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The existence of thermal conductivity is examined for a one-dimensional chain of Lennard-Jones
particles, using techniques of equilibrium and nonequilibrium molecular dynamics. The transport
of energy by soundlike pulses is related to the anomalous fluctuations of the heat flux in this model.
Equilibrium time properties are governed by two time scales which can be measured. The effects of
modifications to the original model are also examined: particles having different masses, eventually
with different interaction potentials or under the influence of an external sinusoidal field.

1. INTRODUCTION

One-dimensional systems have always been the object
of much interest in statistical mechanics. They provide
simple models where complex phenomena can be ana-
lyzed in a precise way. This has also been the case for
numerical studies; one of the first reports on molecular
dynamics concerned the energy sharing among normal
modes in a linear assembly of anharmonic oscillators.!
From the point of view of molecular dynamics, one-
dimensional systems are interesting for their low compu-
tational cost. Indeed the processing time needed to in-
tegrate the equations of motion increases as the number
of particles, instead of its square in higher dimensionality.
Numerical models with relatively large sizes can then be
studied. They could be used, for example, to test the ex-
istence of long-range correlations in nonequilibrium
states, a theoretical prediction? which has been difficult to
confirm experimentally.’ This was our motivation when
we considered first the one-dimensional Lennard-Jones
(LJ) chain.

However, the very existence of thermodynamic behav-
ior is questionable in one dimension. Early studies of
linear assemblies of harmonic oscillators* have shown
that these models, although not dissipative, are able to
spread initial disturbances at long times. The change in
the spectral properties due to differences in the masses of
the particles has also been examined.” The presence of
anharmonic forces is known to be a necessary condition
for dissipativity since the classical work of Peierls.® In
one dimension, however, terms cubic in the anharmonici-
ty are not sufficient for having finite transport coefficients
and it can be argued that quartic terms, allowing four-
phonon interactions (Umklapp processes), can bring dissi-
pation in such models; there has always been, however,
some doubt on the existence of thermal conductivity in
one dimension,” and these doubts have been reinforced
since the discovery of long-time tails in fluids and its ex-
planation by mode-coupling theories.®

Numerical work, on the other hand, has been mainly
devoted to the study of ergodic properties. For instance,
Ford® found some explanation for the nonsharing among
energy modes in the Fermi model. Other one-
dimensional models did show equipartition provided the
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nonlinearity was strong enough.!® The continuous limit
of these nonlinear models has permitted to study the en-
ergy transport due to solitary waves.'"!2 In the one-
dimensional Lennard-Jones system, a transition was
found from ordered to stochastic trajectories.!* That
transition occurs at an energy per particle of a few per-
cent of the well depth of the interaction potential energy.

More recently, Gillan and Holloway have examined
the thermal conductivity of a one-dimensional undamped
Frenkel-Kontorova model,'* and they found a finite
thermal conductivity, both by equilibrium and nonequili-
brium molecular dynamics. The same was also found for
a model consisting of hard rods on a line, 1 out of 2 of
them being harmonically bound to a line node'’ (the ran-
domness of the trajectories of this model lead the authors
to propose to name it the “ding-a-ling” model). This last
model did show a transition from near integrable to sto-
chastic behavior as the frequency of the harmonic link is
increased. In the ordered region, transport is mainly due
to the solitary waves, whereas in the stochastic region
diffusive behavior is observed. Let us also mention the
work of Mokross and Buttner,'® who have studied a one-
dimensional diatomic Toda lattice by nonequilibrium
molecular-dynamics methods: They found a linear tem-
perature profile in nonequilibrium steady states, leading
therefore to a measure of the heat conductivity. Howev-
er, they did not compare their results to equilibrium mea-
surements.

