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The phase-space evolution for the instabilities in a CO2 laser with an intracavity saturable ab-
sorber is investigated experimentally. The different scenarios corresponding to limit cycles, homo-
clinic orbits and cycles involving two unstable points, and chaotic behavior are investigated. A
theoretical analysis of the experimental results is sketched out.

A laser containing an intracavity saturable absorber
(LSA) is a simple but prolific nonlinear optical system.
By an appropriate choice of the control parameters, insta-
bilities occur in the L$A operation and the laser output
power appears composed by spikes or modulations period-
ic in time and, as shown in this paper, eventually leading
to chaotic behavior. The instabilities are associated re-
spectively to the installation of hard modes or of subcriti-
cal Hopf bifurcation. The spiking regime is known as the
passive Q switch (PQS) from the early days of the CO2
LSA operation. ' The modulated regime has been report-
ed in more recent LSA observations. Under an appropri-
ate choice of the laser parameters, not corresponding to
experimental ones, the appearance of both kinds of insta-
bilities has been explored in LSA theoretical analyses
based on the Maxwell-Bloch and rate-equation ap-
proaches. However, for the range of parameters acces-
sible in LSA experiment, no theoretical analysis has
defined precisely the occurrence of instabilities and chaos
in an experimental configuration.

An analysis of LSA instabilities based on the phase-
space description is here reported: both experimental ob-
servations and theoretical investigations are presented. A
detailed analysis of the instabilities defined as type-I,
PQ$-like, and type-II, high-frequency modulation, is
presented. LSA equations have two fixed points: an lo
solution corresponding to a zero laser output power and an
I+ solution corresponding to a laser output power
di8'erent from zero. In the instability regime here con-
sidered, both fixed points are unstable, with a saddle point
in Io and a saddle focus in the I+ point. The main result
of this paper is that the diferent LSA instabilities are rep-
resented by orbits in the phase space inlluenced by either
one unstable point or both unstable points. The type-I in-
stability is associated to either an homoclinic orbit con-
necting the Io point and revolving around the I+ point, or
an homoclinic cycle joining the two unstable fixed points
(we follow here definitions of Ref. 5). More precisely the

phase-space evolution should be described on the basis of
quasihomoclinic orbits or cycles. Type-II instabilities cor-
respond to limit cycles around the I+ unstable point with
smaller or wider orbits in the phase space. The main
feature of homoclinic orbits and cycles, in contrast to the
wide orbits in type-II instabilities, is that the phase-space
homoclinic trajectories approach the Io point at a slow
speed and remain in its neighboring for a long time as
compared to the time spent on the trajectory. An impor-
tant result of the present paper is the observation that
chaos in the LSA may be reached through a cascade of
periodMoubling bifurcations on the type-II instability.

This work was prompted by a recent investigation of the
occurrence of homoclinic orbits and Shil'nikov chaos in an
internally modulated laser with overall feedback as illus-
trated by a phase-space analysis. s The homoclinic orbits
and cycles representing the evolution of the I laser ampli-
tude in the LSA are related to the motion around a saddle
focus. A phase portrait of the motion in the (I,I) space
described by a homoclinic cycle for the laser amplitude is
schematically represented in Fig. 1. By a wide orbit, the
system moves away from the neighboring of the Io saddle
point converging towards the neighboring of the saddle
focus Iy and emerging out from this point with an out-
wards spiraling motion. A similar orbit has been called an
homoclinic reinjection process for a chemical reaction7 or
an inverse Shil'nikov process for the LSA. In the usual
Shil'nikov chaotic configuration, the number of outwards
spirals of the trajectory presents a sensitive dependence
upon the initial coordinate of the approach to the saddle
focus. On the contrary, in the LSA the simultaneous
presence of a strong attractive saddle point stabilizes the
orbits and does not lead to a Shil'nikov chaos. Our experi-
mental and theoretical observations on an all-optical auto-
nomous system, such as the LSA that contains two unsta-
ble points with a particular relation between the attractive
and repulsive parts of the eigenvalues, are of particular
relevance in the aim of characterizing instabilities and
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FIG. 1. Schematic representation of a LSA homoclinic cycle
vrith two unstable points Ip and I+.

locations of these homoclinic bifurcations in comparison
with the A~ point, different scenarios are observed experi-
mentally, with coexistences between them when the con-
trol parameters are continuously tuned.

