
PHYSICAL REVIEW A VOLUME 37, NUMBER 6 MARCH 15, 1988

New critical point in smectic liquid crystals
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We study a new critical point which terminates a first-order transition line along which two
smectic-A {Sml) liquid-crystal phases (or more generally any layered phases with uniaxial symme-

try) with different layer spacing coexist. We call this new critical point C the Sm A-Sm A critical
point. We develop a model nonlinear elastic Hamiltonian to describe physical properties in the vi-

cinity of C. We study this model using mean-field theory, one-loop-order perturbation theory, and

the e expansion. In mean-field theory, the SmA-SmA' transition is identical to the mean-field

liquid-gas transition. In one-loop perturbation theory, critical corrections to the compressibility be-

come important below an upper critical dimension of 6. In addition, there are important critical
corrections to third-order vertex function between 6 and 8 dimensions indicating deviations from
mean-field behavior below 8 dimensions. We determine a fixed point in 6—e dimensions describing
C and calculate critical exponents to the first order in e. This fixed point exhibits anisotropic scal-

ing with different correlation length exponents v~~ and v& parallel and perpendicular to the director.
Scaling properties and x-ray scattering patterns in the vicinity of the SmA-Sml critical point are
also considered.

I. INTRODUCTION

Strongly polar smectogenic molecules give rise to a
large number of smectic phases' which can be classified
according to their symmetry into three groups. (1) The
smectic-A (8m A) phases which are distinguished from the
nematic phases by broken translational symmetry in the
form of a periodic modulation of the density along the
direction parallel to the equilibrium director no (z axis).
These phases are subdivided into SmA&, SmA~, and
SmAz phases where the indices 1, d, and 2 indicate that
the wavelength of the periodic modulation is one, d
(1 g t/ ~ 2), or two times the molecular length /. The asso-
ciated fundamental wave number is qo =2tr/1, 2'/d/, and
2'/2/ in the three cases. In each case, there is liquidlike
short-range order in the xy plane (plane of the layers) and
quasi-long-range order (QLRO) along z. (2) The anti-
phases SmA, SmA„„andSmC (Ref. 2) have an addition-
al periodicity in a direction x in the plane of the layers.
They, therefore, have two-dimensional long-range order
in the xz plane and fiuidlike short-range order in the y
direction. Their hydrodynamic properties are the same as
those of the columnar phases. (3) The incommensurate
SmA; (Refs. 4—7) phases are characterized by spatial
modulations along n with wavelengths 1 and I' whose ra-
tio 1//' is irrational. 1 &1' is of order the molecular
length. If the ratio /'// =p/q (p and q integers), then,
from the point of view of symtnetry, these phases are
equivalent to the smectic-A phases of (1).

Phase transitions between the smectic-A phases of (1)
above are possible and warrant further coinment. All
three phases SmA&, SmA~, and SmA2 have the same
macroscopic symmetry, differing from each other only by

the wavelength of their periodic modulations. (In fact the
notation for these phases emphasizes their equivalence:
The SmAi and SmAz phases are SmS& phases with d =1
and d =2, respectively. } Thus it is possible to go from an
SmA i to an Sm Aq and from an SmA~ phase to an SmSz
phase merely by continuously varying d. First-order tran-
sitions in which there is a discontinuous change in qo
from qo+ to qo . (e.g., an SmAi-SmA~ or an SmAq-
SmAz transition) are always possible. A line of such
first-order transitions may terminate as shown in Fig. 1,
in a critical point where the difference hqo=—qo+ —qo in
wave vector goes to zero. Such a critical point provides a
continuous path between coexisting Sm A i (or Sm Az) and
Sm A~ phases.

The critical point C terminating a line of first-order
transitions between smectics with different layer spacings
was observed in a series of experiments by Shashidhar
et al. Previous experiments providing evidence for its
possible existence were not conclusive. A reentrant
cholesteric phase rather than a critical point has also been
observed. ' It was first discussed in Ref. 11 using a mean
field theory. There, the particular transition studied was
an Sm A z-Sm Aq (rather than an Sm A i -Sm Aq) transition
with d less than 2 along the first-order line and tending
toward 2 as C was approached. It was labeled an SmA2-
SmAz transition to emphasize the fact that the two
phases have the same symmetry. In this paper, we will
refer this transition as an SmA-SmA transition since the
particular value of d at the critical point is irrelevant.

Figure 2 shows the behavior as calculated in mean-field
theory of the fundamental wave vector qo in the vicinity
of C. The discontinuity hqo in wave vector as the first-
order line is crossed tends progressively to zero as C is ap-
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FIG. 1. Possible phase diagram with different smectic-A
phases showing a second order Sm A ~-Sm A2 line (BT), a tricriti-
cal point T, and a first order SmAi-SmAq line (TQ termina-
tion in a critical point C. A reentrant nematic or cholesteric
phase occupying a finite area in the phase diagram could replace
the critical point C. The paths indicated by the numbered ar-
rows correspond to (l) continuous passage from SmAq to
SmAq, (2) continuous passage from SmA~ to SmA„, with

d yd, (3) continuous passage from SmAq to SmAI, (4) a
second-order Smd~-Sm Aq transition, and (5) and (6) first-order
Sm A ~-Sm Aq transitions.
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FIG. 2. This figure shows the dependence of the fundamental
wave vector qq on the parameter y~ as calculated in the mean-
field theory. The discontinuity hqo goes continuously to zero as
C is approached.

proached. The slope of qo versus control parameter yi
(which could be the temperature) is infinite at C indicat-
ing a disappearance of the compressional elastic constant
8 for the layers. The curves for qo shown in Fig. 2 are
similar to the isotherms in the pressure volume plane near
the liquid-gas critical point and to those observed by the
experiments of Shashidhar et al.

Even though all of the smectic-A phases have the same
global symmetry, second-order transitions in which the
size of the unit cell is multiplied by an integer are possi-
ble. There can exist a second-order SmAi-SmAi transi-
tion in which the unit-cell size is doubled and in which
the amplitude fk, of the mass density wave at wave vector

ki ——2m/21 grows continuously from zero. This transition
has been observed experimentally. ' ' In principle other
period multiplying second-order transitions such as an

Sm A 3/2 SIDA 3 transition can also occur, but these involve
fundamental periodicities that are larger than twice the
length of a molecule and are not of interest to us at the
moment. Figure 1 shows a possible phase diagram with

Smg), Smad, and SmA2 phases. Note that there is a
line of second-order Sm A, - Sm Az transitions terminating
in a tricritical point T followed by a line of first-order
SmA i-Sm A~ transitions terminating in a critical point C.
The six different paths shown in Fig. 1 have been ob-
served in different experimental systems and can be inter-
preted theoretically in terms of the frustration model of
smectics. '

In this paper we will develop a nonlinear elastic model
to describe the critical point C and analyze its critical
properties using e expansion. Our principal results are as
follows.

(1) Because the model Hamiltonian has two distinct
third-order potentials, the upper critical dimension d,
below which singular corrections to 8 become important
is six and not four as a strict analogy with the liquid. -gas
transition would imply.

(2) Mean-field theory applies above d=8 dimensions
and is identical to mean-field theory for the liquid-gas
transition. Between 6 and 8 dimensions there are nonana-
lytic corrections to the third-order vertex, the conse-
quences of which have not yet been fully analyzed. In all

probability, they affect the shape of the mean-field coex-
istence curve in a nontrivial way.

(3) There is a fixed point describing C in 6 bedim—en-
sions. It leads to anisotropic scaling with different corre-
lation length exponents v~~ and vi for directions parallel
and perpendicular to the director. It also implies that the
third-order vertex diverge along the critical isochore (line
of critical order parameter) in contrast to the liquid-gas
transition where a similar vertex goes to zero. The strong-
est experimental signature of C is the discontinuity b,qo
along the co-existence curve as C is approached. It would
be very desirable to have theoretical calculations both of
the shape of the coexistence curve (in a temperature-
concentration plane) and the functional form b,qo. We
have found these calculations to be extremely complex
and will not treat them here. %e hope, however, to be
able to discuss them in a publication in the near future.