The presently reported work is concerned with the ex-
istence and measurement of thermal conductivity in a
linear assembly of point particles interacting through the
Lennard-Jones potential and should be considered as a
phenomenological approach to this question. The densi-
ty of particles is such that each particle, on the average,
is at a distance corresponding to the minimum of the in-
teraction potential so that it can be compared to an
anharmonic chain. We used the techniques of nonequili-
brium molecular dynamics, described, for instance, in
Ref. 15, to observe how the system responds to an exter-
nal constraint like thermal boundaries. Although the
temperature profile measured on the system is linear and
thus a conductivity can be measured, the fluctuations in
this model look anomalous. We then turned to equilibri-
um measurements in order to observe if the fluctuations
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of the heat flux could lead to dissipative (that is rapidly
decaying in time) Green-Kubo integrands, as in the mod-
els studied in Refs. 14 and 15. An unexpected and in-
teresting result is that the computation of the heat-flux
correlation function shows a very slow decay in time,
leading therefore to a divergence in the transport
coefficient. We suggest to relate this behavior to the per-
sistence of excitations in the model that propagate for a
very long time before they are damped. As this has not
been observed in, for instance, the ‘“ding-a-ling” model,
one can conclude that the dimensionality of the present
model is not the only reason for the nonexistence of nor-
mal transport. The question that we have tried to ana-
lyze then is to characterize the mechanisms that allow
the validity of the Fourier law in some one-dimensional
models. Our approach has been intuitive and we have
tried some modifications to the original model in order to
make it more dissipative. This led us to consider the
presence of impurities or that of an external field. This is
described in more detail in the article itself, together with
a discussion on the reasons for these modifications and
the results obtained.

The article is organized as follows. The model is
presented in Sec. II, together with the basic definitions re-
quired. In Sec. III we report on the nonequilibrium ex-
periments; a brief description of the technique is given
and then the results are presented. Section IV is devoted
to the presentation of the equilibrium properties of the
various models. These are discussed in Sec. V, together
with some conclusions.

II. THE MODEL

The system consists of N point particles moving on a
line of length L, whose curvature is neglected although,
the system being periodic, it closes on itself. The total
energy of the particles is

N
H=73 [mp}2+13Vix;)]|, (1)
i=1 i
where m; is the mass of the ith particle, v, =dx; /dt its ve-
locity, and V(xij ), the potential of the interactions forces,
is of the Lennard-Jones type:

V(X,'j)246[(U/Xij)12—(0/xij)6] . 2)

In the simple model, all masses are taken to be the
same, m. As usual,!” we choose units in which € is 1, o is
1, and the mass m is equal to 48. The equations of
motion for the system are numerically solved with the
Verlet algorithm;'® in our units, the time step is taken to
be 0.032, which corresponds to one hundredth of a “col-
lision” time. The system is divided in cells containing
typically 10 particles. In these cells, one measures parti-
cle and energy densities as local time averages. We have
also measured the velocity distribution function, and, in
particular, its second moment is related to the tempera-
ture through

3 mv2/2
i€a

> 1

i€Ea

(kpT,/2)= '

M. MARESCHAL AND A. AMELLAL 37

The summation on particles i extends over all the par-
ticles which belong to the cell @, and the right-hand side
of Eq. (3) is the ratio of two time averages. This
definition has been used in nonequilibrium stationary
states to measure the temperature profile in the chain.

Another quantity of interest is, of course, the heat flux.
The energy density is defined as usual as

N
e(x,N=73 [mp?/2++3 Vix;) |d(x;()—x). 4
i=1 J#i

We then derive the energy density with respect to time in
order to find the local conservation equation

dJ,(x,t)
de(x,t) 4 q

:O . 5
dt dx >
One easily finds the form for the heat flux:
N
J(x,0=3 v; [mp?/2+1 3 Vix;) ]5(x,-<t)~x)
i=1 i#]
s dV(xij)xijvia x,-j—d—
by’ dx;; dx
X8(x;(t)—x), (6)

where a(x)=(e*—1)/x. We are interested in the hydro-
dynamic contribution to this quantity; that is we consider
distances which are great with respect to the interatomic
distances. In this limit, we expand the a operator, and
we are left with

1 j#i
ij
s T 7
AL 2 ax, il @

for the total heat flux of the system. Notice that no mass
flux has to be removed, as the total momentum is fixed in-
itially to zero. It is interesting to note that this heat-flux
definition is not modified by the presence of an external
field:

N
Via= 2, Vocos(2mx;/a) , (8)

i=1

where a is set equal to 2'/%, the average mean distance be-
tween particles, which is equal to L /N.

