitly. Only
the sums over m, M„, and M, remain to be carried out in
the remaining steps.

(d) Calculate the numbers

P/ fr?l
I

2

m, M„,M
I

K'„'," I, . . . , etc,

utilizing the symmetry properties of the 3j and 6j sym-
bols and by quoting their tabulated values if necessary.
In the case of the K's, the scalar products are obviously
carried out first, i.e.,

g [2(~', +.', +b, b, )+b', +b', ] (29)

trernely close to negative integers, which justifies the use
of Eq. (31). Of course, Eqs. (32)-(35) are used for calcu-
lating the decay rates of both hydrogen and rnuoniurn,

the only difference being in the reduced mass' m. %e
follow the procedure outlined above in calculating the
following decay rates for both hydrogen and muonium.
Everywhere in the examples below, g stands for sums

over the indices rn, M„, and M„which we do not show

for convenience.
(1) The 2Sl&? ISl&? transition,

g (
I
II'., I

' IR'
I

'+
I

II'. . I

' IR'
I

'

+2m~a~, R',R', +
I

w„',, I

'
I

R', I

'

g K K'~ g [2(t? &a', +a?a&)+b, bI +b, bz

+bzbI +b2bz] . (30)
+2K„', K„',R,'R,'),

Notice that in the process of calculation some angular
matrix elements whose I index is allowed by Eqs. (23) and
(26) may vanish due to the vanishing of some 3j or 6j
symbol that enters into their definitions. An example of
this is the vanishing of 8'„,. in the decay rate
I (2~2r s I~lrz ).

(e) Use Eqs. (27) and (28) in order to calculate all the
radial matrix elements. This process is also quite tedious.
In the example we present here, the radial matrix ele-
ments as we»I as the decay rates as given by Eqs. (32)-(35)
below„were calculated to double precision using a simple
FORTRAN program. In the program a series representa-
tion of the hypergeometric function in Eq. (28) was em-

ployed, whereby'

ab a(a+1)b(b+1) z?

y I

pr00
I

2 y I

pr00
I

2 y prOOpr00

QIIv„., I
=0,

Q I K.',
I

'=3 g [2(&? +t?z+blb2)+b1+b2]

=3[2(-,'+-,'+0)+-,'+-,']=-,' .

Similarly,

g I
K„'., I

'=3 g [2(a',? +a,"+b',b,')+b", +b,']

. . +0(z')
=3[2(-,'+-,'+0)+-,'+-,']=-,

+K„',"K„',=3 g [2(a,a', +a,a', )+b, b', +b,b,'

In our examples, z = —x &0(a ) and l? and b are ex- +b lb z+b?.bI ]

Transition KIm
r?5

TABLE II. Values assumed by the index I for each of the an-

gular matrix elements.
Thus,

I"(2&lr'p ~ 1&lr2 ) = 2lznl[(R l ) + (R? ) +2(R l )(R 2 )

~~
» /2 1~1/2

25» /2 ~2P» /2

2P» /2 ~ 1S» /2

2P3/2 + 1S1 /2

0,2
1

1,3

—3(R 3
)"'—3(R 4 )

—2(R,')(R,')] .

(2) TAe 2Slr? ~2Pl g2 trQ!lsltloll



37

1(2SI/z 2Pi/z)= —)&&2(I W.', I'fRI I'+
I

W.', I'IRz I'+2W'. W" RIRz —IK- I'IRz I'
—fK f' fR'f'~2K .K R'R' —fK' f' fR' f')

Wlhl
f

z g j
Wllfl

f

z g WltF! W11Fl

g f
K~,'.

f

'= g [2(a', ~azz ~b, bz)~b', ybzz]=[2(-,' ~-,'~0)y-,' ~-,']=-,',
+ f

K~
f

'= 3 g [2(a ', ~a', ~b, b, ) y b ', ~b,']=3[2(-,' ~ —,
' ~0)~ —,

' ~ —,
' j= —,',

=3 & [2(aI +az +bIbz )+bI +bz ]=3X [2( ios + ios z'v )+ ~ios+ ios]= s

y K/$ 'Kg g
= —+3 y [2(a [a ] +aza z )+b /b / +bzbz +b jb z +bzb j ]

= —&3 2 12' 12' 12&3 12~3 6~3 6~3

g IK'. , I'=6+ [2«I'+az'+bIbz)+4 +» ]=6[2(z'7+z'7+ s~)+&~+4]= ~

P(2S, /z 2P]/z }=—-', aran[3(R ', )'/3(R z')'/6(R I )(R,')—9(R', )' —(R 4)'—8(R 4)'+2(R z)(R 4)] ~