A first scenario contains type-I instabilities with a
time-dependent laser output power equivalent to a
quasihomoclinic orbit of the point Io visiting a large re-
gion of the phase space, as in the case of Fig. 2(a). Shift-
ing the laser operation point, the homoclinic orbit breaks
down progressively, and the I+ attraction becomes
stronger. Thus the system, before coming back in the Io
neighboring, may fall on the unstable manifold of the I+
point, leaving the I~ neighboring through revolutions on
an almost plane-divergent spiral. Depending on the
phase-space distance between the lo unstable manifold
and the reinjection point into the I+ unstable plane, the
revolutions around I+ remain wide, or may be very small,
leading finally to a heteroclinic connection between Io and
I+, i.e., to a total quasihomoclinic cycle, as in Fig. 2(b).

chaos in nonlinear optical systems.
In the experimental setup the output power of a single-

line, single-mode, homogeneously broadened infrared CO2
laser containing an intracavity low-pressure (10-300
m Torr), SFs, CH3I, or CF38r absorber gas, and buffer He
gas is monitored as a function of the COq discharge
current or the laser cavity length. 9 The discharge current
modifies the A pump control parameter, i.e., the ratio of
the amplifier unsaturated small gain to the cavity losses.
The laser cavity length modifies the two frequency detun-
ings, i.e., the differences between the laser operation fre-
quency and the amplifier and absorber frequencies. The
absorber pressure affects the absorber control parameter
and the relative saturability of the amplifier and absorber.

The timeMependent laser output power was recorded
by a transient digitizer and transferred to a microcomput-
er for the construction of the laser intensity return map
and of the statistical distribution and the return map of
return times. Phase portrait for the laser amplitude in the
plane (I,I) was applied to monitor the laser evolution.
The phase portrait topologic description monitors the glo-
bal character of the laser amplitude in the instabilities and
its correspondence to the fixed points and the space struc-
ture. The return-time observations permit the singBng out
of the characteristic behavior of the period bifurcation-
type or Shil'nikov-type chaos or of the noise presence.
In fact the large spread in the return time is a distinctive
feature of the homoclinic chaotic behavior with Suctua-
tions in the revolution times.

In the LSA instabilities the zero laser intensity Io solu-
tion and the nonzero laser intensity I+ solution are unsta-
ble in an interval of control parameters that at fixed laser
detunings and absorber pressure is denoted by the A pump
parameter. The instability interval is limited by two bi-
furcation extreme points, one of them being the AH Hopf
bifurcation point. Different homoclinic bifurcations may
appear within the instability interval. Depending on the

gg +

M 0
Q 0.5 '1.0 2.0

0.02 0.04 0.06

t (ms)
FIG. 2. Pulses of output power (in arbitrary units) vs time (in

ms) for diferent laser instabihties. In (a) and (b) type-I insta-
bilities pulses corresponding, respectively, to an homoclinic orbit
of Io and to an homoclinic cycle connecting Io and I+, ~ith LSA
operation on the IOP(24) CO2 laser line containing 25 mTorr
SF6 gas pressure at different pump powers. In (c), a type-II in-
stability corresponding to an orbit around I+,. LSA operation in
the bistable regime on the 108(16) CO2 line with 16-mTorr SF6
absorber.
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When the laser operation moves towards the AH bifurca-
tion point, the repulsive eigenvalues become smaller and
the number of spirals increases. The phase portrait of Fig.
3, corresponding to the experimental conditions of Fig.
2(b), illustrates very clearly the time evolution for the
homoclinic cycle. Notice that the addition of He as buffer
gas in the experimental records of Fig. 2 allows the moni-
toring of, over the frequency tuning of the laser mode, a
complete scenario concerning the number of revolutions
made by the orbit in screwing to and spiraling out of the
I+ saddle focus. The transition from an orbit with n
spirals to an orbit with rt+ I spirals takes place discon-
tinuously on the control parameter; i.e., only complete cir-
cular revolutions around I+ are observed on the time evo-
lution. However, for an LSA operation close to a transi-
tion in the number of spirals, our experimental observa-
tions have shown the presence of hesitations of the system
between two alternative orbits differing in the number of
spirals. These hesitations are originated by the internal
noise as quasihomoclinic trajectory are very sensitive to
the system noise. This noise dependence was moni-
tored in our experiment by observing the large
modifications produced by an externally added noise on
the trajectory around I+ and on the return time map.