III. NONEQUILIBRIUM RESULTS

In order to maintain the system out of equilibrium, two
opposite cells are chosen on the chain which will act as
reservoirs. The velocities of the particles which belong to
these cells are rescaled so that permanently the tempera-
tures of these cells, as defined by Eq. (3), are fixed and
different one from the other. As the algorithm is a
second-order centered difference, involving only the posi-
tions and not the velocities, this scaling is introduced via
the modification of the previous position of the particles
belonging to the reservoir cells.
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The systems considered consisted of 200 particles.
They were put initially at an equilibrium distance one
from the other and given velocities randomly chosen in a
Gaussian distribution corresponding to an arbitrarily
chosen temperature. In all the runs, the lower tempera-
ture was always set to 1, kz 7| =1, in energy units where
€ is 1, whereas the higher temperature was successively
set to kg T,=2 and 20. The system is then integrated in
time until a stationary state is reached for the tempera-
ture profile. This transient lasts for about 10000 time
steps. Then one measures the cells’ temperature and
number densities. We show the measurements of the
temperature and density profiles for two different im-
posed temperature gradients in Figs. 1(a) and 1(b). The
resulting temperature profile is linear with a temperature
slip at the reservoirs, similar to what has been observed
for fluids of higher dimensionality in similar experi-
ments.! However, the temperature slip is much more
important. In Table I we give the imposed temperature
difference as compared to the measured one. The ratio of
the imposed temperature gradient over the measured one
is around 4. The local number density also varies and
seems to be in equilibrium with the local temperature so
as to maintain a constant pressure. We also show the ve-
locity distribution function for two cells which are cen-
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FIG. 1. Temperature and number density profiles in the
nonequilibrium runs. Each point is the average of the two op-
posing cells which are symmetrical with respect to the con-
straint (X, AT=1; 0, AT =19).
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TABLE 1. Effective vs imposed temperature gradients in
nonequilibrium simulations. The measured temperature
difference is calculated via linear fit. The heat conductivity is
calculated through the ratio of the mean flux to the temperature
gradient.

(AT/L )lmposed (A T/L )mcasured Tavr:rage A/kB
0.1 0.026 1.3 4.8
1.9 0.571 7.3 16.5

tral in the system, between the two reservoir cells. The
distribution is much affected by the nonequilibrium sta-
tionary heat flux which makes it asymmetric.

It is to be noted that another thermalization procedure
was first used: instead of considering an entire cell as a
reservoir, the thermalization consisted in the modifica-
tion of the velocity of particles crossing a fictitious
boundary. The sign of the velocity remained unchanged
but its magnitude was chosen in a Gaussian distribution
corresponding to the desired temperature. The effect on
the system was to modify the velocity distribution func-
tion, with a discontinuity at v =0. This is shown in Figs.
2 and 3, where we plot the velocity distribution functions
for the two thermalizations mechanisms. As a matter of
fact, the procedure which we previously used leads to
tremendous changes in particles velocities. So that it
often happened in the high-temperature reservoir, a large
amount of energy was introduced in the system and was
then transported without any mixing to the cold bound-
ary where it could be absorbed. This can be seen in Fig.
4, where the energy density is represented as a function of
space and time. The rescaled velocity is transported by
collisions which exchange the velocities, like in hard-rod
systems. The velocity distribution function separates into
two populations of velocities: the positive, which corre-
sponds to a high temperature, and the negative, corre-
sponding to a smaller temperature. This is reminiscent of
the behavior of gases in the Knudsen regime (that is, for
gases having a mean free path of the order of the dimen-

Fiv)

FIG. 2. Velocity distribution functions for the two central
cells. The velocity space has been divided into 20 intervals; the
function represents the number of particles in the given interval,
accumulated during the entire run.
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FIG. 3. Same as in Fig. 2, except for the thermalization
mechanism. Here thermalization is achieved by changing the
velocity of one particle at a time.

sions of the containing vessel) where no collision takes
place; here the collisions result in the transport of un-
changed momentum and energy, as for hard rods. Of
course, the relevant mean free path here is the phonon
mean free path which extends over many interparticle
distances. The one-particle velocity scaling is a mecha-
nism of thermalization which reinforces a pathology of
the model: disturbances can be transported without de-
formation across the system. This type of behavior was
shown to lead to solitary-waves transport (see Ref. 12).
On scales of the order of the phonon mean free path, the
local equilibrium assumption breaks down, and expansion
around two half-Maxwellian should probably be more
adapted. Indeed the measured moments of the distribu-
tion function do not satisfy the relations that Gaussian
moments do, as is the case for the other thermalization
mechanism.

