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Finite-temperature renormalization of sine-Gordon field by variational method
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A variational approach based on the path-integral formulation of the statistical mechanics is ap-
plied for calculating the partition function of the sine-Gordon field. This is done by determining an
effective potential which includes, in a complete quantum way, the linear modes of the field, while
treating variationally the nonlinear excitations. Using this effective potential the temperature renor-
malization is separately studied both for the vacuum and the one-soliton sector, recovering the total
one-loop self-consistent (Hartree-Fock} renormalized approximation. A high-temperature expan-
sion is calculated whose range of applicability is found to be much wider with respect to previous
expansions of the same kind. Finally, a comparison with a Monte Carlo simulation is presented, ob-
taining a very good agreement with the numerical data.

I. INTRODUCTION

The study of the thermodynarnical properties of a sta-
tistical system in the framework of the path-integral
method' is reduced to the calculation of the following ex-
pression for the partition function Z and, consequently,
for the free energy F,

Z i3F J — cg[@(u)]e—$[4(u))IR
4(0)=4(Pfi)

where 5 is the Euclidean action and P=1/EttT. The
functional integral is evaluated over all closed paths. In
this approach, a variational method based on the we11-

known Jensen inequality'

F&F,+ „(S—S, ),1
(1.2)

was developed in previous papers for determining the
quantum corrections to the partition function of a self-
interacting scalar field 4 starting from a trial action S0 to
be optimized. As a result, we were able to calculate an

effective potential V,& to be inserted in the classical
configurational integral. In particular, in the low-
coupling limit, low- snd high-temperature expansions of
classical statistical mechanics of one-dimensional
soliton-bearing systems, ' as weB as transfer integral pro-
cedures, ' became available and permitted simpler cal-
culations of the quantum thermodynamics of these sys-
tems beyond the dilute soliton gas approximation. " The
improvement of our treatment with respect to the analo-
gous approach described in Ref. 1 has been twofold. In
the first place, the quadratic contribution has been taken
into account in a fully quantum way, while the quantum
corrections due to the remaining nonlinear interactions
have been calculated using the variationsl principle. For
the single particle, we performed the detailed calculation
of V,z for a double-well potential and the very same re-

suits have been later recovered. ' ' The second improve-
ment concerns the extension of the method to fields.
Here the exact treatment of the linear excitations of the
field in the partition function allows the zero-temperature
limit to be reached without producing the usual nonphys-
ical consequences in thermodynsmical quantities, like the
specific heat.

A further interesting consequence of our variational
method is the different character, at different ternpera-
tures, of the physical parameters determined by the
minimization of the inequality (1.2). Indeed, at high tem-
peratures, we simply recover the first term of the %igner
expansion, which evidently corresponds to the very tiny
inhuence of the harmonic oscillators in such a range of
temperatures. On the other hand, at lowest tempera-
tures, it appears that the above equations can be dealt
with in a steepest-descent approximation around the
minimum of the effective potential. In Ref. 4, a sketchy
computation has been indicated for the vacuum sector of
a sine-Gordon (SG) system, and it has been found that
the one-loop self-consistent mass renormalization is a
direct consequence of the variational principle.

A final achievement of our theory, which we want to
stress, is the transparent physical interpretation of the
different terms which appear in the low-coupling expan-
sion of the partition function. The latter, in fact, is com-
posed of a factor exactly accounting for the linear modes
of the field, while the contribution of the nonlinear in-
teraction is contained in a classical configurational in-
tegral involving a potential whose "bare" constants have
been replaced by their renormalized counterparts.

This paper treats in detail the SG field in all ranges of
temperature. The temperature-dependent renormaliza-
tion is calculated from our effective potentia1 both for the
vacuum snd one-soliton sectors, recovering in a unified
scheme results of previous semiclassical treatments. '

Moreover, we present in detail a high-temperature expan-
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sion with a range of applicability wider than the range of
the Wigner series. ' A comparison with a quantum
Monte Carlo simulation, which uses the same separation
of the quadratic part of the potential, ' is finally present-
ed.

II. EFFECTIVE POTKNTIAI. FOR THE SG CHAiN

The discrete SG chain with 1attice constant a and
2%+1 sites is described by the Lagrangian

and the soliton energy acquires the usual form E~
=8m/A, .

Our main interest wi11 be devoted to the discrete case
for large values of E., which is referred to as the "displa-
cive limit. " Sometimes, however, we shall be concerned
with the continuum limit of the theory.

