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%'e have investigated the linear-electric-Geld e8'ect (LEFT) in cupric ions situated in ligand fields

of low symmetry. General properties of LEFE signals resulting from various low-symmetry models

are described. Treating g values, we show how hybrid-orbital "united-atom" models can be used for
direct calculation of the LEFE signal expected from cupric sites of specific low-symmetry

geometries. This hybrid-atomic-orbital approach is shown to give a straightforward method for in-

terpreting LEFE data in terms of cupric electronic states that directly refiect the ligand environ-

ment. Results are presented which demonstrate the potential of calculations with this model to ac-
count quantitatively for the LEFE data from blue cupric proteins.

I. INTRODUCTION

Our investigations of the cupric ion in the protein azu-
rin have led us to consider the linear-electric-field effect
in low-symmetry cupric complexes in general. Upon ap-
plication of ari electric field some substances exhibit
changes in their EPR signal. This is known as the
linear —electric-field effect (LEFE}. A variety of data
from copper-containing blue cupric proteins [absorption,
circular dichroism (CD},EPR, and MCD] have been suc-
cessfully explained with a hybrid atomic orbital model.
%C have now used this approach to investigate the LEFE
of similar low-symmetry cupric sites, treating g values in
this paper. The hybrid-atomic-orbital model (HAOM}
model is used to show how LEFE data can be interpreted
in terms of cupric electronic states that directly reflect
the ligand environment. Further, modeling of the LEFE
involves matrix elements that appear in calculations of
other obscrvables already investigated, but in new com-
binations. Thus new and significant constraints may be
placed upon a model by inclusion of the LEFE behavior.

The LEFE in electron paramagnetic resonance (EPR}
was observed in 1961 (Ref. 1} in inorganic systems.
Bloembergen specifically pointed out that an LEFE sig-
nal, which is linear with the strength of the applied elec-
tric ficld E pp) d is only Possible for a Paramagnetic ion
located in an environment that does not have inversion

symmetry. Mims used a spin Harniltonian tensor for-
malism to formulate the problem and Klel and Klcl and
Mirns described the LEFE for various rare-earth ions in
Ca%'04 using an "equivalent even interaction'* between
states. Bates employed crystal field theory and a
hybrid —atomic-orbital model for theoretical discussion of
the linear —electric-field eftcct for cupric ions residing in
tetragonally and trigonally distorted tetrahedral fields. It
is this approach that we follow and expand upon to inves-
tigate the LEFE of cupric ions iri low-symmetry environ-

ments. Roitsin wrote an excellent review in 1971 of the
work done on LEFE up to that time and Mims later
wrote a valuable book on the LEFE.

The LEFE has also been used to investigate metal sites
in proteins. Peisach and Mims measured the LEFE in
cytochrome P-4SO in order to characterize the ligand ar-
rangernent around the ferric ion. Mims and Peisach' '"
also made measurements on a variety of ferric heme sys-
terns to determine the crystal field environment and
ligand binding of the iron.

More recently, Peisach and Mims' have taken LIFE
measurements on the proteins azurin and stellacyanin.
These proteins are known as blue cupric proteins' ' be-
cause of strong light absorption by the metal site due to
the environment supplied by the enfolding protein shell.
LEFE measurements are sensitive to deviations from cen-
trosymmetry of the cupric ion's environment and there-
fore can be a valuable source of information on the elec-
tronic structure of the cupric ion.

Our interest is in how the environment of a metal ion
influences its electronic states. Calculations of spectro-
scopic and functional properties of the metal are facilitat-
ed if the arrangement of the surrounding ligands contains
symmetry operations. The higher the point group, the
more degeneracies exist and this leads to fewer indepen-
dent matrix elements to calculate. En low-symmetry com-
plexes such as in proteins, the metal ion's ligand
configuration contains few symmetry operations and may
in fact belong to the lowest-symmetry point group, C&,
which contains only the identity operation. To facilitate
calculations, the system under study can be approximated
as having a ligand arrangement consistent with a geome-
trically appropriate group of higher symmetry. %'c have
used this approach in the past in studying various spec-
troscopic properties of low-symmetry sites.

However, the actual departures from true symmetry
can be important in explaining spectroscopic and func-
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tional properties of the molecule. In this paper we show
how LEFE measurements can be used as a quantitative
guide, limited by the uncertainty in the local electric field,
in modifying the electronic states of an HAOM describ-
ing a cupric site in order to reflect the departures from
the higher-symmetry group.

A. Polycrystalline, powder, and frozen solution samples

Experimentally, the LEFE manifests itself as a shift in
the EPR resonance frequency of a paramagnetic center
upon application of a dc electric field. Since the electric
field has odd parity under spatial inversion, a linear eff'ect

will only be observed for a paramagnetic center located in
an environment that does not have inversion symmetry
(noncentrosymmetric). This, in fact„gives the LEFE
especial value because observation of measurable effects
with other EPR techniques (that do not include an ap-
plied electric field) does not require the existence of non-
centrosyrnmetric components of the ligand field.

The simplest technique to measure the LEFE is to ap-
ply a dc electric field to the sample in a standard EPR ex-
periment and measure the change in the resonance fre-
quency directly. This approach can be used in samples
where the LEFE is large enough to shift the lines by an
amount greater than their width. However, problems can
arise in the application of this simple method. The sam-
ple may not be capable of withstanding large applied elec-
tric fields, or the size of the LEFE may be too small rela-
tive to the linewidth to be observable. In these situations,
the electron-spin-echo method, which is limited by the
width of individual spin packets rather than the width of
the overall line, is valuable.