With the cell thermalization mechanism, no such be-
havior was observed at the level of energy density or ve-
locity distribution function. The nonequilibrium results

FIG. 4. Energy density as a function of time (depth) and cell
position (front axis). Graph (a) is the kinetic energy density and
graph (b) is the potential energy density.
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suggest that, although the system seems able to propagate
solitary waves, it is also dissipative enough to produce a
temperature gradient opposing an external heat flux. We
also looked at the fluctuations of the kinetic energy per
particle per cell; a characteristic feature of these fluctua-
tions is that the results obtained needed a very long time
to stabilize, and that from one run to the other,
significant differences could be found, leading to very
large error bars.

IV. EQUILIBRIUM FLUCTUATIONS

In order to investigate if the capacity of the model to
transport energy in the form of waves does affect its equi-
librium properties as well, we also looked at its equilibri-
um fluctuations. Fluctuations of the kinetic energy are
related to the heat capacity?® in a microcanonical ensem-
ble, as are the fluctuations of the heat flux related to the
thermal conductivity through the Green-Kubo relation:?!

A=(1/NkT?) [ dt{J,(1)J,(0)) . ©)

Table II lists the equilibrium runs done for these sys-
tems and the heat capacities measured from the fluctua-
tions of the mean kinetic energy per particle. The values
of these are between the value of perfect gas
(C/kg=1/2) and those of harmonic oscillator C/kg
=1). However, it should be noted also that the measured
values did vary from one run to the other and that no
general trends could be seen as for the dependency on the
density or number of particles in the chain.

Most of the runs were done for a density N/L
=1/(2"/%) and for 200 particles. The initial state was
that of equidistant particles with velocities chosen in a
Gaussian distribution corresponding to a temperature
double of what should be reached; we set the temperature
equal to 0.7 and this corresponds to a state with approxi-
mately equal potential and kinetic energies. Some runs
were done for larger systems (N =1000), and smaller
densities. No number dependence could be seen in the
time behavior of the heat flux. This quantity is shown in
Fig. 5; each point of this graph is an average over 100
time steps, so that the figure corresponds to a run of
200000 time steps. Obviously, the flux does not fluctuate

TABLE II. List of the equilibrium runs done, with the
different sizes and types of systems used in the simulations. The
heat capacity is computed through the kinetic energy fluctua-
tions in a microcanonical ensemble.

N L N steps Masses Heat capacity
100 112 10 equal 0.84-0.8%p
200 224 8x 10° equal 0.84kp

1000 1120 3% 10° equal 0.84-0.91kp
200 224 7% 10° different 0.79-0.88kp
200 224 8x 10° equal® 0.86-0.98kp
200 224 8% 10° different® 0.79 g
100 112 108 equal®

2System with two different interaction potentials, one of every
four particles interacting through a repulsive force.
®System with an external sinusoidal field.
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FIG. 5. Heat flux as a function of time for the simple LJ chain. Each point is a time average over 100 time steps.

rapidly around O, its equilibrium value, but instead it has
rapid oscillations around a value which changes only
slowly in time. There are two time scales: one, of the or-
der of the relaxation time, corresponds to the rapid decay
of the flux around a value which varies on a second time
scale. This last time scale is so long that even with runs
of a million time steps, the average value of the heat flux
was not small compared to the mean-square deviation.
The correlation does not decay to zero on short times but
rather it remains large for times where the periodic
boundary conditions taken start to interfere. After the
fluctuating heat flux has propagated through the chain, it
becomes self-correlated and the decay is then very slow.
This long-time correlation is shown in Figs. 6; in Fig. 6(a)
we have plotted the time correlation function on a time
interval of 500 time steps. As can be seen, the decay is
rapid for short times and then becomes very slow. In
Fig. 6(b) we have plotted the long-time correlation func-
tion obtained by taking one point on 100; the time inter-
val considered is 100 000 time steps and it is obvious from
the figure that the correlation persists for a very long
time. We have tried to separate the short-time decay
from the longer time scale correlation. This is done in
Fig. 7; the correlation function is obtained by successive
Fourier transform of signals consisting of 64 (or 256)
values whose mean value has been subtracted. One can
then average the power spectra and Fourier inverse. This
technique is usually used to compute correlation func-
tions in equilibrium molecular dynamics and, of course, is
equivalent (but much less costly) to a treatment of the en-
tire signal (which can be 100000 points long). In our
case, however, because the existence of these two time
scales, we obtain a completely different result: One can
observe on short-time scales a rapid decay of the correla-
tion, which eventually becomes negative. On the con-
trary, for long times, the heat flux remains correlated.
This can be understood from Fig. 5, which shows the
time behavior of the heat flux: The average value of the
heat flux decreases to zero after a very long time; even