We now summarize the content of the paper. In Sec. II
we present an anisotropic model Hamiltonian H to
describe the SmA-SmA' critical point C in terms of two
order parameters: S(x) describing the changes in the x-

ray scattering intensity in the quasi-Bragg peaks and u(x)
describing the local dilation of the smectic layers. After
integrating out the noncritical linear combination of S(x)
and u(x), the resulting Hainiltonian H[u(x)] will be writ-
ten in terms of u(x) only. In Sec. III we discuss Gaussian
Auctuations near the mean-field critical point of the
model Halniltonian introduced in Sec. II. In Sec. IV we
develop one-loop perturbation theory for H to identify the
upper critical dimension to be six rather than four. We

also show that the third-order vertex function has singular
behavior for spatial dimension 6&d &8, and the nth
order vertices aIe divergent throughout the smcctic phase
for d ~d„,=2n —1. In Sec. V we derive
renormalization-group recursion relation to 1ocate a fixed
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TABLE I. Fundamental exponents to the first order in e. TABLE II. Derived exponents to the first order in e.

Exponent Description

Perpendicular correlation
length exponent
Parallel correlation
length exponent
Anomalous exponent
Anisotropy exponent

0(E ) value

0.5—0. 1873m

0.5 —0.0534m

0.0364m
0.2679m

Exponent Scaling relation

—1+1.4899m

1 —0.4146m

1 —0.6607m

2 —1.0753m

1.8388m

point in 6—e dimensions and calculate to the first order
in e critical exponents summarized in Tables I and II. In
Sec. VI we discuss scaling in the vicinity of C. Finally, in
Sec. VII we review our results and suggest possible experi-
ments. There are a number of appendices with calcula-
tional details.

II. DEUELOPMENT OF THE MODEL

As discussed in Refs. 5, two order parameters are neces-
sary to describe the properties of frustrated smectics: the
first p(x) measures mass-density modulations familiar in
traditional smectics A, and the second P, (x) measures the
antiferroelectric ordering of the polar heads along the z
axis (perpendicular to the plane of the layers). The nemat-
ic (N) and monolayer smectic-A (SmA, ) phases are
characterized, respectively, by (

I p I

=
I
Ps

I

= 0) and

(p&0, P, =O). In the bilayer or SmAz phase, the two
modulations coexist with

p(x) =$2(x)e
0

P,(x)=fr(x)e ' .
(2.1)

Because of the asymmetry of the molecules, the antifer-
roelectric order also gives rise to a density modulation,
and the structure of the Sm Az phase can be described by
the fundamental and the first harmonic of a periodic
modulation of the density m(x):

m(x)=Pi(x)e ' +$2(x)e ' +cc. (2.2)

It was shown in Refs. 4 and 5 that the value of the wave
vector qo results from a compromise between elastic con-
straints favoring incommensurate wave vectors qi and qr
for P, and p (with q2 —1.8qi} and a pinning potential
favoring commensurate modulations with wave vectors qo
and 2qo with q2/2&qo&qi. The SmAq phase (some-
tirnes called a partial bilayer phase) corresponds to the
limiting case with qo-qi. The existence of a line of
first-order SmAz- SmAd transitions is a direct result of
the frustration imposed by the necessity of the above
compromise. Since the Sm Ad and SmA2 phases have the
same symmetry, this first-order line can only terminate at
some other phase boundary' or at a critical point C as
shown in Fig. 1.

+[Sar —a2S(x)]e ' e +c.c. ,
2iqotz+ u(x)]

(2.3)

where Soi and So2 are, respectively, the amplitudes of the
first and second density waves at the critical point. The
Bragg peaks predicted by this order parameter occur at
qo

—qo(1+M, ) and 2qo where M, =(V,u). The choice
of qo is arbitrary if nonzero values of M, are allowed.
There are two obvious choices for qo which we will use in
the discussions that follow. The first is to choose qo so
that M, is always zero, i.e., to require qo always to be
equal to the magnitude of the equilibrium wave vector.
The second is to set qo

——qo, where qo, is the magnitude
of wave vector at the critical point C. The latter form is
the most convenient for discussing the transition. In this
case b,qo=qo, (M,+ —M, ), where M,+ and M~ are the
values of ( V, u ) in the coexisting smectic phases, becomes
the order parameter which goes to zero as the critical
point C is approached. S(x) measures the deviation of
the intensity of the qo and 2qo quasi-Bragg peaks from
their values at C. Its thermal average (S(x)) is zero at
the critical point and non-zero and of opposite sign in the
SmA and SmA' phases. S has Ising symmetry and fluc-
tuates violently as C is approached. u(x), unlike e(x), is
a hydrodynamic or elastic variable whose gradient de-
scribes local dilations of the layer spacing. Fluctuations
in both S(x) and u(x) are long range at C, and both vari-
ables must be included in a Landau-Ginzburg-Wilson
Hamiltonian determining the universality class of the crit-
ical point C.

The energy H, [u(x)] (sm for smectic) of elastic defor-
mations in smectic-A phases must be invariant with
respect to both rigid translations and rigid rotations. The
former invariance is assured if H, ~ is a function only of
gradients of u(x), the latter by requiring that the
compressional term, V,u, appear only in the rotationally
invariant combination' '

E[u (x)]=V,u+ —,
' (Vu )

The "classical" elastic Hamiltonian is, thus,

(2.4}

In order to describe fluctuations in the vicinity of the
critical point C, it is convenient to express the order pa-
rameter m(x) in the following way:

~ I

m(x)=[SO, +a,S(x)]e' e

H,~(u)= I d x IroE(u)+ , BOE (u)+ —woE—(u)+—DOE (u)+ —,[Ei(V'iu) +Kq(V, u) +2Kiq(V, Viu) ] . (2.5)3! 4!
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Here and in what follows, we use reduced units whereby
all Hamiltonians and free energies are unitless by virtue of
a division by the Boltzmann constant times temperature.
The potentials hp, Bp, etc., in this expression depend on
the reference wave number qp and external control param-
eters such as temperature and concentration or pressure.

The part of the Hamiltonian depending on the order pa-
rameter S(x) contains both even and odd powers of S:

Hs= f d~x hsS+ ,'[rS—+c(VS)]

+ s~ + ~s~
1 3 1 4

3f

S(x)=cr(x) —A. »E[u (x)]/r. (2.10}

Then the part of H[S, u ] harmonic in cr and E becomes

H' '(a, u ) = f d~x ,
' (BE—+ra ), (2.11)

where

linearly in H[S,u], and only a single linear combination is
critical. The other independent combination is noncritical
and can be removed from the problem. There are various
ways to identify the critical and noncritical variables. We
find it most convenient to remove the linear coupling be-
tween S and E via the transformation

r =us{T Ts)— and

B=Bp A, ) ilr:—Bp(r ——r, )Ir,2 (2.12)

H(S, u )=H, (u)+Hs(S)+H;„,{S,u) . (2.9)

We note that both S and V,u change discontinuously as
the coexistence line is crossed, and their fiuctuations are
described by H[S,u]. S and u are, however, coupled

where T is the temperature and Ts is the mean-field tran-
sition temperature for S in the absence of coupling to
u (x). Because of the anisotropy of the smectic state, the
gradient term in this equation should be written as
c(V,S) +ci(Vi S) . An anisotropic rescaling leads,
however, to Eq. (2.6) which we will use without loss of
generality in what follows. The Hamiltonian coupling S
to uis

H;„,= f d"x(Ai)iSE+A)2S E+Az)EzS+A22EiS ) .
(2.8}

The total Hamiltonian describing the critical point C is
thus

r, =k, , i/Bp=a, (T, —Ts) . (2.13)

Since r, is positive, E becomes critical before e as tem-
perature decreases. Thus, E, or V,u is critical at C, and o
is not. The full Hamiltonian H[o, u] becomes