EPR experiments on proteins are often done on frozen
solutions. In this case, the EPR absorption extends be-
tween limits determined by (apart from hyperfine separa-
tions) the maximum and minimum values of g. For azu-
rin at 9.2 GHz, this extent is several hundred gauss, with
first derivative "lines" having full width at half-height of
no less than 30 G. As will be seen below, for laboratory
fields across the sample of 10 V/cm, an LEFE of the or-
der of 1 G is expected. This makes the direct method
useless. Gn the other hand, the width of individual spin
packets may be only 0.1 G in biological materials (Ref. 8,
p. 238) which is small enough to allow the spin-echo tech-
nique to be used profitably. The spin-echo method for
LEFE measurements has been described in detail else-
~here. '"

B. Notation for comparison of calculations
with experimental data

As with any investigation, the choice of parameters
that act as a bridge to connect theoretical descriptions
with experimental measurements is important for clarity.
Mims has developed a notation using a spin Hamiltoni-
an tensor formalism. %'e base our description upon this
and Mirns and Peisach's work. " The parameter connect-
ing experiment and theory is o . Experimentally it is

where co is the microwave angular frequency, and
(E»~„,d~), ~2 is the product of applied electric field

E, &;,d and time ~ between microwave pulses that pro-
duces a 50% reduction in the echo amplitude compared
to the case of no applied E field. The time at which this
occurs, ~,&2, gives the shift in the resonant frequency, 5a
(Ref. 8),

2%N=
«i/z

This enables us to write Eq. (1) as

o'=(5u/co)/E»~~;, d . (3)

In Eq. (5) gi=g, =g~,„, g2=g3, and g, =g„=g~;„. (In
assigning the number subscripted g s in this way, we fol-
low the LEFE literature. In another convention g, and

g3 correspond to the lowest and highest field resonances,
respectively. ) Since each principal value of the g tensor,

gl g2 g3 may have a different 5g, the observed 5~ is a
weighted average of the contributing 5g's. The weighting
distribution (see Refs. 8, 11, and 19) varies with the field
setting 80, and therefore so will E, although at all field
settings E = 1. In this paper we will focus our analysis on
the LEFE at the two endpoints of the spectrum where
analytical expressions linking frequency shifts with 5g's
can be derived. Further, we will show that the endpoints
are the most valuable parts of the LEFE spectrum for
supp1ying new information about the symmetry-lowering
deviations in the ligand environment of low-symmetry
cupf ic sites.

C. C;J coe%cients and dependence upon Seld setting

%e use a set of coefficients, C, , to describe the electric
field induced shifts:

dg.
fJ dE

where the gj are the principal values of the diagonalized g
tensor and 8 is the local electric field. This is similar to
the description of Mims and Peisach" who use 8;,
coefficients. If a diagonal g tensor is used, the C;
coefficients are related to the 8,- coefficients by

For any spin packet, in the absence of hyper6ne eff'ects,
5'/co=5g/g. In a polycrystalline or frozen solution
sample there will be a distribution in shifts and therefore
the general expression relating o to 5g is

cr =E (5g/g)/E,

The factor K is determined by the distribution of 5' at a
given magnetic field setting, Bo. This distribution arises
because at any magnetic field setting similar paramagnet-
ic centers can have the same g value but be oriented over
a range of angles, 8,P, where the g value is given as

g (8,$)=(gicos 8+gzsin Osin ((t+g, sin28cos2$)'~2 .
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gl
~l gl dg gl V

We use the C; because they are a simpler description at
the endpoints of the spectrum upon which we concen-
trate in this paper.

A complete description of the LEFE requires the full g
tensor

g1 1 g12 g13 g1 g6 g5

g21 g22 g23 g6 g2 g4

g31 g32 g33

The g tensor is shown with normal matrix notation as
well as modified Voight notation where the principal
values are listed as g„g2, and g3. If one uses the stan-
dard matrix notation for the g tensor, i.e., the left matrix
in (8), then the C coefficients of Eq. (6) would actually re-
quire three subscripts representing the three degrees of
freedom for the LEFE

dgjk
ijk (6')

We will use the modified Voight notation which
suppresses one of the subscripts. A paramagnetic center
which has a symmetric g tensor in the absence of an ap-
plied electric field does not necessarily have a symmetric
g tensor upon application of an electric field which causes

g; ~g;, +5g; . However, if one is concerned only with
the endpoints, then only principal values of the g tensor
are involved and whether or not the tensor is symmetric
is unimportant.

With six independent elements of the g tensor and
three possible directions of the applied electric field, there
are an unwieldy 18 independent LEFE coeScients C," of
Eq. (6), where j= 1-6 from matrix (8), and i =1,2, 3 cor-
responding to x,y, z, respectively. At EPR magnetic field
settings, 80, in the middle of the spectrum, all 18
coeScients may contribute to the observed LEFE since
the distribution in paramagnetic center orientation allows
contributions from all elements of the g tensor. By focus-
ing on the endpoints of the EPR (and LEFE) spectrum,
we greatly reduce the number of contributing C,l.