after 10°® time steps, its average is —2.4 and its mean-
square displacement is 10.5 (see Table III).

As we already stressed in Sec. I, another one-
dimensional model, the “ding-a-ling” chain, is capable of
displaying dissipativity in a very convincing way. There-
fore one would like to relate the existence of thermo-
dynamic behavior to elementary dynamical processes
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FIG. 6. (a) Heat-flux autocorrelation function for the simple
LJ chain (N =1000). (b) Correlation function obtained by tak-
ing one point every 100 time steps. The total time considered
here then corresponds to 100 000 time steps.
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FIG. 7. Short-time correlation function computed by the
average of several signals of 256 points. Graph (a) refers to the
equal masses case and graph (b) refers to the case with different
masses (1 and 10).

that are the collisions. In Sec. III we have shown evi-
dence of the propagation of excitations in the form of
soundlike pulses, as in a hard-rod system. The ‘“ding-a-
ling” model results from the addition of a chain of hard
rods and a chain of harmonic oscillators. Although sepa-
rately these models have too many constants of the
motion to show irreversible behavior, once they are
mixed the resulting dynamical behavior is very different
from the one of the original models; constants of the
motion of the ‘“‘unperturbed” models are destroyed in
such a way that the propagating excitations are rapidly
damped. The Lennard-Jones chain can be thought of as a
linear assembly of harmonic oscillators being perturbed
by anharmonic coupling, and if the anharmonicity is
strong enough one expects similar properties as in the

TABLE III. Mean value and mean-square displacement for
the heat flux. (a) for the LJ chain; (b) for the LJ chain with an
external field; (c) for the LJ chain with repulsive impurities; (d)
for the LJ chain with different masses; (e) for the LY chain with
different masses and repulsive impurities.

(a) —2.12 15.22
()] —0.85 6.75
(c) 7.46 14.28
(d) —10.52 10.64
(e) —9.97 10.36
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“ding-a-ling” model. However, this is not what happens
and one could wonder if modifications to the simple
chain could possibly lead to a sufficient increase of the
anharmonicity. We thought of introducing impurities in
the original system: one particle in two has a heavier
mass (ten times larger); as shown in Ref. 5, spectral prop-
erties of harmonic chains are sensible to the introduction
of such impurities. Besides, it has some similarity with
hard-rod collisions. This could well give the chain the
necessary freedom to spread the excitations. The
modification, however, was not successful, as can be seen
from Table III; the heat flux still fluctuates on a very-
long-time scale and its mean-square displacement is of
the same order of magnitude than the mean. The
difference in the short-time behavior of the correlation
function is shown in Fig. 7(b), where the correlation func-
tion has been measured by averages over many small time
intervals, as described above; the function here goes to
zero.

In Fig. 8 we have shown the same short-time behavior
for a model where one particle in four has a purely repul-
sive interaction with its neighbors:

Vimpurity(xij ):46(0/xij )12 . (10)

The idea here is similar to the different masses model:
The introduction of different particles in the chain is ex-
pected to favor the spreading of excitations and to lead to
a rapid decay of correlations in the heat-flux time evolu-

r(z)

50 100 150 200 250

(b)

riz)

FIG. 8. As in Fig. 7 but with repulsive impurities. Graph (a)
is for the equal masses case and graph (b) is for the different
masses case.
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FIG. 9. Long-time correlation function for the LJ chain with
(a) equal and (b) different masses in the case of repulsive impuri-
ties. As in Fig. 6(b), these curves are obtained by taking one
point every 100 steps and then computing the correlation func-
tion.

tion. Here also, as can be seen in Figs. 8 and 9, the
short-time scale is decoupled from the long time-scale,
and for short time one finds an oscillatory relaxation.
However, on time scales large with respect to this relaxa-
tion time, correlations persist and the time average of the
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heat flux itself does not reach the expected equilibrium
value. It seems that the modified models keep too much
similarity with the ideal harmonic chain, where the heat
flux is constant, to get rid of this slow decay.