H(a, u ) =H,'m(u }+Hs(o')+H „t(u,o'), (2.14)

where H,' (u ) has exactly the same form as Eq. (2.5}with
the replacement hp~hp —A, »h /sr, Bp~Bp k»lr, —

p+
Kii~K, i+c(A,»/r) l2, and Kz +Kz+c(A, »—/r)2.
H „,(u, o) involves terms that are at least trilinear in u

and o. Integration over the noncritical variable u(x) leads
to a Hamiltonian in terms of u(x) alone that again has ex-
actly the same form as Eq. (2.5) but with renormalized
potentials

—=f d"x hE(u)+ —,'BEi(u)+
,

wE (u)—+
,

uE (u)+——,'[Ki(V&u) +K(q,Vu)+2Kii(V, Viu) ]
1 3 l

(2.15}

This is the Hamiltonian we will use in the remainder of this paper. Since the independent variable is u not E, it is con-
venient for future analysis to reexpress H[u ] in terms of V, u and Vi u:

r

H= f d"x h(V, u)+ ,'Bi(V,u—) + —,'Bz(V&u) + —,'[ K(iVui}+Kz(V,u) +2Ki2(V, Viu) ]

+—wi(V, ) + —,'wi(V, u)(V&u) + ui(V, u—) +uz (Viu) —+—,', ui2(V, u) (Viu) (2.16)

8& ——8+h, m& ——m+ 38, U I
——0+6M+ 38,

(2.17}
82 ——h, mz ——8, Uq ——38, 0~2 ——3m+38 .

In the absence of external fields (h =B2 ——0). The quadra-
tic terms to lowest order in V, and Vi are responsible for
the Landau-Peierls instability' ' and the divergence of
~ I

u(x) —u{o) ) ) at I~ge ) xI «cuiatedby Caiiie."
As discussed by Grinstein and Pelcovits, ' ' the

(V,u)(V&u) and (Vi u)" terms in Eq. (2.16) lead to a
breakdown in the elastic gradient expansion in three di-

I

mensions. The renormalized elastic constants Bi(q) and
K~(q), respectively, vanish and diverge as powers of lnq
at smaB wave vectors q. These terms also lead to diver-
gences of certain viscosities with inverse frequency.
The other anharmonic terms such as (V,u ), (V,u ), and
{V,u ) (Vi u ) are irrelevant in the renormalization group
sense in the smectic phase and do not lead to any singular
renormalizations of elastic constants.

As discussed in the beginning of this section, the order
parameter for the SmA-SmA' transition is M, =(V,u).
If Viu is equal to zero in Eq. (2.16), the resulting Hamil-



NEW CRITICAL POINT IN SMECTIC LIQUID CRYSTALS

tonian in terms of ( V, u ) alone is identical in form to that
describing the liquid-gas transition as a function of its
scalar order parameter P =ni —ns, the differences in den-
sities of the liquid and gas phases. Thus, in mean-field
theory, the Sm A-Sm A' transition occurs at
h =8] ——m&

——0 and is identical to the liquid-gas transition
with susceptibility and order-parameter exponents yMF ——1

and pMF ——1/2.
When fluctuations are included, (Viu ) cannot be ig-

nored. In the liquid-gas Hamiltonian, there is a single
third-order invariant P which can be removed by shifting

This implies that the liquid-gas transition belongs to
the same universality as the Ising model with additional
higher order irrelevant potentials. In the SmA-SmA'
Hamiltonian, there are two distinct third-order potentials
(V,u) and V,u(Viu) . They cannot both be removed by
shifting the order-parameter field (V,u). It is this fact
that leads to an upper critical dimension of six and a new
universality class for the 8m A-Sm A' transition.

III. GAUSSIAN FLUCTUATIONS

6„'„'(q,r) =(Bq, +Kiqi +Kzq, +2K,zq, q, )

6' '(q, r) =(r+cqz)

(r+cq )

(3.1)

(3.2)

(3.3)

Thus, the order-parameter amplitude does exhibit critical
fluctuation near C, but these are anisotropic and less
divergent than those of u.

The director is normal to the smectic layers so that the
director correlation function is 6„''„=qi6„'„'.At the
critical point, 8=0 so that

6„''„(q}=(K&qi+2Kizq, +Kzq,"qi )
' . (3.4)

Apart from the term proportional to Kz, this correlation
function is identical to that of the nematic phase. Thus,
a smectic at the critical point C is essentially a reentrant
nematic.

The x-ray scattering intensity function, I(k) at wave
vector k, is proportional to (

~

m(k)
~

). Thus, from Eq.
(2.3),

Before proceeding to a formal analysis of perturbation
theory and the e expansion, it is instructive to study
Gaussian fluctuations near the mean-field critical point of
the model Hamiltonian introduced in the preceding sec-
tion. The u —u and cr —o correlation function in Fourier
space are

I(k)=(
i
m(k)

i )

=a', [G, (k—qp)+6, (k+qp)]

+az[62(k —2qp)+Gz(k+2qp)]

where Gi (k) and Gz(k) are the Fourier transforms of

(3.5)

and

Gi(x)=([Spi+aiS(x)]e' *'e ' [Sp, +a,S(0)]e '@p'e '"
) (3.6)

Gz(x)=([Spz azS(x—)]e ' "'e [Spz —azS(0)]e 'e ' ). (3.7)

p 2q @2
( 2 )( g )/2

=Sope (3.8}

with g'z'(x) = ([u(x)—u(0)]z). The second step follows
because the Gaussian Hamiltonian is harmonic in u.
g' '(x) is simply related to G»(q):

d
g'"(x)=2f „(1—e'q*)6„„(q). (3.9)

(2m )"
When 8 is nonzero, g' '(x) reduces to the result obtained
by Caille:

P

lIlx ~~, xy =0,
(3.10)

where il, =qp/[Sm(K&8)' ] leading to Gz(x~~, O)
—2p

-x~~
' and 6 (O,xi )-

~
xi

~

'. Away from the
critical point where q, is less than 2, the power-law decay
of Gz(x) implies a power-law divergence in the Fourier
transform 6~(k). As the critical point is approached,
g, —+ Op, and the simple power-law form of Gz(x) breaks

In the vicinity of the critical point, S(x) is small and fluc-
tuations in 8(x) are important so that 6~(x) can be ap-
proximated as

ipqp[uix) —u(p)]
~

t

down in a complicated way. At the critical point itself,
8=0, and

g (x)=2 dg 1 —eq
(2m ) Kq

as x ~ oo

~o K=Ki =Kz=Kiz in three dimensions. Hence, the
correlation function 6(x) dies off exponentially as

~

x
~

~ ao, and the smectic order is destroyed at the criti-
cal point. There is no

~

x
~

' ' prefactor, however, so
that in three dimensions Gz(k) is a Lorentzian squared
rather than a Lorentzian:

(3.11)

+2 2 2

6 (k)
p I 'qp

K [ ~

k
~

+(p qp/SmK) ]
(3.12)

Thus, even though the director correlation function at C
is very similar to that of the nematic phase, the order-
parameter correlation function is quite different. Note
that the width of the peaks in 6~(k) increases with in-
creasing p.

X-ray scattering provides the most direct measure of
correlation lengths in the nematic phase above the nemat-
ic to smectic-A transition. Because of the complicated
(and as yet not fully calculated) behavior of Gz(k} in the
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Before proceeding to a discussion of perturbation
theory, we need to introduce some notation. All thermo-
dynamic properties and correlation functions of the model
can be obtained from the partition function,

Z[h(x)]= f Du(x)expI —H, [u(x)]—H,„,I, (4.1)

in the presence of an external field h, coupling to u (x)
via the Hamiltonian,

H,„,= —f d x h, (x)u(x) .

In particular, the average displacement (u(x) & satisfies

& u(x) & =Z ' f Du u(x)e

(4.2)

(4.3)

Alternatively, thermodynamic functions and correlation
functions can be determined from the I.egendre
transformed potential

I'[(u(x)&]=—lnZ[h(x)]+ f d"x h, (x)(u(x}& . (4.4)

The vertex functions of this potential are defined via

I'") x x
If+

5(u(x, )&. 5&u(x„)&
' (4.5)

Since H, depends only on the gradients of u, it is useful
to consider a restricted set of external potentials
h, = —V h, so that

H,„,= —f d~x h, Vu(x) (4.6)

vicinity of C, even in the Gaussian model, it is not clear
how much information x-ray scattering will provide about
correlation length critical exponents.