——RC /g (10)

a~ 3, with E randomly distributed in the molecular x-y
plane (E, =O), has contributions from both C» ——dg, /
dE„and C23 ——dg, /dE . For this random distribution in
the x-y plane, the spin-echo half fall parameter
(E»~„,„r),&2 of Eq. (1) gives '"

ei 3=8 (Cii+Cz3)' /1 45gi . . (I 1)

Similarly, at the high-field end one finds

and (12)

Formulas (11) and (12) show that C," and Ckj are com-
bined in quadrature and therefore their calculated signs
are unimportant.

We now review the hybrid —atomic-orbital model
which we use to describe the electronic states of low-
symmetry cupric sites, and then show how the electronic
states of the HAOM are used for calculating the C;.
coeScients. This formulation leads to a direct analysis of
LEFE data in terms of HAOM states, states which are
determined by the ligand environment of the paramag-
netic ion.

completely independent of Bo. However, the information
available from studies of frozen protein solutions is fully

Eapplied e ther parallel or perpendicular to
Bo. (Measurements made at intermediate orientations
reffect a convolution of the data obtained at E»~i;,d ~~80
and E, i;,diBo. ") Thus two values of the a of Eq. (3)
are measured at each endpoint, with the notation o

~t
3 for

E»z», d~~BO and oi 3 for E»z„,dlBO at the low-field end-
point, and likewise for g1 at the high-field endpoint.

We take the local field EI to be linearly related to the
applied field,

EL=E=R Eapp1ie

For o.
~]

3 I- RE pp1i d and E„=F~=0. With no distri-
bution in shifts at the field extrema, Eq. (4) is applicable
with K =1 and, with Eqs. (6) and (9), gives

D. LKFK and C;J at endpoints

The low-field endpoint corresponds to only those
paramagnetic centers oriented such that the principal
axis of the largest g value (g3 =g, ) is aligned along the
direction of the magnetic field 80, and analogously for the
high field endpoint and g1. All molecules contributing to
the extreme low-field EPR signals will be oriented with
their molecular z axis parallel or antiparallel to Bo, and
will have the same

~

5'
~

~ i 5g3
~

(apart from possible
small dift'erences in the environment of the paramagnetic
center from molecule to molecule). At the high-field end,

~

5'
~

~
~
5g,

~

. There are still three possible contribut-
ing C; at the low-field endpoint, and another three at the
high-field endpoint, because E,pp1;,d can be applied in the
x, y, or z directions. Indeed, the orientation of E, „,d is

III. HYBRID- ATOMIC-ORBITAL MODEL
OF CUPRIC ELECTRONIC STATES

The higher the point group that a ligand environment
belongs to, the more degeneracies exist, and the fewer
matrix elements between electronic states of the central
metal ion are required in calculating observables. With
this in mind, we first describe the electronic structure of
the cupric ion in blue proteins in terms of a ligand envi-
ronment of D2 point-group symmetry. D2 symmetry is
taken at the start for two reasons. Under D2 symmetry
the electronic states will transform as irreducible repre-
sentations that obey selection rules that simplify calcula-
tions. Additionally, this symmetry is low enough for the
electronic states to approximate those of the metal ion in
its protein site which, in actuality, has an environment
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with deviations from any symmetry group above C&.
Previous calculations have indeed shown that approxi-
mating the cupric site in azurin as having D2 symmetry is
useful for describing various experimental properties, the
unusual hyperfine splitting being an interesting excep-
tion. ' ' ' ' We demonstrate below how one can calcu-
late LEFE parameters with a hybrid-atomic-orbital
model, and also that the LEFE data on azurin cannot be
explained with a site of D2 symmetry. Clearly then, the
LEFE data provide a basis for modifying the HAOM of
D2 symmetry used successfully for simulating other ex-
perimental phenomena and, thereby, making the model
closer to the true electronic structure.

In the united atom HAOM the ligand parts of a delo-
calized state are taken as orbitals with the same angular
dependences as the atomic orbitals of the central metal
ion located in the ligand crystal field. Though centered
on the metal ion, the radial functions of the ligand orbit-
als difter from those of the ion. %ith the symmetry of
the site approximated as D2, the ion and ligand orbitals
can be assigned to irreducible representations (irreps& of
the point group D2. A lj.gand orbital will combine with a
cupric orbital of the same irrep to form a hybrid-atomic
orbital. This allows cupric 3d orbitals to mix with ligand
orbitals that transform as cupric 4p orbitals but have ex-
tended radial functions. In a free cupric ion, the 4p orbit-
als would be too high in energy to mix appreciably with
the 3d orbitals. The mixing is now stronger because the
4p orbitals are not pure metal orbitals but instead have a
ligand contribution which forms two orbitals, one higher
and one lower in energy than the pure cupric 4p orbital.
The radially extended 4p orbital with lower energy can
now mix with a cupric 3d orbital of the same symmetry.
Similarly, mixing of 4s and 3d orbitals is also considered.

Eight hybrid-atomic orbitals result from the cupric 31
and extended 4p orbitals. The 4s orbitals are allowed to
mix into the hybrid orbitals belonging to the A

~
irrep in

the D2 group. The cupric ion has a 3d con6guration
outside of closed shells and it is therefore convenient to
view the outer shell as a single hole. This requires the or-
dering of the HAOM to be inverted and leads to Table I,
reprinted from Fig. 3 of Ref. 18, for the ordering of the
electronic states of the cupric 3d hole. Additional discus-

sion of the states of Table I can be found in Refs. 16 and
18. %e now develop an expression for the LEFE C,- in-
volving matrix elements between the electronic states of
the cupric ion.