(3) The 2P3/z ~ 1S
/ /z transition,

r= —-'tz~y(
f

W' f'fR' f'+
f

W'~ f' fR' f'+2W' W' R'R'+
I

W'

—fK™fzfRz fz —fKz
f fR f

+2K .K R R )

yfWlmf y fWlm
f

yWWl

(33)

W3Ni
f

z 0

g f

K~,
f
z=3+ [2(a, ~az+b, bz)+bg+bz]=3[2( —,', + —,', + —,', )+ —,', + —,', ]=—,

'

g [2(a ]+ z+ t z)+ t+ z)= [ uzi
+ ~is ios

g f

Kz,, f

z=5 g [2(a',z ~az ybIbz)~bI +bz ]=5[2(—,', + —,', +0)+ —,', + z'o]= —',

+Kz, K', =v'30+ [2(a,a', gaza'z )+b, b', +bzbz+b)bz+bzbI ]

I I 1 I I 1 I

12&30 12~30 12~30 12~30 6~30 6~30

—
f
K„, f f R~ f ~2K„, K„,R~R.~),

Wl IF'
f

z g f
W llew

f

z g W jltl Wkly

X f
K '

f
=32 [2(a &+az+b&bz)+b&+bz]= [2( &os+ &os z'v )+ &os+ &os]=r'

& l
K. , I

'= g [2«I'+ax'+Kbz)+b8+bz']=[2(-. '+-,'+0)+-.'+-.' j=-',

gK„, K„,= —&3g [2(a,a', ~azaz)~b, bI ~bzbz ~b)b'z+bzbI ]
T

= —~3 2
I I 1 1 l I 1

12~3 12+ 3 12+ 3 6~3 6v 3
I

g f K„, f
=6+ [2(a(+az ~b)bz)~bf ~bz]=6[2( —,', ~ —,', + —,', )+ —,', + —,', ]=—', ,

1 (2P, /z~1S, /z)= —,'ace[3(R,')—~3(Rz)~6(R I )(Rz) —(Rq) —9(R~) —8(R„) —6(R~)(R~)j .

1 (2Pq/z ~1S,/z)= —,'ctrl)[3(R,') ~3—(Rz) +6(R I )(Rz) —4(Rq) —5(Rq) 9(R~) —6(R q—)(Rq)] .

(4) The 2P„z~ 1S,/z transition,

I = —-'a g( f

W'~ f'fR' f'~
f

W'
f

fR'
f

y2W' W' R'R' —fK f'fR f' —fK' f'fRz f'
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%e collect the results of our calculations in Table III.
In Sec. V we discuss these results and compare them with
the available data.

V. DISCUSSION AND CQNCI. USIGNS

TABLE III. Decay rates (s ') in hydrogen and muonium as
calculated from Eqs. (32)—(35). Notice that I (2P 151/2 )
= r(2P„,— 15„,)+r(2P„,=- 15„,).

Transition

2S
1 x2 ~ 151/e

251 g2 ~2P I /P

2P
1 /2 ~ 151

2P~;~ ~151,~

2P ~ 151/2

Hydrogen

2.4946 g 10- '
5. 194&. 10- '"

2.0883 x 10"
4. 1766~ 10'
6.2649 ~ 10'

Muonium

2. 3997 g 10- '
5. 172g10 '"

2.0794 ~ 10"
4. 1587~ 10
6.2382 Z 10"

In this work, we have derived a general formula for the
relativistic decay rates in atoms for transitions from any
state n to all lower states s (s & n). In applying our gen-
eral formula to the specific examples presented in Sec. IV
we obtained Eqs. (32)—(35) which, in fact, are applicable
to a ~hole host of transitions besides the ones we con-
sidered. For example, Eqs. (34) and (35) can be used for
calculating I (nP~n'S), for any n and n', where n' & n.
Equations (32) and (33) can be generalized in a similar
fashion.

For the 2P~1S, /2 transition our result is in perfect
agreement with the most recent and most accurate calcu-
lations. %'e quote here, for the sake of comparison, the
result tabulated in Ref. 11 of I (2P ~ IS,zz ) =6.265 X 10
s '. According to this reference, this figure has an accu-
racy of better than 1%. Moreover, our result gives the
radiative mean lifetime of z, p

——1.5962&10 s. In 1968
Chupp and co-workers' obtained experimentally the re-
sult rzz ——(1.60+0.01)X10 s using the technique of
beam-foil excitation.