IV. PERTURBATION THEORY

A. Notation and vertex functions

(2)f„=f,=0 (4.14)

which is valid in the absence of symmetry breaking exter-
nal fields and in equilibrium where the equation of state
fi

——0 is satisfied. It says there is no (Vt u } term in a re-
normalized free energy. This identity is necessarily satis-
fied to all orders in perturbation theory.

B.One-loop calculations and the upper critical dimension

In this section we will calculate the vertex functions
just introduced to one-loop order in perturbation theory.
We will find this perturbation theory becomes singular at
C below d =d, =6 rather than below d =4 as in the
liquid-gas transition.

We begin with some general observations about the crit-
ical point C. The equation of state

(3) (3) (3) T T T
fijk =fnz "oinojnok+fsi l. (noi5jk +noj5ik +nok5;~ )

(4.12)

where 5(~ =5ij n—o;noj T.he vertex f~'(q=O) is the phys-
ical compressibility modulus B of the system. Because of
the repeated use in what follows, we introduce a compact
notation

f„(Mz):—f,'".', (M, ) (4.13)

for the vertices associated with the z component of the or-
der parameter.

As discussed in Sec. II, H, is invariant under uniform
rotations of the coordinated system T.his invariance leads
to Ward identities among the various vertex functions
that are discussed in Appendix A. Of particular impor-
tance is the identity

and to introduce reduced vertex functions
fl(Mg) =0 (4.15)

(4.7)
is always satisfied in equilibrium at any point in the phase
diagram. At the critical point, the compressibility
diverges so that

where Vis the volume of the system and f2=B=O . (4.16)

M;=(V;u(x}& . (4.8)

The small wave number part of the Fourier transforms of
the vertex functions defined in Eq. (4.5) are controlled by
the reduced vertices f,". . ; . fio' is the f.ree-energy densi-

ty. In addition, the Fourier transform of the second- and
third-order vertices are

In addition, the critical point terminates a coexistence line
along which two phases with respective order parameters
M,+ and M, coexist. This means that the free energy
has two branches fo+(M, ) and fo (M, ) which are equal
vrhen evaluated at the equilibrium order parameters M,+

and M, . Since the critical point terminates the coex-
istence line, it must be that

I' '(q)=f j 'q;qj+O(q ) (4.9) fil (M, }—fll (M, ) 0 (4.17)

('ql~q2~ 'ql 'q2) fijk qliqzj ( qlk qzk }+0 (q

(4.10)

as C is approached. Equations (4.15) to (4.17) impose
three constraints on the potentials in 8, . %'hen an ana-
lytic expansion of fo is possible, as it is in mean-field
theories, the last condition is equivalent to the condition

where the Einstein convention is understood and a&here

momentum conserving delta functions have been removed
as usual. By symmetry, fj ' and fjk' each have only two
1ndependent components:

(4.11)

fr=0. (4.18)

As discussed earher, all potentials depend on the reference
wave number qo which can be freely varied. If the critical
point is to be reached, the potentials should depend on
two other external control parameters, say temperature T
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fi(M, =0)=0 (4.19)

determines a line intersecting C in the T-P plane along
which M, is zero. This is the analog of the critical iso-
chore in the liquid-gas system. In this section, we will
consider the approach to the critical point along this line
so that M, will be zero in all vertex functions and propa-
gators.

The reduced free energy to one-loop order is obtained in
the usual way by calculating Gaussian fiuctuations about
the mean-field solution:

and pressure or concentration P, i.e., h=h(qo, T,P),
8=8(qo, T,P), w=w(qo, T,P), etc. The critical point
(qo=qcd, T„P,) is determined by Eqs. (4.15) to (4.17).
After qo„T„Pghave beni determined, the vicinity of
the critical point can be studied by fixing qo ——qo, and
setting T=T, +ET and I'=I', +hI'. Variations in the
wave number are determined by the order parameter M, .
Equations (4.15) to (4.17) impose three constraints on the
order parameter M, and the potentials in H, .

M, measures the deviation of the wave number of the
density modulation of the smectic phase from some refer-
ence value qo, . Away from the critical point, the equa-
tion,

direct evaluation of the graphs shown in Fig. 3. The full
one-loop contribution to I' '(q) is given in Appendix B.

In higher dimension where an analytic expansion of
fo(M, ) is possible, Eqs. (4.15), (4.16), and (4.18) can be
used to locate C. Here we will keep the fourth-order po-
tential u fixed and choose the three potentials h, 8, and w

to be functions of qo, T, and P Eqs. (4.15) and (4.18)
determine the critical values B, and m, . These i.n turn can
be used in Eq. (4.15) to determine |'t, . A„B„andw, then
determine qo„T„andP, . Near C, h, 8, and w can be
expressed as linear functions of hP =P P, —and
hT =T T, .—We fix qo =qo, and measure all variations
in qo with M, .

When u=0, conditions Eqs. (4.15), (4.16), and (4.17)
along which Eqs. (4.17) and (4.22) to (4.24) imply that
B,=m, =h, =0 or equivalently that B(,——ur ),——u)2,
=h, =0 as in mean-field theory. When u+0 the critical
values of the potentials can be calculated in a perturbation
series in u. It is clear from Eqs. (4.22)—(4.24), that

FOR f 1(oI

I =I, (M, )——,
'

V f lnG(q)—= Vfo

with

G (Bi +wiM + 2 uiM + 6 ui2Mi )q
—I 2 1 2 2

+(82+w2M, + —,
'

u&iM, +—,
'

uzMt)qt

+(w,M„+,'u, M,M-, ) q, q,

(4.20)

FOR f2

+(Kiqq+K2q, +Ki2q, qt ), (4.21)

where f = f dsgl(gw) . From Eq. (3.20) it is straight-
forward 4 obtain other vertex functions by differentia-
tion:

fi
——h+BiMg+ —,wiM, +

, uiM, +——,utMt M,

M,

~h+ —,
' f w, (8)q, Go for M, -~O, (4.22)

f~(M, =O)=Bi — —, f w, (8)q Go(q)
I

—Tiui f qgGo(q)

—
6 U)2 gy60 q

f3(M, =O)=wi+ f w, (8)q Go(q)

——,'ui f w, (8)q, q Go(q)

—2u» f w, (8)qiq'Go(q),

(4.23)

(4.24)

(c)
FOR

where

wg(8)= w, cos 8+—wisin 8. (4.25)

Alternatively, these results could have been obtained by

FIG. 3. One-loop contribution to vertex functions in Eqs.
(4.22)—(4.24). The wavy lines indicate a factor of k, arising
from an adjacent vertex and the solid lines a factor of k& . (a),
(b), (c), respectively, show diagrams for fi, f2, fqs.
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»201( 1 I021 ~2}
c

1SI20~ +3I02I —2

wzc =»zoi ~(151ioi +31oii —2}

(4.26)

(4.27)

8i,——8,+Ii, and wz, ——8, are of order u and
w i, ——w, +38, of order uz for small u. To leading order in
u, me obtain

fi=wi w—«+ f [w,'(8)Go(q) —w'(8)Go (q)]q

——,oi f [w, (8)Go(q) —w (8)Go,(q)]q,'q'

——,'.
„ f [w,(8)G.(q) —w (8)G~]q',q'. (4.34)

We no« that (wi —wi, ) goes to zero hnearly with hT and
After the integrals in Eq. (4.27) are performed, f&

can be written

I~ i = f q. qi(Kiqi+K2qz'+Ki2q. 'qi} '
From these equations, me obtain

(4.28)
fi ——(w~ wi,—)+AoB (4.35)

for d ~ 8, where Ao is a constant. Thus for d ~ 8, fi goes
to zero linearly in b, Tand bP. But, for 6~d ~8,

v I02&lzoi
h, =82,————

2 15Izo&+3I02& —2
(4.29}

Thus when v is nonzero, all potentials including the
third-order potentials m~, and m2, are nonzero. This is in
contrast to the liquid-gas transition where the unique
third-order potential is zero at the critical point. As we
shall now see, this leads to an upper critical dimension of
6 rather than 4.