According to the general procedure explained in Refs.
2 and 4 and assuming periodic boundary conditions, we
take a trial Euclidean action S0 of the form

I.= g C ', —V(4),
i= —N

(2.1) So[4(u)]= Aa I du
0

N —iI&, +w(4)
i= —W

N 2

V(4)= Aa g —
l (4; —4;+, )

i= —N

—D„(0)/2
+Qi[e "' —cos(4, )]

+ —,
' g [4;(u)—4;]w; (4)
ij= —N

X[4,(u) —4, ]

(2.4)

—:Aa —,
' g ill;S,J4 + g 'M(ip )
ij= —N i= —N

(2.2) I du 4;(u)=—y; .
0

wllcrc 4; ls thc anglllai' dlsplacclllcllt of thc lth site, Aa
has the dimensions of a moment of inertia, 01 and
Qo=co/a are frequencies, 2il; =Qo(25; —5;1,—5;J+, )

is the matrix defined by the nearest neighbor interaction
while 8'(4, ) contains the nonlinear interaction term.

vac(The meaning of the constant e "" will be clarified
In the following.

The energy scale is fixed by the classical mass of the
static kink Ez ——8Ac00&, its length in lattice units is
determined by 8 =Qo/Q, (Refs. 8 and 19) and the quan-
tum character of the system is ruled by the coupling pa-
rameter Q =AQ, /Ez. It is also worthwhile to define the
reduced temperature r =Ks T/Es. To perform in a con-
venient way in the continuum limit, ' we find it useful to
introduce the variable %=A. '4, with A, '=coo'A. Let-
ting then a —+0 and R ~ w with constant product
aZ =m -', the continuum Lagrangian reads

T

+I 1 @l 1 BV

L2co 2 —Bx

The calculation of the right-hand side of (1.2) is done
by first making a (formal) diagonalization of the matrix
m,",namely,

X Uk w, Ui, =oik5ki2

i„j = —N

(2.6)

defining the frequencies ai„=co„(p) iand the orthogonal
matrix Uk; ——Uk;(p). For each eigenmode we find it use-
ful to introduce the dimensionless frequency fk 2ipfico„, ———

and the parameter

cothfk— (2.7)
2 4Aa k k

measures the quantum spread of the kth mode, being the
difference between the total mean square displacement
{4k ) minus the classical counterpart of the transformed
field 4k ——g,. Uk;4;. A straightforward calculation gives

(2N+ 1)/2

e
—/3Aaw(q)

z [e "" —cos(i'd% )] , (2.3)
and

X
~ sinhf„(y)

(2.8)

&~ —~o&o
pA'

(2N + 1)/2
N

y+ &
—Pdam{g) iri p fk

6Aaak smhfk

X R(y)—
1/26Aao, k

k= iv
II

A«ifk
X Aaw(q)+
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with

6Aa
mfi I3

(2N+ 1)/2

dgV U q+g

Expanding the integral (2.12) in a series of ak and tak-
ing into account (2.2), Eq. (2.11), with I =k, gives

cuk =2Qo 2Qo g Uk, Uk,. +,

X ('9k/'rk) —D,. /2
+Q, g Uk;e

' cos(p;), (2.13)

(2.10)

the potential V(iso) being specified in (2.2). The mini-
mization of (1.2) with respect to w(y) yields the vanish-

ing of the average (S—So }o, so that (2.9) and (2.10) per-
mit a straightforward calculation of w(g). The further
minimization with respect to m;~ or, equivalently, with

respect to ~k and Uk; —once the appropriate orthogonal-

ity constraint is introduced for the latter —leads to the
following nonlinear self-consistent equation:

N

X Uk (4, +P~J ) Uij =~k &ki (2.11)
ij = —N

where

N
—

&A: /~I2

P, (g)=5;, I di}Vl' '[(U i}+q&);]
k=-iv (~&k)

N

Uk
k= —N

(2.14)

Differing with previous treatments, ' D; (P,y) refers only
to the quantum part of the fluctuations calculated in self-
consistent Gaussian approximation.