IV. THKORKTICAI. EXPRESSION FOR C;j

A. Spin-Orbit coupling and I,EFK

Our calculation of the C,~ is an extension of the stan-
dard method for calculating g values

1 d(bE&
g=—

where bE is the energy splitting between the members of
a Kramers doublet arising from a ground-state orbital
singlet upon application of an external magnetic 6eld, S.
IM& is the Bohr magneton. In EPR experiments one is
usually interested in energy splittings that are first order
in the applied field and AE can be expressed as

b,E
2 2 ~,a=&la, ~m ~la, )=—&la, ~m

~
la, ) .

(14)

The states
~
la, ) and

~
la2) represent the two members

of the ground-state Kramers doublet. P is the Hamil-
tonian representing the perturbation of the applied mag-
netic field

&'=p B=p, 8 = ps(L, +2—S, )8,

where the applied 6eld 8 is applied along the laboratory
z) axis. For the low-field (gi ) resonance, the molecular z
and laboratory zI directions are parallel.

If spin-orbit coupling between the ground spin doublet
and excited states is neglected,

~
la, ) and

~
la2) can

each be written as a product of the ground-state orbital
singlet times a pure spin state;

~ lai) = 1)
~
+ ) and

~
laz) =

~

1)
~

—).
~
1) represents the orbital ground-

state singlet and
~
+ ),

~

—) are the two possible spin
substates defined by their projections along the laborato-
ry zl axis. %ith an orbital singlet resulting from the

TABLE I. Hybrid-atomic-orbital model energy-level diagram for the single cupric hole in which all
states transform as irreducible representations of the D2 point group.

I &3 &=(1—P3)'"
I 3d„&—P3 I4p. &

I
~ z & =( 1 —P2)'"

I
3d., &

—P2 I 4p, &

[8( &=(1—P()'
[ 3d„y &

—P( [4p, &

] &3 &=P3 ] 3', &+(1—P,')'" ] 4p„&

(a, &=P, [3d„,&+(1—P', )'"[4p, &

[(1+y')()+5'))'" ' " -~ ' (1+5')'" '
-(13d, , &+y I 4s &)— I 3d, &

2]/p(3dp&+pi]/p(5(3d2$&+y5~4s&)I

( 1+52)l/2 g~ [(1+y2)( t +52)jl/2 ~ —y

~
~, & =P,

~
3d„, &+( 1 -P', )'"

~
4p, &
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ligand field, angular momentum is quenched; the only
contribution to the energy splitting [Eqs. (13) and (14)] in
a magnetic field is from the spin of the states, and g has
the free hole (electron) value of 2.0023 which we shall ap-
proximate as 2.00.

If spin-orbit coupling is included, various excited-state
orbital-spin combinations are mixed into the ground-state
Kramers doublet;

~
la, ) and

~
la2) are now generally

each composed of several orbital-spin combinations rath-
er than just a single product. Equation (14) remains valid
to first order in 8, but now the g value of the ground state
may differ si.gnificantly from the free electron value and
be anisotropic, as shown in Eq. (5).

There are two equivalent ways of using Eq. (14) for cal-
culating the g value in the presence of spin-orbit cou-
pling. One method is to use the Hamiltonian of Eq. (15)
and take matrix elements between states that have been
corrected for spin-orbit coupling. The perturbation is
treated to first order but the ground state

~
lai ) includes,

in addition to
~

1)
~
+ ), a linear combination of excited

orbital-spin states; likewise, for
~
la2). Alternatively,

Eq. (14) can be used with the non-spin-orbit-corrected,
ligand field-fashioned

~
la, ) =

~
1)

~
+ ) and

~
la2)

=
~

1)
~

—), but with a Hamiltonian difFerent than that
of Eq. (15). To take into account spin-orbit coupling, the
perturbation Harniltonian is modified to

&'=EL S+ju~(L+28) 8 (16)

and the non-spin-orbit-corrected ground states are treat-
ed to second order in gj'.

The two methods give identical results —a g value that
differs, because of spin-orbit coupling, from the spin-only
value of 2.00. The contribution of spin-orbit coupling to
thc g value depends on the complex. For example, in
azurin, the cupric site has g&

——2.04 and g3 ——2.27. The
maximum spin-orbit contribution, hg, „=g,„—2.00
=0.27, is small relative to the spin-only contribution, but
is of crucial importance to the I EFE. An externally ap-
plied electric 6eld will cause a noticeable change only in
the spin-orbit contribution to the overall g value. The
effect of the applied electric field on the free spin part will
be negligible. For this reason, the LEFE depends strong-
ly on spin-orbit coupling within the HAOM. %e later
derive a rigorous expression for the C;~ which incorpo-
rates spin-orbit coupling explicitly. This allo~s the
LEFE to be used to obtain information on the states of
the HAOM as formed under the inhuence of the ligand
environment.