The calculation involving the 25, /2 level, on the other
hand, requires some discussion. In the nonrelativistic
calculations, based upon the dipole approximation, the
transitions from this level are forbidden by the selection
rules involving parity for the electric dipole and the total
angular momentum for the electric quadrupole transi-
tions, respectively. Also, since this is an S state (1 =0),
the magnetic dipole moment is a purely spin quantity and
its matrix element, therefore, vanishes between nonrela-
tivistic wave functions. However, if relativistic wave
functions' are Used instead, one gets the small transition
probability of 2.4959&10 s '. Qf course, there is no
reason why two or more photons should not be simul-
taneously emitted as Iong as they share the total transi-
tion energy in conformity with the conservation of energy
principle. Kith this in mind, and with the interest in this
transition in connection with interstellar hydrogen' (it
contributes to the observed continuum in planetary nebu-
las), Breit and Teller' showed that a double-photon elec-
tric dipole transition has a probability that can be brack-
eted by 6.5 s ' &1 (2S,/2~15, /2) &8.7 s '. More accu-

TABLE IV. Corrections to the transition rates in hydrogen
due to the hyperfine structure.

Transition

25'I /2 ~5 I / g

2P] y2
-~ 1SI/s

2Pq/2 ~ 1SI /2

)

BI 6~
i BM

4.037 g 10 "6m
1.2581' 10 ' 6u
1.3476 g 10 5m

In Table IV we show the values of
~

BI /B~
~

for all of
the transitions except the 2S//2~2PI, /2, where the tran-
sition frequency has been taken as the Lamb-shift fre-
quency (which is already at least two orders of magnitude
smaller than the correction due to hyperfine structure).

%e have shown in this work that a simple formulation
of the radiative processes that makes no use of the second
quantized electromagnetic field and which involves only
the first quantized matter field is possible and does pro-
duce results for the radiative decay lifetimes of the low-
lying excited states in hydrogen that are in excellent
agreement with all previous calculations as well as with
the results of the experiments performed so far.
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APPENDIX A THE k INTEGRATION

We have for the k integration,

I 5(k } ik lx -—y)

2(2~}'

I k5(k a2)d—k g g (4n) jt(kr)jT(kr')F) (8,b)F/', , (8', p') J Yt (8k, pk)Y/', , (8t„pq)dQk .
2(2n }

Here we have taken x=(r, 8,$}, y=(r', 8', P'),

The angular integrations yield 5&.5 „while the radial

one, by virtue of the 5 function, gives

ajar&(car)jT(air').

Therefore,

1=0m = —f

n ( n) m

F( n, b;z—)=
(b) m!

1 (a +m)
1 (a)

(a)o= 1,
and where

APPENDIX 8: THE DIRAC-COUI. 0MB
WAVE FUNCTIONS

We have for ihe Dirac-Coulomb wave functions,

g„(r)Q„(r)

if„(r)fl„ (r)
~

The subscripts n and n' stand collectively for the princi-
pal quantum number n as well as the angular momentum
quantum numbers J„, 1„, and M„. In other words,
n = (n, J„,I„,M—„) and n'—= (n, J„,I„',M„). Also,
I„' =2J„—I„=/„+1. The radial parts, the g„(r) and
f„(r), involve confiuent hypergeometric functions with
negative-integral first arguments (only true of the wave
functions of the discrete spectrum with

~
E„~ ~m).

This property permits a confluent hypergeometric func-
tion to be written as a polynomial:

X„=[n'—2n„(
~ ~„~ y„}]'—",

E„=—A,„+m

y„=[a„—(Za) ]'i

n„=n —
f x„/

—(/„+1) if J„=/„+—,',
/„ if J„=/„——,

' .

The angular parts are de6ned by

0„=(—1} " "+2J„+1
l

i I„m„)X„p„
(85)

and 0„ is obtained from Q„by letting /„~/„' and
m„~m„'. 7„ is the usual two-component Pauli spinor.P„

g„(r)= 1+
' &ye

U„(A„8„), —
Pl APPENDIX C: SPINQRIAL ALGEBRA

f„(r)=— 1—

(2A,„) 1 (2y„+n, +1)
f'(2y„+ 1) 4N„(X„—a„)n, !