Finally, from (2.8), we can write the approximate parti-
tion function

—pF —&Fo
e =e

' (2%+1)/2
Aa —Pv &[q ~

2iriri P

(2.15)

where D; =D; (P,y) is the temperature-dependent quan-
tum renormalization parameter

(2.12) where the effective potential reads

Q2
0 i i —D„ io)/2 D; /2 D—i 1

' fkN

2
(g; —q;+i) +Qi e "" —e ' 1+ cos(p, ) —— g ln

i= —N sinhf k

(2.16)

We want to point out that this efective potential contains the quantum efects calculated in the one-loop approxima-
tion, as shown by the presence of the renormalization parameter D. The insertion of V,z in a configurational integral
should permit us to use all the classical methods devised for the calculation of the partition function. For vanishing
nonlinear interactions we easily get from (2.12}that P;, is proportional to 5... and therefore Uk; is the orthogonal matrix

2
2%+1

1/2 cos, —X(k & —1
2 Fkl

2%+1

Uki I Q =0= ~ ki (2+ + 1 )
1/2

2

2%+1 sin, 1&k &X,2mki

2%+1

(2.17)

The matrix (2.17) diagonalizes any translational-invariant matrix and, in particular, the syinmetric matrix S; of
nearest-neighbor interaction. By substituting (2.17) in (2.13), we also obtain

ci3k
I g o=Qk =4Qo slil +Qi

2N +1 (2.18)

i.e., the well-known Klein-Gordon dispersion relation, as obviously was to be expected.
In the general case, the effective potential (2.16) is a rather involved quantity to be calculated. However, the extreme

temperature limits, as well as the case of a small coupling constant, can be controlled and we shall show that, even in
these circumstances, a lot of information can be obtained. Of all these cases, the simplest and somewhat trivial is the
high-temperature limit. From (2.14) and (2.7), for P~O, it is straightforward to find for the efFective potential the ex-
pression

ufo 2 2 D [0)/2
V,ir(q))= Aa g (y, —ip, +, ) +Q, e

i= —N

Qofi P
cos(y, } .+(2%+1) (2.19)
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which is nothing more than the 6rst %igner correction.
For large values of R, as it occurs in many physical sit-

uations, the convergence of the VA'gner series is rather
poor, being related to the condition QofiP « 1, i.e.,
r »RQ. In Sec. V we shaH present an improvement
based on the expansion of the effective potential in terms
of g which justifies previous rearrangements. '9

At low temperatures the main contribution to the par-
tition function arises from the local minima of the
effective potential. The general equation for determining
these minima is derived in the Appendix, and for the SG
it reads

—D, (y)/2
Qo(2q&,. —qr,.+,—p, , )+Q,e ' sin(y;) =0 . (2.20)

IB. THE VACUUM SECTOR

The vacuum of the effective theory is defined to be one
of the lowest-energy solutions of Eq. (2.20). These solu-
tions are degenerate and are given by the constant
conAgurations

In the continuum limit, Eq. (2.20) simply becomes the
static SG equation where the frequency Oi is afkcted by
the renormalization. %e can observe that 6nite energy
kink solutions can be determined also for (2.20). Indeed,
in this case, for large values of the continuous-site vari-
able the field must tend to a constant configuration.
Therefore, the renormalization factor D also tends to be-
come constant and the usual topological arguments easily
apply.

%'e shall therefore treat separately the vacuum and the
one-soliton sectors determining both thc renormalization
and the contributions to the partition function. Some
considerations, however, are in order. Simple quadratic
expansions in the neighborhood of local minima are not
consistent except for lowest temperatures (t « 2Q),
where the factor D can be calculated at t =0, neglecting
the classical Auctuations. To take into account both the
quantum and classical fluctuations causing temperature-
dependent frequency renormahzation, we must perform
self-consistent Gaussian expansions around the minima.
This corresponds to taking into account the interaction
among elementary excitations (linear and nonlinear) in
the Hartree-Fock (one-loop) approximation going beyond
the dilute gas approximation, analogously to the pro-
cedure of Ref. 16.

results in being site independent. The diagonalizing ma-
trix Uk, is therefore the matrix Ak, given in (2.17), so that

D (T=
2%+1 „~, 2

(3.2)

D„„(T) =D ( T) —D„(T),
where

N g2p
D( T) = — g cothfk,

(3.3)

(3.4)

2&+I k 4Aaf' '

respectively, represent the total and the classical Auctua-
tion of the field.