B. Qrder-of-magnitude estimate of C;,.

It is instructive to compare the magnitudes of 5g due
to the applied electric field with the intrinsic hg arising
from spin-orbit coupling alone. The magnitude of Ag is,
approximately,

gll

Likewise, the magnitude of 5g due to the electric field E
is

6g-
(E( —Ek)(Ei —E))

The relative sizes of the field-induced and intrinsic contri-
butions to the g values are, therefore,

5g eE(1 ir ik)
Qg

With E —10 V/cm, (1
~

r
~

k ) —1 A, and Ek E, ——10
cm ', this ratio is 5g/Ag —10 . With hg already seen
to be of order 10 ', the magnitude of 5g is 10 . This 5g
corresponds to a shift in resonance magnetic field
strength of less than 1 G at 9.2 GHz. The size of the
shift, far smaller than the widths of the resonances,
necessitates the use of the spin-echo measurement tech-
nique. ' '

A 5g of 10 expected from an applied field of 10
V/cm leads, from Eq. (6), to an estimate for the C;, and
for the experimentally measured parameters cr —C; /g, of
10 cm/V.

C. Formu1ation of the C;J

Equations (6), (13), and (14) will now be used to get a
rigorous expression for the coefficients C; . As shown in
Eq. (6'), the linear —electric-field-effect coeficients actual-
ly involve three indices. These three indices represent the
three separate perturbations that cause an energy split-
ting of the ground-state Kramers doublet. The three per-
turbations are A,L S, p B, and e E r, corresponding to the
spin-orbit interaction, an applied magnetic field, and an
applied electric field, respectively. In the absence of these
perturbations each member of the Kramers pair is a sim-
ple product of an HAOM orbital with a pure spin state
and the two members of the pair are degenerate. These
perturbations act in different manners to admix HAOM
states and produce an energy splitting in the Kramers
doublet.

From Eqs. (6), (13), and (14) we see that the LEFE C;~
coefBcients depend upon the energy splitting of the
ground-state Kramers doublet. To calculate the C;.
coeScients, we derive an expression for the third-order
energy splitting of the HAOM Kramers pair and retain
terms that are linear in A, , B, and E since these are the
terms to which the LEFE is sensitive. The final expres-
sion for the C, will involve matrix elements between
HAOM orbitals only. The value of this approach is that
LEFE data can then be used as a direct probe of HAOM
states and therefore of the ligand environment.

The perturbation Hamiltonian is of the form

A'=A. L.S+p&B (L+2S)+eE r .

where
~
1),

~ j ) are non-spin-orbit-corrected, ligand field
states, and E&„E~ are the ligand field-induced energies of
the states (also uncorrected for the spin-orbit interaction).

%e now calculate the third-order correction to the ener-
gy of one member of the unperturbed ground-state Kra-
mers pair using '
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&1+ I'lm &&m l~'lq&&q l~'I l+&
m (~() q (wlj (E E—, )(E E—, )

& 1+
I

'
I
1+ & & 1+ I

'
I

m & & m
I

~'
I
l+ &

(E E )~
(18)

Bates has taken a different approach in treating the states and the various perturbations. Our method has the value of
immediately focusing directly on the HAOM states of interest. The following results incorporate all of Bates s expres-
sions and include additional terms not included by Bates but which are important in considering cupric sites of lower
symmetry than considered by Bates.

From Eq. (18) we retain terms linear in each of the three perturbations since these terms are the dominant contribu-
tion to the LEFE. (Higher-order terms in A, may also contribute, but will be orders of magnitude smaller in eifect. ) We
leave out terms containing matrix elements of the form ( 1

I
L

I
1 & because these are zero due to orbital angular momen-

tum "quenching" of singlet orbital states resulting from a low-symmetry ligand field. The expression for the energy
shift of one member of the ground-state Kramers doublet is, exclusive of spin matrix elements,

AE, =2e(us $ $ ((1IErfm&(m IBLlq&(q IALI1&+(I fErlm&(m IXLfq&(q IBLI I&
m (+1) q (~1)

+& 1
I
& L Im &&m IE r I q&&q I

~L Il&)~« —E()«, —E()

rn (&1)

For shifts in g that are linear in 8 and E we can use the standard expression

Equations (20) and (6') give

5g,„2b,E,
E(pa&)

The k subscript refers to the component of L from the spin-orbit interaction. Equations (19) and (21) give

C(~J~=4' 2 X (&ll" m&&m ILJ lq&&q l«k fl&+&ll»; Im&&m I«k lq&&q IL, I»
m (&1) q (&1}

+& 1 fl-, I
m &&m Ir; I q &&q I «k I

1 &)i« —E()«, —El)

& 1
I

r
I
»&1IL, Im &&m

I «k I
»i(E —E()'

m (~1)
(22)

If one is interested only in the shift in the principal values of the g tensor, j =k and Eq. (21) can be written with only
two subscripts

2 AE1

E;@~8
(23)

In Eq. (23) it is understood that for principal values of the g tensor, j=1—3. We can now write the explicit expression
for the C,. - for the principal values of the g tensor

&;, =4e 2 g ( &1 lr, lm &&m IL, lq&&q I«, I
1&+&1 lr; lm &&m I«, lq&&q II, I

1&
m (g-1) q (~1)

+&1 ll-, lm &&m Ir; lq&&q I «, I
1&)i(E —E()(E,—E()

— X
m (~1) (E E,)— (24)
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Equation (24) will be used to calculate g-value contribu-
tions to experimental LEFE o's in terms of states of the
HAOM.