Treating Eq. (4.23) as a self-consistent equation for f2,
we obtain

B=fi Bi —Bi,——+ —, f w~(8)q [Got. (q) —Go(q)]ZC

+ & f [w (8)—w, (8)]q"Go(q)

2U& Cs Goc q — 0 q

—6Ui f qi [Go.(q) —Go(q}1 (4.30)

where

(8)=—wi cos 8+w2 sin 8, (4.31}

Go(q) =(Bq, +Kiqj +K2q, +Kiiq, qi ) (4.32}

Go,(q)=Go(q 8=0) (4.33)

C. Higher-order vertex functions at the one-loop order

In this subsection, me mill discuss higher-order vertex
functions in one-loop perturbation theory. %'e begin with
the third-order vertex and find that it goes to zero linearly
in b, T and hP for d ~8. For d ~8, however, it goes to
zero as 8'" ' . The one-loop expansion of fi becomes

Equation (4.30} determines 8 as a function of 8, —8«
Above spatial dimension d=6, the right-hand side (rhs)
of this equation is analytic in 8, and 8 goes linearly to
zero with 8& —8~, or with AT and hI' since 8& is an ana-
lytic function of b, T and b,P. At the upper critical dimen-
sion of d, =6, the second term of the rhs of Eq. (4.30) be-
comes nonanalytic in 8 signaling a breakdown of mean-
field theory. Bemuse m&, and m2, are nonzero, it is clear
that the upper critical dimension d, is 6. If wi, and wq,
were zero, the rhs of Eq. (4.30) would become nonanalyt-
ic in 8 only below four dimensions.

fi ——(wi w—i, )+8 ( wiA +iwzAz) + (4.36)

%e are nom in a position to calculate critical exponents
for the critical point C using an e expansion about the
upper critical dimension of 6. As in the preceding section,
we will use the Hamiltonian H[u]. To simplify our cal-
culations, we rescale lengths and u so that

Ki ——1, E)2 ——1, E2 ——1 —c . (5.1)
The fourth-order potentials U; are irrelevant in the
renormalization-group sense near six dimensions and will
not be treated in detail in this article. U&, however, sta-
blizes the Hamiltonian at large values of V,u. It is, there-
fore, a dangerous irrelevant variable that will play an
important role in determining the behavior of the order
parameter along the coexistence curve, as will be discussed
in a future publication. The Hamiltonian with all relevant
potentials is thus

where e'=—d —6 and A i and A2 are nonzero constants im-
plying f& goes to zero at C more slowly than linearly in
hT and hP Th. e singular dependence of fi on 8 will, in
all probabihty, lead to non-mean-field behavior for the
shape of the coexistence curve and for the temperature
dependence of the coexisting order parameter M,+ and
M, . This question is currently under investigation.

Higher-order vertices can be calculated by differentiat-
ing Eq. (4.20) with respect to M, . The most divergent
contribution to f„is

f„=—,'( —1)" '(n —1)!f w,"(8)q "Go . (4.37)

In the absence of external fields, 82 is zero, and Eq. (4.32)
for Go(q) applies. There is no constant (or mass) term in
Go, and f„is infinite for all 8 (not just for 8=0) for all
d less than d~ =2n —1. Thus, f4 is infinite, in one-loop
perturbation theory, below 7 dimensions and fi below 5
dimensions. These divergences are direct consequence of
the rotational invariance of H and are analogous to coex-
istence curve singularities in Heisenberg ferromagnet.
When n =2, they lead to the nonanalytic properties in 8
and E~ discussed by Grinstein and Pelcovits. ' ' The
above considerations imply that an analytic expansion off„in powers of M, breaks down at order n for all d & d„,
even away from C, implying that extreme caution must be
exercised in calculating equation of state by matching on
to perturbative solutions.

V. THE e EXPANSiON

A. Recursion relations
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H= f hV, u+ , B—l(V,u) + —,'Bz(Viu) +—wl(V, u) + —,'wzV, u(V] u)
3t

+ —,[(V]u) +2(V,V]u) +(1—c)(V,u)2] ddx . (5.2)

We will now develop momentum shell recursion relations, requiring K] and K]2 to remain at unity at all stages of the
calculation. In order to satisfy this constraint, it is necessary to introduce an anisotropic form ' of the renormahzation
grou. I such that degr~ of fr~om with wave v~tor k ln the domain D lying b twin the unit sphere and the ellipsoid

2(r-'-q ] 2b ~] k, +b k]. ——1 with (b —=e ') are removed. Wave vector and fields are then rescaled according to

bk, , k,'=b iik, , u(b iik, , b 'k, -)=gzu'(k)
d +4++I

~

—
Qg

(5.3)

The resulting recursion relations are

dh(l) = [4—
2 (6+]M~~+'q])]h + 2 N]I2 4 1+TW2IO 6 1

dB](1) —(2 2]]4~~ gl)B] —Tw]I4 4 2
—T~W2IO s 2

—W]W2I2 6 2

dBz(1)

(5.4)

(5.5)

(5.6)

dEC)

dl
= —rl] E](1)—R (1)wz,

dK]2 1 2 2=( —2@[)—rlJ, )&]2——,[R(2)w]+R(3)wz+R(4)w]wz] y

d(1 —c) 2 2=( 4@~~ rl—] )(1——c)—[R(5)w 1+R(6)wz+R(7)w]wz],

(5.7)

(5.8)

(5.9)

2p~~ 2 gJ )wl+w]R(8)+wlwzR(9)+w, wzR(10)+wzR(11) (5.10)

=( 2 & 2]]4~~
—

2 gl)wz+R(12)w]wz+wz R(13),

where the coefficients R (p) are listed in Appendix C as functions of the integral

(5.11)

q'n (2n) (Blq, +Bzq] +q4 cq, )I'—
The constraints that E& and K~2 remain unity yield

(5.12)

rl] ———R (1)wz,

]u~
~

= —,
'

I
—R(2)w]+ [2R (1)—R (3)]w2 R(4)w] wz—I ~

Then the remaining recursion relations for Bl, c, w], Wz can be written as

1 1 2 2 1 2 22B]+TB][R(2)w1+R(3)N2+R( )wl w2] z w]I4, 4, 2 YW2Io, ]],2 w]w2I2, 6, 2 ~

d82 2 2 2=2B2+B2R(1)wz ——,wzI2 6 2,

= [R(5)—(1—c)R(2)]w ] + [R(7)—(1—c)R(4)]N]wz+ I R(6)+(1 c)[R (1) R(3)]j w—z, —

2 &wl + w ][,R(2)+R(8)]+w lwz[ —,R(4)+R(9)]+wl wz[ —,R(3)——,
' R( I ) +R ( 10)]+wzR( 1 1)

=Tewz+ —,wlwzR(2)+wlwz[ —,R(4)+R(12)]+wz[ , R(3)+ —,R—(1)+R(13)].

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)
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In Eqs. (5.15} and (5.16), we retained only terms up to
linear order in Bi and B2.

Before analyzing the nontrivial fixed point in Eqs.
(5.16) to (5.20), we should recall how many relevant opera-
tors the fixed point must have in order to describe the
critical point C. Since three parameters, qo, T, and I' are
varied to reach the critical point, there should be three
relevant potentials. In the case of the liquid-gas transi-
tion, there are also three relevant potentials: the linear and
quadratic potentials (the analogue of h and Bi} and a
third-order potential w. The third-order potential is
redundant operator with an exponent identical to that
[= —,(d —2+g)] for the order parameter. In the present
case, we must remember that the Ward identity Eq. (4.14),
fi i =f,'"=0 imposes a constraint on a relevant potential.
We, therefore, expect that the critical point describing C
to have four rather than three relevant operators: h, two
linear combinations of Bi and Bz, and one operator com-
ing from the third-order potentials w, and w2.