For vanishing temperature, we have

D(0) =D„„(0), D,i(0)=0 . (3.5)

Hence, the evaluation of the partition function within a
simple Gaussian approximation around the vacuum turns
out to be inconsistent for increasing temperatures. To
perform the meaningful self-consistent Gaussian approxi-
mation, we apply the standard decoupling procedure to
the cos(p, ) term, extracting all possible pair averages,
namely,

( —1)" Dci
cos(y;)=I+ g

n=1

n=l

( —1)"(n —1) Dci

nf 2
(3.6)

The subtraction of the last term is necessary to restore
the correct average of cos(y; ) so that

—D I/2
( cos(q), ) )„=e

In this way, we get

(3.&)

As previously stated, for low but nonvanishing temper-
atures, the term D„„(T)is obviously a decreasing func-

tion, since the quantum character of the system becomes
less important while the classical Auctuations cause a fur-
ther temperature modi6cation of 0, and consequently of
Nk.

In order to better understand the spirit of the approxi-
mation, we find it useful to split D„„(T) into its two com-
ponent parts,

y;=2nm, n =0,+1,+2, . . . . (3.1) —D,l/2, 2cos(y; ) =e '
1 ——,'(y, D„)—(3.8)

In the following it will be useful to consider the case
n =0, which we shall refer to as the "vacuum sector. " In
this case the renormahzation factor D„„(T)can be con-
sistently calculated on the uniform field configuration and

By substituting (3.8) into the expression (2.16) of the
e6'ective potential and performing the appropriate expan-
sions, we obtain

1 ~ fk"
ln

P k ~ slnhfk
(3.9)
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where f„' ' is calculated using

(co' ') =40 sin
mk +@2'-D/2 .2%+1 (3.10)

Z„„(T)=

As the frequencies are configuration independent, the partition function reads
(2%+ 1)/2 ~

'
({))

Aa fk vac ( —D/2exp PA—aQ (2N+1) e "" —e ~ 1+—
2M P Siillif k

Aa
&& I df e"P — g (~k ) 0'k (3.1 1)

Performing the (2N+1)-independent Gaussian integrations, we then obtain the vacuum contribution at finite tempera-
tures to the free energy per site

~vac

2/+1 ln(2sinhf„"')+ Aanf e
"-"" e-—D" 1+—

+ k= N— (3.12)

The expression is in perfect agreement with the results of
Refs. 14 and 16 if the continuum limit is taken. The
latter can be done by taking into account the expression
of D (0), namely,

is thus required and the further procedure of Ref. 16 is
straightforward.

IV. THE ONE-SOLITON SECTOR

D(0)= 2&+1, ~ 2aa~,(0) ' (3.13)

D (0) 8' ~ 2R

m +1+4' +I+4R
(3.14)

with E being the complete elliptic integra1 of the first
kind and reproducing the well-known logarithmic diver-
gence in the continuum limit. A mass renormalization

m ~m exp[ D(0)/4]—

It can be seen that (3.13), stemming only from our varia-
tional principle, reproduces the weil-known results of
semiclassical renormalization. ' ' At the lowest order,
we have

v =v'"+~ (4.1)

Using (3.8) for approximating cos8; and the analogous
equation

—D 1/2
sin8; =e " 8;, (4.2)

with a D, ~
generally different from that introduced in the

vacuum sector, we obtain an effective potential

To apply the same self-consistent scheme for the ex-
pansions around nonuniform minima, as given by Eq.
(2.20), we have to take into account that the classical fluc-
tuations will now modify the mass of the static kinks as
we are now going to show.

%e assume that y', ' is the kink configuration which
minimizes the effective potential in the Gaussian self-
consistent approximation. Let

N Q20

V„=A y '
[(g I"—qI", )'+(&;—0; )'+~;(2y';" —q';" —q' ' )]

i= —X

+II2 . vac e D/2 cos( +(s))——D (0)/2 —g; sin((pIs') ' —— g ln(fk '/sinhfk' '),
~k= ~

(4.3)

where the fqs' of the one-soliton sector are determined by
solving the eigenvalue equation

X Uk [4,+&;,&ie "cos(q';")]UI, =(~'k")'&ki
ij= —N

(4.4)

Minimizing Eq. (4.3) with respect to 8, we obtain that
the soliton configuration is again determined by Eq.
(2.20), where the purely quantum factor D, (y) must be.
substituted by the total renormahzation factor D(qr' ').