We note here an additional consideration. Equations
(19)—(24) show that, in order to get the magnitude of 5g,
the calculated C;- are to be multiplied by the local elec-
tric field actually experienced by the Cu ion, which may
not be the same as the macroscopic applied field. This is
why the right-hand side of Eqs. (10}—(12), connecting the
calculated C," to the observed o, is multiplied by the ratio
of the local field to the applied field, R =EL /E, „„,d.
The greater this ratio, the smaller is the size of the calcu-
lated C;~ needed to simulate the observed o. For inor-
ganic crystals, this ratio is often taken to be the Lorentz
factor (2+a)/3, where e is the dielectric constant of the
crystal. However, for a sample of protein molecules
frozen in ice, the analysis is more complicated because
the cupric ion is imbedded in a protein shell surrounded
by a phase with a difFerent dielectric constant. Further-
more, there are sulfur atoms, of large polarizability,
neighboring the cupric ion. %e treat this situation in the
Appendix and conclude that, in terms of the structural
information available at the present time, one is limited
to taking for R (a ratio which may well be significantly
anisotropic) an average value equal to the I.orentz factor
(2+e) /3, where e is the dielectric constant of the sur-
rounding phase.

V. C;J FOR LO%-SYMMETRY SITES

A. Dz symmetry and LEFK at endpoiats

The point symmetry of the ligand environment enables
one to determine by inspection which of the C; are
nonzero, thus saving one the trouble of carrying out cal-
culations that lead to zero values for coefficients. The
nonzero components of the C 1 matrix (C) can be
identified for any point group by determining how the
full matrix C transforms under a general transformation
of the coordinate system represented by a 3X3 matrix
with components which are the direction cosines of the
new and old axes. Which of the components are nonzero
is then arrived at by requiring the C; matrix to remain
invariant under any symmetry operation allo~ed by the
point group under consideration.

As an example, if the site is inverted through the ori-
gin, the transformed matrix C' is related to the original
by O'= —C. If the point group of the site contains the
inversion operator, then the transformed matrix C' must
also obey O'=C. These two conditions require that
C=O, thus proving that there can be no LEFE in a site
with inversion symmetry. With arguments of this type,
all nonzero components of the 18 possible C~ (C;~„) can
be identNed. The nonzero entries for the LEFE are iden-
tical to those for the piezoelectric eft'ect which is also de-
scribed by a third-rank tensor. These nonzero com-
ponents can be found in Ref. 23.

We now determine how LEFE data, especially at the
endpoints, can be used to determine what modifications
should be made to the states of an HAQM that were orig-
inally written as Dz irreps (Table I). This will result in a

truer model of the actual electronic states. These results
are, of course, valid whether the molecular system is of
biological origin or not.

The LEFE data on the cupric sites in azurin and stella-
cyanin (Figs. 7 and 8 of Ref. 12) show nonzero effects at
the endpoints of the spectrum. From Eqs. (10), (11), and
(12), endpoint signals require that some of the following
coeff]c]ents be nonzero: C]] (C]]]} C21 (C211) C31

3] ] ]3 ]$3 23 2/3 33 333 ). From matrix
(8), we see that these coefficients represent changes in
principal values of the g tensor, and that in Eq. (22) the
components of I. and A,I. must be the same, i.e., j=k, as
shown in Eq. (24). However, for D2 symmetry these
coeScients will all be zero, as we now show.

A fundamental theorem of group theory (basis-
function orthogonality theorem } is that a matrix ele-
ment &j ~

&'
~

k & must be zero unless the direct product
of the irreps of the states and the &' operator contains
the totally symmetric or identical representation, I,; i.e.,

I, XI ~ xI'k ——a, I,+ g a„l „,
nial

(25)

with a]&0. The expression for C,,„[Eq. (22)] is of the
form

C;,k - & 1
I r; I

~ & & ~
I LJ I q & & q I

Lk
I

1 & (26)

Each of these three matrix elements must obey Eq. (25) if
the C,. k is to be nonzero. For example, if the last matrix
element is to be nonzero then the irreps must obey

1(q)xl(L„)xl (1)=I, . (27)

[Note: I, symbolizes the identical representation for the
point group and is also denoted by A], whereas I (1)
symbolizes the specific irrep of the ground state. ] We
have simplified Eq. (27) by taking into account that all D2
irreps are one dimensional. Equation (27) can be rewrit-
ten as

I (q) =I (L„Ix I (I ) (27a)

Similarly, Eq. (28) restricts the possible I (rn). This then
imposes a condition upon the 6rst matrix element, as ex-
pressed in Eq. (29), which incorporates the irreps of all
the operators of Eq. (26)

I (1)x I (», ) x I (I., ) x I (L„)x I (1)=I, .

As an irrep of D2, I (1), the irrep of whichever orbital is
the ground state, obeys I (1)X I (1)=I, . This, and the
Abelian nature of the D2 group, leaves us with

I (r; ) X I (L, ) X I (Lk ) = I'] .

If the symmetry of the point group is D2, Eq. (30) can
only be fulfilled if i, j, and k are all different. This proves
that D2 symmetry requires that all of the coeScients that

This restriction of I (q) then sets a condition on the mid-
dle matrix element of Eq. (26)

1(m) XI (L, ) XI (q) =1(~)XI (L, ) XI'(L, ) XI (1)

(28)
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involve changes in the principal values of the g value
(j =k ) must be zero. Therefore, a paramagnetic center
located in an environment of rigorous D2 symmetry will
not exhibit an LEFE signal at the endpoints of the EPR
spectrum.