With the help of the definition of a spherical spinor,
Eq. (B5), the first of Eqs. (18) becomes

~lm (4 )1/2( 1 )
n s ™n™s] —I —I —M —M

ns

A„(r)=n,F( n„+1,2y„+1;2i,„r)e "—(2k„r) "

8„(r)= (Is/„—a„)F( n„,2y„+ 1;2i,„—r)e

X(2s(,„r) "

x (/„m„~ /m
~
I, m, )X„X„

NO%', gp g@ =6p p and
rt 5 n 5
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(2I„+1)(2I, + 1)(21+ 1)
(I„m„~ lm

~
I, m, ) =( —1) "

4m

Thus, letting p„=p,, =p and using (Cl), the expression for W„', becomes

(C 1)

J„ I,

p —M„m, p —M,

Next we employ the symmetry properties of the 3j
symbols under the permutation of their columns and un-
der the change of the signs of the entries in the second
row in order to put the sum in Eq. (C2) into the follow-
ing form:

m„,m, p m„, m, , ttI.

1

2

—M~ m~ —p

P m, —m„m

m„, rn, ,p Pl, Pl )P
Mn mn p

x —P m, —m„m

From the properties of the 3j symbols, we get that
M„=m„—p and M, =m, —p, which together permit the
phase factor of 8'„', to be written as

1) n c n s n
1 —I —I —M —M +m

Also, since the spin index p can take only the values
k —,', the sum will be invariant under the replacement of p
everywhere by —p, Inserting (C3) and (C4) into (C2), we get

I„ I, I
W„, =( —1) "Q(2I„+1)(21+l)(2I, +1)

@+m„+m, +I„+I, +(1/2)x ( —1

2 2 I, I„

P m, —m„m (C5)

I ) I2 j3
P2 P3 P] m2 P3 Pi Pz

With a little hindsight, the series in Eq. (C5) can be summed using the following formula:

j~ j2 j3 ji j2 j3 p +p +p +I +l +I ji 2 3 II I I
1)Ni+~2+~3+ i+ 2+ 3

m m m I I I
)"

1 I"2 )"3

I„ I, I J„
0 0 0

J, I J„

%e finally get

W„', =( —1) "'Q(2I„+1)(21+1)(21,+1)

I

2

(3) —I„+I, + I & 0 or I & I„—I, .

The above-mentioned conditions, taken together, re-
quire that I should satisfy the following inequalities:

i
I„—I,

i
( I (I„+I, ,

I„+I+I,=an even Integer . (C7)

Notice at this point that (0" o 0)=0, unless (a)

I„+I,+I = an even integer, and (b) II„,I, , I I satisfy the
following triangular conditions.

( l ) I„+I, —I ~ 0, which implies I & I„+I, .
(2) I„—I, +I &0, implying that I & —(I„—I, ).

This completes the derivation of Eqs. (23) and (25). Next
we do the vector angular matrix elements exemplified by

K„, = J Yl- Q„o.Q,'do

=(K™)„i+(K'„,. ),j+(K'„, ),k,
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Using X„cr„X„=5„„and(Cl),this becomes

pl 3

—Pl Pl
Pl 5

(CS)

%e finally utilize the property that, for a 3j symbol not to vanish, the sum of the entries that make up its second rom

should be zero in order to eliminate the sums over the indices m„and m,'. If we then carry out the remaining sum over
the index p = k —, explicitly and play around with the indices in the phase factor, we get

/„ /,
'

/

(K™)„=(—1) " * ' Q(21„+1)(21+1)(2I,'+1)

—M„+—,
' M, + —,

' rn

JS

S —M ——' M ——' mfl 2 S

or

(K„, )„=(—1) " ' ' Q(2I„+1)(21+1)(2l,'+ l)[a, —a~ I . (C9)

Following the exact same procedure that led to (C9),
we can derive expressions for the remaining two com-
ponents of K„, , the only difference being in the Pauli spin
products, namely,

X„o'yI„=( —1)

Also, by manipulating the 3j symbol in a way similar to
what has been done in deriving Eq. (C7), we get the re-
strictive conditions (26). Notice that since the angular
matrix elements occur in the final formula for the relativ-
istic decay rate either squared or multiplied by each oth-
er, the phase factor in each can be dropped. This is be-

2M„—1

cause, for example, ( —1) " = 1, owing to the fact that

2M —1=2 ——1=2t,2t +1
(1

where t is some integer.
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