A particular care must be used to deal with the zero-
frequency translation mode, which is a solution of Eq.
(4.4) when y,

' ' is a soliton configuration in the continuum
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—e-D" 1+—cos{q'")D

ln
P k ~ slnhfk

where Es(T) represents the renormalized kink energy

00
E,(T)= A~ y '(qI" —

q P', )'
i= —X

(4.5)

+Q', e -D"[1—cos(q ',")] (4.6)

reproducing the value e ~ Ez in the continuum limit.
From (4.3) we can derive the free energy Fs of the

one-soliton sector,

sinhfk
Fs F„„=Es(T)—+— g ln

s'»A

+ AaQ', e D~' —g [1—cos(q,' ')] . (4.7)
i= —%

limit. Indeed, in this case, the correct way of approach-
ing the problem is that of promoting the center of the sol-
iton to s collective coordinate, while keeping all the other
co'k '&0 modes. The center of the soliton, related to the
translation invarisnce, is therefore a classical coordinate
snd consequently the m'k ' ——0 fluctuations are to be omit-
ted in evaluating the renormalization factor.

However, we can also observe that the nonuniformity
of D (y' ') is confined to the region where the kink has a
sensible variation, so that in the in6nite length limit, the
contribution of the nonuniformity tends to zero ' snd
therefore we csn consistently assume the vacuum expres-
sion for D. The final expression of the e8'ective potential
reads

N

V„=Z,(T)+ g (~P')'&',
k= —N

vac+AaQ, g e

This is exactly the same expression derived in Ref. 16
in the continuum limit. From here on, therefore, one
could repeat the procedure developed in Refs. 14 snd 16
in order to calculate the effective coupling constant and
the finite-temperature correction to the free energy,

Ph—F= exp[ P(—Fs F„—„)], (4.8)

due to the presence of solitons in the dilute gas approxi-
mation.

V. LOW-COUPLING EXPANSION

(5.1)
where Qk is given by (2.18) and D =D ( T) is the quantum
renormalization parameter, consistently calculated to or-
der Q using Q„ in (2.7) and (2.14). For PA'Q, D/8 ~~ 1 it
makes sense to expand the logarithmic term in the
efFective potential (2.16), eventually obtaining

In the above-developed framework, we treated a one-
loop (Hartree-Fock) self-consistent theory in order to
take into account the soliton interactions. However, this
approach is known to give worse and worse results for in-
creasing temperatures and eventually leads to a first-
order phase transition at the "critical" reduced tempera-
ture t =1/e (Ref. 16) when the self-consistent equations
(3.4) and (3.10) have no more solutions. On the other
hand, even in the classical case the two-soliton interac-
tion must be eventually included in order to reproduce,
up to t =0.22, the correct behavior of the nonlinear con-
tribution to the specific heat, as computed in Ref. 9.
Therefore, it turns out to be more useful to consider an
expansion around the local minima and to derive an ap-
propriate effective potential as a series in the snharmoni-
city.

In the low-coupling limit we can expand the frequen-
cies (2.13) in powers of Q. Recalhng that D; is propor-
tional to Q and setting U = A +0 (g), from (2.13) we get

~~k =Q'„+Q2 g A„', [e D~'cos(q&, ) —1]+0(Q'),

—D„(0)/2
V,s((p)= Aa g ((p; —p;+&) +Q~[e

i= —X
—e D~2 cos(q, ) ] —Aa Q, (2%+ 1)———g» . (5.2)2 p k ~ sinhFk

Z(T)=
2 P

where Fk —pAQk/2. The partition function is therefore given by
' (2m+ i)/'2

exp —PAa Q (2N + 1)—J dp exp
~ sinhF~ 2

Qo—PAa g (y; —y;+()'
i= —X

—B„(0)/2+Q, [e "- —e ~ cos(g;)] . {5.3)

Equation (5.3) looks very useful. Nonlinear contribu-
tions to the free energy are contained in the
coIlflgulatlona1 lnteglal, which corresponds to a classical
SG chain with 0& replaced by its quantum renormalized
counterpart Q, (T)=Q,e '+ . Therefore, in order to
compute this integral, all classica1 methods can be used,
as, e.g., temperature expansions ' or numerical transfer-

operator techniques. ' Moreover, it appears that the
free energy contains a Debye-like contribution by har-
monic oscillators with frequencies QI, hence, this contri-
bution is included in a fully quantum way.

The modifications introduced by the presence of soli-
tons are still contained in the configurational integral:
For instance, the phase shifts of the frequencies are con-
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FIG. 1. Nonlinear contribution to the speci6c heat vs re-

duced temperature t for Q =0. 1 and R =10 (solid line). The
dashed line is the classical result (Ref. 9). The circles are quan-

tum Monte Carlo data from Ref. 18.