B. Descent in symmetry

In order to explain LEFE signals at endpoints of the
spectrum it is necessary to use HAQM states that belong
to irreps of a point group with symmetry lower than D2.
Qur approach in lowering the symmetry is to stay close
to the HAOM D2 Inodel of Table I because of its success
in explaining other data, and its ease of use. %e there-
fore have attempted to simulate the LEFE data of the
blue cupric proteins by modifying the states of Table I as
little as possible. The modifications that lower the sym-
metry to C& are mixings of orbitals from one D2 irrep
into another. Once we determine the required mixings,
we can then determine the properties of the ligand field
that causes them and, perhaps, postulate the ligand envi-
ronment responsible.

Qur aim is to make the least change possible in the D2
HAQM. The necessity for modifications in the D2 model
has been shown above to be the presence of nonzero
LEFE signals at the endpoints of the EPR spectrum. In
actuality, only the presence of nonzero LEFE signals at
the low-field (g~) end requires modification of the Di
model. The shape of the nonzero signal at the high-field
end makes this part of the spectrum explainable in terms
of the efkcts of the nuclear hyper6ne interaction within
the framework of the D2 HAOM.

The hyperfine interaction can combine with the g value
to change the resonance frequency. An upturn at the
high-field end of the spectrum will result when the princi-
pal components of the hyperfine coupling tensor, A, obey
3, ~~A& and/or Ai. When this is true, molecules
with their g, axis making a small angle with the applied
magnetic field will contribute to the high-field EPR sig-
nal. This can produce an upswing in the high-field end of
the LEFE signal even when the site has rigorous D2 sym-
metry and could explain the high-field LEFE data for
azurin and, possibly, stellacyanin.

The low-field data do require a lowering of some of the
HAQM orbitals from D& symmetry. The following gen-
eral results for the low-field end can be easily adapted to
situations where the high-field data also require changes
in the D2 HAQM states. The arguments would be analo-
gous only with z ~x (or y) and g3 ~g i.

The LEFE data show that the predominant signal at
the low-field end is cri &. Equation (11) shows that this re-
quires either or both of C&3 and C23 to be nonzero. The
second subscript 3 means that we are looking at the g3
endpoint, and the other subscript shows that the changes
in g3 occur upon application of an external E 6eld in the
molecules' local x or y axes. Thus, our modifications in
the states of the HAOM of Table I must allow an electric
field in the molecular x or y direction to couple to a
state(s) that will produce a change in g&. Equations (14)
and (16) show that the states that are involved in calculat-
ing g3 are the ground state, and excited states that couple

The last two matrix elements of (31) are nonzero within
the D2 model of Table I if

~

m } is a state that transforms
as an A, irrep. Therefore our new admixture need only
make the erst matrix element nonzero. This requires

(32)

TABLE II. Information about the point group D2. (a) Irre-
ducible representations (three diFerent notations) and com-
ponents of orbitals and operators that transform as each. (b)
Multiplication table for D2 irreps (the group is Abelian).

Irreducible
representation

Operators
and orbitals

Ai Il
8) I 2

82 I 3 I y

83 I 4 I

d 2 2,12,4s

dxy ~Pz

de st
~yziPx

I 2xI 2
——I i

I2xI4 ——I3

I3xl3 ——Il
I3xI4 ——I2

to the ground state via L„which are the
~
3, } states.

(If we were interested in changes in gz we would focus on
the

~
83 } state, and likewise changes in g& would involve

the
~
82 } state. ) First we will investigate changes in the

ground state that would lead to nonzero calculated C,3.

C. Ground-state modi6cations to produce C;3

Group theory allows immediate determination of the
symmetry properties that admixtures to the ground state
of Table I must have if they are to produce nonzero C»
or Cz3. %e will be lowering the symmetry of the HAOM
by admixing into the ground state an orbital that does
not transform as the D2 irrep (8, ) of the ground state of
Table I, However, we can still make use of selection rules
if we describe components of operators and components
of orbitals by their D2 irreps. This is possible because
each of the Cartesian x, y, or z components of the opera-
tors belongs to a difFerent irrep. Table II(a) lists the Dz
irreps (in three notations) and the components of the
operators and orbitals that transform as each irrep.

The ground state of Table I transforms as the I, irrep
because it is composed of

~
d,» } and

~ p, }.After mixing
in another orbital„we can still use Dz selection rules if we
take into account that the ground state is now a combina-
tion of more than one D2 irrep. For example„after add-
ing

~ p„},the ground state can be described as I",+I, .
We now treat the last term in Eq. (24) for the C;;; the

analysis applies as well to the other terms. The direct
products of irreps given in Table II(b) are used to deter-
mine which orbital must be added to the ground state to
get a nonzero Ci& (i = 1,j=3).
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TABLE IV. States directly involved in producing C» and C23.