In the second scenario the type-II instabilities, charac-
terized by phase-space orbits centered around I+, are il-
lustrated by the record of Fig. 2(c) for an orbit with a
medium amplitude around the I+ unstable point. Type-II
instabilities have a period typically very close to the re-
petition period of the spirals observed in the homoclinic
cycles of type-I instabilities. The laser pulses of Fig. 2(c)
present a large fluctuation in the amplitude corresponding
to a low-frequency noise in the frequency spectrum, again
evidence of the large influence by the noise on the LSA
evolution around the I+ unstable point. In the experimen-
tal observations the transition from the first to second
scenario takes place discontinuously on the laser detuning

with an asymmetric behavior in respect to the center of
the cavity mode.

In our study of the LSA instabilities we have carefully
looked for evidences of chaotic behavior. By a proper set-
ting of the laser frequency tuning it was possible to obtain
a period-doubling bifurcation diagram on the type-II in-
stabilities. Periods up to 8 T have been observed and an
example of a chaotic behavior is reported in Fig. 4(a). No
example of Shil'nikov chaos was obtained on the type-I
homoclinic orbits or cycles and the observed spread in the
return time was associated to the noise influence on the
system evolution around the fixed points. However, a
period-doubling bifurcation, with pulses very regular in
time, but alternating on the amplitude, could be observed
on the type-I instabilities, as reported in Fig. 4(b). Notice
that Figs. 4(a) and 4(b) were obtained for the same LSA
conditions except for the cavity frequency detuning, a very
convenient control parameter to explore the instability bi-
furcation points.

The experimental observations evidence the important
role played by the detuning parameters in the instability
scenario. In the theoretical analysis of Ref. 3 with detun-
ings included in the Maxwell-Bloch LSA equations, laser
pulses with spiraling motion out of the Irj solution were
obtained but a screw or spiral motion around the I+ point
was not. On the contrary, our numerical analysis based
on the rate-equation model introduced by Tachikawa,
Tanii, Kajita, and Shimizu'o to describe the pumping
mechanism in the COz laser from the ground vibrational
state to the upper lasing vibrational state was able to
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FIG. 3. (I,I) phase portrait for the homoclinic cycle reported
in Fig. 2(b). On the photo, 1 aud 2 correspond to the Ia and I+
unstable points. In the phase portrait the system spends a
lethargic time in the neighboring of the Io point, and leaves the
I+ point through a series of spirals.

FIG. 4. (a) Chaotic behavior on the LSA output pulses
reached through a period-doubling bifurcation sequence for the
type-II instability. (b) Period doubling observed on type-I insta-
bility, homociimc orbit from lo. LSA operation on the 10P(32)
CO2 laser line with 100 mTorr SF6 absorber and 900 mTorr He
buffer gas at A 1.2 was used in both records with zero cavity
detuning in (a) and 5 MHz cavity detuning in (b).
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reproduce the observed behavior associated to the homo-
clinic orbits and cycles. The coexistence of di6'erent
scenarios was not reproduced in our modeL We have nu-
merically explored the instabilities also in an improved
model including the rotational structure of the amplifier
and absorber and presenting a much better agreement
with the experimental results. In the Tachikawa et al.
model, the system is described in a f'our-dimensional
space. The fixed Io point, when unstable. is a saddle one,
that means four real eigenvalues: one positive and three
negative. I+ is a saddle focus with two real negative ei-
genvalues Xt (i 1,2) and two complex-conjugate eigen-
values p+ ito Th. e LSA behavior depends on the relative
~aine of these eigenvaiues. The condttton I p+I &I, a
necessary and sufBcient condition for the occurrence of
Shil'nikov chaos in the case of a single unstable point
presenting an homoclinic orbit, is verified for our experi-
mental conditions. However, we have noticed that for the
parameters corresponding to the experiment, the repulsive

p eigenvalues are systematically smaller than the attrac-
tive eigenvalues at the lo saddle point, making the Io point
strongly attractive and preventing the orbit around it to
grow enough for the occurrence of a chaotic regime of the
Shil'nikov type.

LSA instabilities characterized by the presence of two
unstable points are a special case of autonomous non-
linear optical systems to be investigated in more detail as
concerns the relation between the global behavior and the
local eigenvalues. Hesitations are a new feature presented
by this system, and the relation between them and the oc-
currence of chaos in a small region of control parameters
should be explored more.
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