There is clearly a fixed point with wi ——wz ——0. This
has two relevant third-order potentials (i.e., two positive
eigenvalues of order e) and is thus not a candidate for
describing C. We have located a fixed point with w2 ——0
and wi &0; this fixed point also has two positive eigen-

I

Im, m, p
= I 4 de+0(&), (5.20)

(1—ccos 8)i'

where E~ = I (5/2)(2n. )

Equations (5.17} to (5.19) determine the three fixed
point p«enti»s wi, w2, and c'. Equation (5.17) is a
homogeneous function of w, and w2 and can be rewritten

dl
=wi I [R(5)—(1—c)R(2)](wi/w2)i

+ [R(7)—(1—c)R(4)](w, /w2)

+R(6)+(1—c}[R(l)—g(3)]I . (5.21)

At the fixed point dc/dl =0, and Eq. (5.21) can be solved
analytically to yield (w&/w2) as a function of c. From
Eq. (5.18) and (5.19), we can obtain a linear combination
w2(dw i Idl) w i (dwz/—dl):

values. There is no fixed point with w i ——0 and w2&0 as
can be seen from Eq. (5.19). We, therefore, seek a fixed
point with wi -wz -e', c*—1, and Bi -e implying
gi -e and p~~ -e. Thus, in the search for fixed points B„
82, and pll can be set equal to zero in the integrals I
And we have

dw i dw2—w, =w', I[——,'Z(2)+Z(8)+Z(1 l)](w, Iw, )'+[-,'Z(4)+Z(9) —Z(12)](w, Iw, )'

+[—,'R(3) —R(1)+R(10)—R(13)](wi/w2)I . (5.22)

c*=0.9628, w2 /w i = —0.7680 . (5.23)

These results can now be used in Eq. (5.18) or (5.19) to
yield

The right hand side of this equation is zero at the fixed
point. With (wi/wz) expressed as the function of c ob-
tained from Eq. (5.21), c' can be determined numerically:

—1/2
P2 x3 =& 3'3

—]/2
X4

(5.28)

where summation over repeated indices is understood.
The eigenvalues of M p are the stability exponents
A~(p =1,2, . . . , 5). They are most easily calculated with
the change of variables

w i
———1.4283(E&/2m )'i e'i2,

w2 —1.0970(E, /2m)'i e'i (5.24)
In terms of these variables, we have

4(x~ =25N iX~ +25~iX ~ +0~@Xp . (5.29)

0.0364m, P ll
——.0.2679m

From Eqs. (5.15) and (5.16), we obtain

a', =0.2569~, S2' =0.0439~ .

(5.25)

(5.26)

aI „,IaB, = pr +,„,+, , —

dI „pIdBi pI———
aI „,Iac=pr

(5.30)

(5.31)

(5.32)

The components of the matrix a~p can be calculated using

and are listed in Appendix D.
It is clear from Eq. (5.28) that the exponent A, i

——vi
'

and A,2 associated with x] and x2 are 2 plus corrections
of order e. The other three exponents A,~=ere~, o.=3,4, 5,
determined by Eq. (5.28) are of order e. This allows us
to decouple x& and x2 from x3,x4, and x5 to obtain

B.Fixed-point stabiIity and criticaI exponents

The recursion relations of Eqs. (5.15) to (5.19) can be
linearized about the fixed point of Eqs. (5.23)—(5.26) to
yieM the matrix stability equation which determines the
critical exponent vz and crossover exponents . %'ith the
change of variables, y i ——Bi

—Bi, yz =B2—B2,
0 4 ~

p] =N) —N2, g2=N2 —l82, and g3 =c—c, the stab111ty
equation can be expressed in the matrix form

A. i
——2+0.7490m= vg ', v] ——0.5 —0.1873m,

X2 ——2 —0.0769m .

(5.33)

(5.34)dp'~ =A~py (5.27}
We note that from the structure of recursion relations,
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Ar —
2 (d —2+pi+31M~~)—:to, (5.35} VI. SCALING NEAR THE CRITICAL POINT

A, &
——3.6776e, A4

———1.7400e, A5= —1 0000. e . (5.36)

%e close this section with some observations about the
calculation of the exponent A,„associated with theII )

dangerous irrelevant variable ui. A,
„

is —2 at d =6. To
IP)

calculate order e corrections to U&, it is necessary to treat
simultaneously all fields with exponents equal to —2 at
1=6. These include not only fourth-order potentials ui,
u12, and u2, but also the potentials associated with third-
order terms with six gradients of the form (V,u)(V, u),
etc. There are at least eight such potentials making the
calculation of order e calculation to ui a formidable task.

where co is the order-parameter exponent governing the
flow of M, (l)=e"'M, (0). Thus, the field associated with
A, 2, like the third-order potential in the liquid-gas problem,
in a redundant operator. The detailed calculations lead-
ing to Eq. (5.35) are shown in Appendix E. The other
three exponents are then the eigenvalues of the matrix
ea p which were calculated numerically:

5h =at, b, T+bgbP, (6.1)

t =a,hT+b, hP, (6.2)

g =aghT+bghP . (6.3)

All other potentials have finite values at C. The singular
parts of nth-order vertex functions satisfies

The analysis of the previous section leads to scaling
forms for vertex functions near the critical point. There
are three relevant fields 5h =h —h„t, and g associated
with three positive exponents A, I, and v apd A, 3. t is
essentially 81, but includes order e contributions from 82.
g is a linear contribution of wi, wz, and c. As discussed
in Sec. III, the critical point can be reached by controlling
two parameters, say temperature T, and pressure (concen-
tration) P. All relevant variables must be zero at C, and
we expand 5h, t, g to linear order in 5T and hP:

r ll+ A l
(6.4)

where tu is the order parameter exponent given in Eq. (5.35). In addition, the wave-number-dependent two-point vertex
satisfies

(6.5)

where we have dropped dependence on ui. With e ' =
I
t I, these equations imply

f....g= It I
(6.6)

(6.7)

where X„is a scaling function and where

P= cuvi ——1 —0.4145eer,

Pi =A, ivy ——1.8388m r,

7 =(2—rI1. —21Mii)vt
——1 —0.6617e .

(6.8)

(6.10)

where

6:—A, I, vg
——2 —1.0751' (6.15)

with A,g=(d+p~~ —co)=4—0.6522e. This equation can
be solved for M, to yield

The correlation lengths parallel and perpendicular to the
layer normals are

(6.11)

(6.16)

where Y, is an as yet undetermined scaling function. Fi-
nally, the displacement correlation function satisfies

with

f1=f1,reg+f1, sing =0 '

5h is {—f1 „g) so that

(6.13)

v~~ =(I+p~~)vi ——0.5 —0.0534e .

As C is approached, g I
t

I

' goes to zero, and will only
contribute corrections to dominant singularities. %'e will
therefore, drop g in our discussion to follow.

M, is determined by the equation of state

G„„(q)=e

XX„„(e" t, e g, e M„e qi, e q, ) .&
—

llew A3l l4 lie' (1+@~I)l

{6.17}

We can now discuss routes to C not crossing the coex-
istence curve. The line Ms =0 is the analogue of the criti-
cal isochore of the liquid-gas transition. Along this line,

(6.14) f2{q}=
I
t

I 'f2{q((4'(( qi4i } (6.18)
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and the physical compressional constant 8 goes to zero
as

~

t
~

r. In addition, the specific heat C for the con-
stant layer spacing

(6.19)

Eq. (6.30) and methods discussed in Ref. 35, we find

g' '(xi+0,z =0)-
(
x

~

g (xi =O,z+0)-z(2) 3—
g( )

—2/(2+ pt (
)

(6.32)

(6.33)

diverges with exponent

hz=2 —(d+p~~)vi = —1+1.14898' (6.20)

as
~
x ] ~ oo . We note that the strongly nonanalytic form

of g"'(x) makes it difficult to perform the Fourier
transform of G(x). Presumably, it will be highly aniso-
tropic and approximately Lorentzian-squared in shape.