1 +" x
cothx ——=2 g

n=j& +
(5.4)

At the lowest order we obtain the following expression
for D

4 R+"
D (t) = g (n ~)'+( I +48 ')

t 2t
' 2 ' —1/2

X (nn)'+ (5.5)

sidered "classically, " but this is correct within the low-
coupling approximation and the translation mode has
surely a classical behavior.

The condition of validity of (5.3), ptrtQ, D/8 &~1, also
reads t »(2n) 'Q In(SR) and has to be compared with
the condition t »RQ/2, under which the Wigner expan-
sion (2.19) holds. Hence, (5.3) is a great improvement in
the displacive limit 8 &&1, as it occurs in many experi-
mental situations concerning one-dimensional ferromag-
nets. ~ The quantum temperature-dependent renormal-
ization parameter D (T) can be computed using the rela-
tion

expansions for the free energy from Refs. 7 and 8, for
Q =0. 1 and R =10. It follows that the quantum eff'ects
on 5C are rather small, but essential, for having a satis-
factory fit with the results of a quantum Monte Carlo
simulation. '

Finally, it is worthwhile noting that the above Monte
Carlo simulation has been done after separating the har-
monic and anharmonic parts of the Hamiltonian and us-
ing the knowledge of the exact free energy corresponding
to the former, in close analogy with the full treatment of
the quadratic contributions yielded by the use of the trial
action (2.4). The accuracy of the numerical method has
been checked with the exact results of quantum SG ob-
tained by applying the Bethe ansatz.

VI. CONCLUSIONS

Our improved version of the variational approach to
the Feynman path-integral formulation of the statistical
mechanics has been applied for calculating the
temperature-dependent renormalization of the SG field.
This method is essentially based on the idea of taking into
account in a fully quantum way the quadratic part of the
Hamiltonian along the path and applying the variational
principle for evaluating both the frequency renormaliza-
tion and the quantum anharmonic e6'ects by means of an
effective potential. The latter has been calculated at all
temperatures for the SG field.

In this united scheme the temperature renormalization
of the vacuum and the one-soliton sector is easily
recovered at low temperature in a total one-loop
(Hartree-Fock) approximation. Furthermore, and this is
a new improvement, our effective potential can give, in a
wider range of temperatures with respect to previous
treatments, useful recipe for reducing quantum
statistical-mechanics calculations to classical ones. The
explicit results for the nonlinear contribution to the
specific heat of SG chains give very good agreement with
Monte Carlo simulations. In a forthcoming paper, we
shall present an application to nonintegrable potentials,
such as y and double SG, for which quantum inverse
scattering results are not available.

One could get a straightforward improvement by includ-
ing in Qk the renormalization of 0& and performing the
calculation self-consistently.

In Fig. 1 we reported the full nonlinear contribution to
the specific heat 5C obtained by (5.3) using the classical

APPENDIX

In this appendix we derive the minimum equation
(2.20) for the effective potential. By direct differentiation
of (2.16) we find

~v ff —D,. /2= Aa Qo(2y; —qr;+, —y;, )+Qfe ' 1+ sin(g; )

2 -D,. /2+ AaQ, g cos(y ) e
j=—N

J ~9'i

From (2.7) and the definition of f„we find the identity

fk
ln

P I, ~ sinhf„
(A 1)

1
~ fk

ln
p k N sinhfk

By means of the identity

1
cothfk-

fk

t)fk + cxk Bcot.
=Ha

BQ; k ~ 4 Btp.
(A2)
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U
—«U —«U U

—«
8

Bg; cl+ .

and using (2.11) and (2.13), we easily get

BQ)k

kk

Ã

=Q, g U»J [e ' cos(yj)] .
j=+ Vi

Here the diagonal elements of the commutator are vanishing, due to the fact that the matrix U(X+P)U ' is diagonal.
Inserting (A4) into (A2) gives

1
~ f», ~ D, g -a,. n

ln . = AaA, g [e ' cos(y )]
k= —X k j= —& Vi

Di —D. /2= —Wan', y '-e
j= —W

2 8

D -D,. y2 .
2

cos(y, ) —Aa Q2, e ' sin(tp, ),

where use has been made of the defnition (2.14). From (Al) we eventually obtain Eq. (20).
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