In view of the results obtained in Ref. 14, we also mea-
sured the effect of the addition of an external periodic
field representing a periodic lattice in the Frenkel-
Kontorova model [see Eq. (8)]. As can be seen in Table
ITI, the mean of the heat flux is an order of magnitude
lower than the mean-square displacement. The correla-
tion function, however, does not decay to zero on short-
time scales, but remains correlated (see Figs. 10 and 11),
and it oscillates at a frequency which depends on the am-
plitude of the field; the frequency goes to zero with V.
The oscillation comes from the fact that energy is period-
ically transferred from the particles to the field and back.
The anomalous fluctuations do not disappear, which is
surprising in view of the result described in Ref. 14.

V. CONCLUSION

The present study raises more questions than it can
answer. It presents some numerical results of one-
dimensional physical models where the usual thermo-
dynamical behavior is not observed, and the understand-
ing that we have relies more on intuition than on an even
nonrigorous, theoretical approach.

The Lennard-Jones fluid is probably the model which
has been used with most success in the numerical simula-
tion in three dimensions. Studies in two and one dimen-
sions have been done investigating the stochastic transi-
tion which occurs at low energy. Although the trajec-
tories in phase space are chaotic above that threshold, it
is not sufficient to ensure thermodynamic behavior. The
ability of this chain to transport energy fluctuations in
the form of wavelike excitations certainly modifies the
mechanisms of dissipativity that are common in trans-
port. The nonequilibrium simulations show that a relaxa-
tion occurs locally in the system, with the temperature

1 1 1 1
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FIG. 10. Heat flux as a function of time in the case of the Lennard-Jones chain submitted to an external field. Each point is an

average over 100 time steps.
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varying linearly in space. However, the fluctuations of
the heat flux in time look more like trajectories generated
from nonlinear dynamical systems rather than from fluc-
tuating hydrodynamical ones. A characterization of the
chaotic nature of the heat-flux time evolution along the
lines developed by nonlinear dynamical systems could
give some confirmation of this picture.

One usually looks at anharmonic chains in terms of a
perturbation expansion. The heat flux in harmonic
chains is constant of the motion and anharmonicity des-
troys its time invariance, in the same way that collisions
in a gas bring the fluid to equilibrium. This was stated in
a theorem of Poincaré, which says that invariants of the
unperturbed system could not be analytical functions of
the perturbation. In one dimension it is known that cu-
bic terms are not sufficiently nonlinear so that this
theorem applies. The model studied here shows that this
theorem could very well not be valid in the case of
Lennard-Jones interactions which contain higher-order
terms in the anharmonicity. From this point of view, the
“ding-a-ling” model contains a highly nonlinear coupling
between the oscillators, which cannot be expanded in
anharmonic series.

One may also look at this last model from another
point of view, namely an assembly of hard rods perturbed
by harmonic strings. When the frequency corresponding
to the string is high, the motion becomes chaotic and dis-
sipativity sets in. We have tried to obtain the same be-
havior in modified Lennard-Jones chains. The changes
made have not destroyed the coherent propagation of ex-
citations. The reason for this is probably to be found in
the fact that the Lennard-Jones chains miss an essential
stochastic ingredient provided by the high-frequency
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FIG. 11. Time correlation function for the heat flux of the
chain in the presence of the field. ¥, =10.

motion of the harmonic strings. Indeed, in a hard-rod
chain, energy and velocity transport remain correlated
during the propagation along the chain. With high-
frequency strings, the system is able to distribute the en-
ergy initially put on one particle to a sufficiently large set
of particles so as to have local equilibrium. This is, how-
ever, not true for low-frequency strings or for the
Lennard-Jones chains in which energy and momentum
transport remain transported by a group of particles
which does not increase with time.
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