5h /t[ a- /bT/' 00, (6.22)

8- ~hT ("~a

i
gT

i

(r P)th

C, —
~

~T ~-r",

(6.23)

(6.24)

(6.25)

(6.26)

Thus, the singularities are less violent along this line than
they are along M, =O. Note, however, that f& is still
divergent.

At the critical point, 5h, g, and t are zero. Then from
Eqs. (6.5) and (6.17), the two-point vertex function yz(q)
and tt —u correlation function G„„(q)satisfy the homo-
geneity relations

fz(q) =b ' " fz( qi »
Gg~(q) =b X~I(bqi b Iiqll) .

With b =qi ', these equations imply

(2—2g& —2p
~ I
)- '+~ti

fz(q) =ql f2(q~~ /q~

G„g(q) =b "'X„g[(b Iiqg )

—(4-~,), 2(~+pI~)=qi ' X„„(q,/qi )
—(4—

q( t
}, 2( I+p

I (

)
=q, X„'„(qi /q, )

(6.27)

(6.28)

(6.29)

(6.30)

where fz, X„„,and X„'„arethe scaling functions and

n((=(vi+4) ii)/(1+&ii)='»60'. (6.31)

Note that with this form of rt(~, y=(2 —
g)~)v~( The func-

tion X„„(x)and

tend to constants as x~0. The large
~

x
~

function g~zi(x) controlling the smectic-order-
parameter correlation function can be calculated, using

obeying anisotropic hyperscaling. The third-order vertex,

(6.21)

diverges as
~

t
~

~0 since y —P= —0.2462m~0. This is
in contrast to the liquid-gas case where fi goes to zero
(since y —P~ 0).

The line M, =O, unlike the critical isochore of the
liquid-gas transition, is not a natural or easy path to fol-
low experimentally. A much easier approach to C is
along the critical concentration (or pressure) line (hP =0).
In this case

VII. CONCLUSIONS

In this paper we developed a nonlinear elastic model to
describe the critical point C terminating a line of coex-
istence of two smectic-A phases with different layer spac-
ing. This model is universal in that it applies regardless
of the microscopic origin of the SmA-SmA' phases. It
should apply, for example, to SmA-SmA' consolute
points that are likely to be found in polymeric binary mix-
tures. Mean-field theory for this model is identical to
mean-field theory for the liquid-gas transition. Critical
fluctuations, however, lead to a breakdown of mean-field
theory for the compressibihty below an upper critical di-
mension of 6 rather than 4. In addition, deviations from
liquid-gas mean-field behavior are expected below 8 di-
mensions because of one-loop nonanalyticities in the
third-order vertex. We derived renormalization-group re-
cursion relations and located a fixed point with the
correct number of relevant potentials to describe C. To
first-order in e, exponents for this fixed point predict an-
isotropic scaling with different correlation length ex-
ponents v~~ and vi for directions parallel and perpendicu-
lar to the director. In addition, the third-order vertex is
predicted to diverge at C.

We believe that the fixed point we have located in 6—e
dimensions evolves continuously as dimension is lowered
to one which describes the experimentally observed criti-
cal point in three dimensions. If so our analysis leads to a
number of predictions that should be valid in three dimen-
sions. The most salient prediction is that the compres-
sional elastic constant 8 vanishes at the critical point in
exact analogy with the divergence of the bulk compressi-
bility at the liquid-gas critical point. Indeed preliminary
experiments do reveal a sharp drop in 8 in the vicinity
of the critical point, but no exponents have yet been ex-
tracted. The specific heat Cp at constant pressure and 8
along the critical pressure line yield the exponent y/b, .
Along the critical isochore, which can be determined in-
dependently by measurements of qo(P T) Cp and 8
yield the exponent y. In general the product Cz8 should
be independent of temperature as the critical point is ap-
proached. The constant layer spacing specific heat C~
has a singularity determined by the exponent a. An ex-
periment measuring C would be of some interest. The
exponent rli vi can be determined, in principle, from the
divergence of K& (-t ' ' on the critical isochore and—g~ v~/b,-t ' along the critical concentration curve). It
should be noted that the divergence of Ei is a characteris-
tic feature of the SmA-SmA' critical point not found, for
example, at the nematic to smectic-A (N-SmA) critical
point. Unhke the case of the S-SmA transition, x-rays do
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not couple directly to the order parameter so thai the x-

ray line shape does not provide a direct measure of the
correlation length exponents vtI and v&. Nevertheless, x-

ray experiments in the vicinity of C should be interesting
in that they might show the crossover in intensity from
power law in wave vector to nonanalytic size dependence
as il, passes through one. Since the amplitude of the
smectic modulation is finite at C, there may be more hope
of seeing this crossover than in the vicinity of the N-Sm A

transition where the amplitude approaches zero.
The coexistence curve and b,qp are of some interest and

have been measured experimentally. Unfortunately we
have not been able to calculate either the shape of the
coexistence curve or the order parameters along it. The
calculation of these quantities is both subtle and complex.
All nth-order vertices with n )4 are infinite in one-loop
order perturbation theory throughout smectic phases
when d &7. Such infinities are analogous to coexistence
curve singularities in Heisenberg ferromagnet and must
be treated with great caution in calculating the equation
of state. The dangerous irrelevant potential U, will play
an important role in determining the shape of the coex-
istence curve. It is one of at least right potentials with ex-
ponents of order 2+O(e)—and calculation of its dom-
inant exponent will be difficult. Nevertheless, we hope to
have some predictions about the shape of the coexistence
curve and the order parameters along it in the near future.

APPENDIX A: WARD IDENTITIES

This uniform rotation transforms the phase
qp[u(x)+np x] to qp[u(x')+np x']. This transformation
can alternatively be interpreted as a change of the dis-
placement variable u(x') to u'(x) such that
qp[u'(x)+np. x]=qp[u(x')+np x'] or

u'(x)=u(x')+x (Rnp —np) .

The elastic energy is invariant under Eq. (A2) since

E(u'(x)) —=V,u'(x)+ —,
'
[Vi u'(x)]z

=V', u(x')+ —,
'
[Vi u(x')]

=E(u(x') )

(A2)

(A3a)

In this appendix, we derive %ard identities due to the
invariance of H, under the rotation x'=R;J 'x ~here R;~
is a rotation matrix. The interesting rotations are those
about an axis perpendicular to np (the z axis), that rotate
np in the (z —l) plane where l is a direction perpendicu-
lar to the z axis. In this ease, the component of R;1 in the
(z —l. ) plane for a rotation through angle 8 are

eos8 —sin8

sin8 cos8 (Al)
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H, [u(x)]=H, [u'(x)]

=H, [u(R 'x)+x.(Rnp —np)] . (A4)

Then the partition function Z(h„hi ) in the presence of a
constant external field h, =(h„hi ) satisfies

Z(h„hi)=f Du(x)expIH, m[u(x)]]exp f [h, V,u(x)+hi Vi u(x)]

= f Du'(x)expIH, [u'(x)]]exp f [h,V,u'(x)+h, V, u'(x)]

= f Du(x')expIH, [u(x')]Iexp f 'h, [V,u(x')cosO+sinOViu(x')]
T

)& exp f h & [Viu(x')cosOrniV', u(x')sinO] expI V[(cosO—1)h, —hi sinO] I

(A5a)

(A5b)

(A5c)

=Z[(cosOh, —sinOh i ), (cosOh i +sinOh, )]exp I V[(cosO —1)h, —h i sinO] I (A5d)

(A6a)

Then using Eq. (A5d), we have

where V is the volume of the system. By defining average order parameters M~= (V'; u(x')) and MI'= (V;u'(x) ), the
Legendre transformed potential can be written as

I [M,(x),M&(x)]= —inZ[h„hi ]+ f d x(h, M, +h&M~)

= —lnZ[(h, cos8 —hisinO), (hzcosO+h, sinO)]+ fd x(h, cos8 —hisinO)M,

d x hzcosO+h, sin8 Mz . (A6b)

I [M„Mi]= I [(cos8M, +sinOMi +cos8—1),(cosOM& —sinOM, —sinO)] . (A7)
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Since the right-hand side of this ~nation is independent of 8, BI /88=0, and when 8=0,

Mi —(Mg+ 1) =0BI BI

z J.

which can be expressed in terms of f,""as

Miff" (M——z+1)fi" .

Differentiating Eq. (A9) with respect to Mi and using the equation of state, f,'"=0, we obtain

in equilibrium in the absence of the external field.

APPENDm 8:ONE-I.OOP CONTRISUTION TO I'"t,'X)

One can express I' '(k) as

I'2'=Bik, +82ki+Kiki+K2k, +2Ki2k, ki —X' '(lt),

where X' '(lt) is given as

X'2'= ,'wik, —fq, (k, +q, )2G(q)G(lt+q)+ ,'w2—k, J [q& (ki +qi )] G(q)G(q+lt)
q

2
q

+w2kz;kij f (k, +q, ) qz;q&, G(q)G(q+k)+wzkj;kz; f (k, +q, )(ki;+qi;)q, qiJG(q)G(q+)8)

+2w2k, k„Jq, (k, +q, )q,(k„+q»)G(q)G(q+k)+w, w, k,' J (k, +q, )q,q, .(k, +q) G( q) G( q+k)
q

S l I S

+2w&w2k, kz; J (k, +q, ) q, qz;G(q)G(q+k)mi ,' uik, J—q,G(q)mi 6ui2k, J q&G(q)2
q q

——6ui2kz q, G(q) ——,u3 +1 kz q&G(q),2 2 2 2 2

q d —1 q

which is calculated by the Feynman diagrams shown in Fig. 3.

(A10)

(82)

APPENDIX C: COEFFICIENTS R {p)APPEARING IN EQS. (5.7)—(5.11)

8 24 96II(1)= —
s I2,6,3

—
ss I2,8,3+ ss I2, 8,4 ~

8 28 (2)= I4 4 3 + s I4 —6 4 —TI4 6 3

[ 2 I0,6,2 9I0,8,3 2I0, 10,3 +SIO, i0 4 ~I2.6,3+ (72C 8)I4,6, 3+32I4,6,4+ 32C I8,6,4 64CI6, 6,4
1 3

—16I2 8 3+64I2 8 4 64cI4 8 4]—
1&(4)=—( —30I2 6 3 4I2 8 3 +16I2 8 4 —16I46 3+64I4 6 4 64CI6 64)

2 I2,4, 2 5 4,4, 3 (2 7C)I6,4, 3+SI6,4,4 16CI8,4,4+Sc Ii0,4,4

+ (6)= —IO 8 3
—(2—3C)I2 8 3+SI2,8,4 16CI4 8 4+SC I6 8 4

R (7)— 6I2 6 3 (4—10c)I4 6 3 + 16I4 6 4 + 16c I8 6 4 32CI6 64—
R(8)=I6 4 3

8{9)=3I46 3,
8 (10)=3I2 8 3

R(11)=I0 i0 3,
R(12)= s I46 3

R(13)=—,I283 .

(Cl)

(C2)

(C3)

(C4)

(C5)

(C7)

(C9)

(Cl 1)

(C12)

(C13)

APPENDIX D: MATRIX ELEMENTS a s IN EQ. {5.29)

a» ——Iwi [—,'8'(2)+I643]+w2 [—,'R (3)+I283]+wiw2[ —,'R(4)+2I463]je '=0.5810, (Dl)
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a12 (wl I4, 6,3+2wl N2I2, 8,3+N2 I0, 10,3)e

a21 ——( —,w2 I46 3)e '=0.1290,

a22 ——( —', w2 I2 S 3)e '=0.0911,

(D2)

(D3)

(D4)

a33 ——
I —,'e+3w*, [R'(S)+ g R'(2)]+w2 [——,R (1)+R'(10)+—,R'(3)]+2NI w2 [R'(9)+—,R "(4)]Is '=2.5073,

(D5)

a34 —IN1 [R '(9)+ —,R '(4)]+3N2'R ( 11)+2wI wz [—', R*(3)——,
' R*(1)+R'(10)]]e '=4.5664

., aR'(S) 7 aR'(2) .. . aR'(9) 7 aR'(4)
ac

+
8 ac

+
ac

+
8 ac

M'(ll), M'(10) 7 aR'(3) 1 aR'(1)
ac 8 ac 4 ac

a43 ——Iw2 [R(12)+ 8R(4)]+—,'wIw2R(2))e '=0.2821,

e ' =24.6859, (D7)

(DS)

a44 ——I —,'e+N1 [—', R'(2)]+3N2 [ ,'R'(1)—+—,'R'(3)+R'(l3)]+2wIN2 [—',R'(4)+R'(12)]}e '= —0.6327, (D9)

, M'(2), , M (12) 3 a*R( ) aR'(13) 3 aR*(1) 3 aR'(3) —1.5

=3.93745, (D10)

a53 ——I2NI [R'(5)—(1—c')R'(2))+w2 [R'(7)—(1—c')R'(4)] Ie ' =0.1212,

a54 —— 2N2 tR'(6)+(I —c')[R'(1)—R'(3)]I+w1[R'(7)—(1—c')R'(4)] e =0.1577,

a55 —— N2 [R (3)—R (1}]+w1 R (2)+w1N2R (4)+NI —(1—c )
III 2 «2 « « « « «2 aR'(2)

ac ac

(Dl 1)

(D12)

., aR'(6), , a'R(1) M'(3)
ac

M '(7) 1, aR '(4)
+f8) N2 —1 —c'

ac ac
e '= —0.9175 .

(D13)

APPENDIX E: DERIVATION OF EQ. {5.35)

d w2(1} w, (1,8)w&

dl
= I «—

3P~~
—3'QI}N2+ 0 [1+8(1

where J =(2Ir} 6 JdQ and

Ng —=[N1 (l)cos8+ N1(l )sII18][1—c(l)cos 8]

NI = Ii2 N2(l)cos8sII18[1 —c(1)cos 8]51/2

8(1,8}—=[8,(l)cos28+82(1)sin28][1 —c(l)cos 8]

Thin the stability matrix for 8~ and 82 becomes

Recursion relation of 81(l), 82(l), w1(l), and N2(l) can be written in the following compact forms:

d81(l } Ng

dl
=(2—

2p~~ Ilz )81(l)m—i—,
'

n [1+8(1,8)]'
d82(1) Ny

dl ' n [1+8(1,8)]
=(2—Ilz)82(l)mi z

n [1+8(18}]' '

(1,8)
8)]3

(El)

(E2)

(E3)

(E4)

(E5)



YQUNGAH PARK, T. C. LUBENSKY, P. BAROIS, AND J. PROST 37

5(8;—8 )

dl
= g&,J(&,(1) —&,*) (i =1,2), (Es)

where the matrix element can be written in the following form:

w,
' (8)cos 8

311=2—2J II
—ql+

1 —e*cos 8

to,
' (8)sin 8

A)2 —— " 1 —c'cos 8

toi (8)cos 8
A2) ——

& 1 —e't.-os4e

wi (8)sin 8
~22=2 —nj. + + 1 —c*cos 8

Since the order-parameter exponent is co=(d —2+rli+3)Lt~~)/2, the difference between to and 3» becomes
T

to,
' (8)cos 8 1 dto& to, W,

'
COS 8=—,

'
( — — )+ 'fry l

4 +
1 —c'cos 8 wi &1 n 1 —c'cos 8 " 1 c'co—s"8

~42
Wp Wg W2

=ml A )2
W&

~ 1 —C COS W~

where we used the recursion for tot in Eq. (E3). Similar calculation shows

W)
322 —co=ml A2~ .

W2

Hence the matrix A,
&

can be expressed as A;1 =52;J +to5;J with

A2)

(E10)

(El 1)

(E12)

(E13)

(E14)

5A" —=A" —w5" =
JJ 1J iJ —A2iioi (toq )

(E15)

Since 5A;~ is the matrix whose second column is a constant times the first column, one of its eigenvalues must be zero.
Hence one of eigenvalues of the matrix A;J must be equal to co, which proves the statement Eq. (5.35).
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