18, & =X, '[P, 13d, )+(1—P,')'"14p„)+b„14s) ]

I»&=& '[P 13d., &+(1—&i)'"14p, &+bi, 14&&l

I
A i & =&,'[(1+r')'"13d,~ &+b13d„i,i &+rb I

4~ &+~ i. 14p. &+ui, 14p, & &

1&i & =&a, 'Ni13d., &+(1—Pl)'"14p, &+~14~ &+bi. 14p. &+bi»14p, &1

with Nz ——(1+o +bt„+bi )'~
I

Pf I' 1 +y2+$2+y2$2+g2 +g2 )1/2

We now express I'(1) as a sum of I „as it is in Table I,
plus I Ad due to the admixed orbital. The irrep of the ad-
mixed orbital can be easily determined from Eq. (32)„

(I,+I ~d)XI„X(l,+I ~d)=I„+(1»XI'Ad) . (32a)

The last line in (32a), and Table II(b) show that for C» to
be nonzero requires admixing into the ground state an or-
bital that transforms as the 1» irrep, such as

I p»), re-
sulting in a nonzero ground-state electric dipole moment.
Admixing

I p» ) to the ground state allows all the terms
of Eq. (24) to contribute to C». Similarly, nonzero C$3
requires admixing Ip„). Note also that admixture of
14s ) to the ground state will make C&i nonzero.

In Table III we show quantitatively how the coef-
ficients C», Czi, and Cii depend upon the admixing
coef5cients, defined in Table IV, of the HAQM states.
These three LEFE coeScients are the only ones that con-
tribute at the low-field endpoint. Throughout Table III
the 18 ) state orbital hybridization parameters P, , Pz,
and Pi are in the range 0.80 to 0.94, which makes the
lower 18 ) states predominantly of 3d character and the
higher 18') states mainly of extended 4p character. We
also use 5=1.0 to allow the two

I
A, ) states to have

both 13d ~) and 13d, , ) components. In Table III,
cases A and 8, la —1d, reflect the proof in the above
paragraph that breaking the D2 symmetry by adding

I p» ) to the ground state will produce nonzero Ciz, and
likewise for

I p„) and C2s.
Adding Ip„) and Ip ) to the ground state produces

nonzero LEFE coefFicielits consistent with the azurin and
stellacyanin experimental data of Peisach and Mims. '

However, the HAOM must now be reorthonormalized in
order for the treatment to give valid quantitative calcula-
tions. Before doing that, we will show that breaking the
Di symmetry of the HAOM by modifying the

I A, )
state is an alternative way to produce C&3 and C23.

D. Modification of
I A, ) to produce i»i i

One can determine by inspection which orbital should
be admixed into the

I A, ) state of the HAOM of Table I
in order to produce a nonzero o.

~ 3. L, connects

I
3d i i ) of the A, excited states with

I 31„» ) of the

8, ground state, and the term from Eq. (24) that can, po-
tentially, give a large LEFE contribution is

(33)

with
I

m ) =
I q ) =

I Ai ). However the pure Dz I A, )
state would give ( A, I r, I A, ) =0. It is this excited-state
dipole moment matrix element that requires D2-breaking
orbital admixing into

I A, ). To ascertain the irrep I ~d
of the orbital that should be mixed into

I

A i ), one again
requires that the product of the irreps contain I,. We
find that if I ~d

——I „(e.g. ,
I p, ) ), then the matrix element

and C» will be nonzero for I (r, ) = I „. Likewise, an ad-
mixture of Ip») will produce nonzero Cii, and Ip, )
nonzero C33.

In Table III, cases 3 and 8, 2a-Zc, show how C&3 and

Czi depend upon the admixing of Ip„) and Ip ) into

I A, ) of Table I. As with admixing of
I p, ) and Ip )

into the ground state, quantitative calculations require
reorthogonalization of the manifold. We now treat this
reorthogonalization and demonstrate how one can begin
to account quantitatively for the experimental data from
the blue cupric proteins, on the effect of an applied elec-
tric field on g values, in terms of HAOM models with the
D2 symmetry selective1y lowered, as just described.

VI. QUANTITATIVE COMPARISON
WITH EXPERIMENTAI. DATA

A. Magnitude of calculated C;3 in relation
to experimental o.

~ 3

In Sec. V a general treatment was given for modeling
the g-value LEFE, valid for any low-symmetry cupric
site, based upon modifications of a D2 HAOM. We
showed explicitly how group theory can be used to deter-
mine easily the symmetry properties required of admixed
orbitals in order to simulate various LEFE signals, and
will now focus specifically on the low-symmetry cupric
site in azurin.

In order to explore the potential of g-value perturba-
tion alone to account for the observed signal, it is con-
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venient to define the quantity

2 2C~3+C23
2

(34)

and then to arrive at CJ 3", the magnitude of C~ 3 which
would be required if it were entirely responsible for the
experimental value of oi 3. The LEFE data for azurin
have cri 3

——0.73X10 cm/V. ' This value is divided by
8.06X10 to get cr in units of k/cm ', units in which it
is convenient to calculate the C;J from Eq. (24). Applying
Eq. (11),with g3 =2.27 for azurin, one finds

RCi 3"——2. 1 X 10 A/cm (35)

Also, for azurin,
~ C3i

~

=0.52X10 A/cm

8. Reorthonormalization of manifold

with ground-state modi6cations

To make quantitative calculations based upon the ad-
mixtures of Sec. V requires reorthonormalization of the
HAOM manifold. The renormalization of individual
states is of course trivial, but reorthogonalization in-
volves several states simultaneously and presents various
options. If

~ p„) and
~ p») are added, the ground state

must be reorthogonalized with respect to the
~
82 ) and

~
83 ) excited states. (Rigorously, the ground state

should also be reorthogonalized with respect to the
~

8 2 )
and

~
83 ) excited states. However, inclusion of these

states mould make reorthogonalization signi6cantly more
complicated mith a small effect on the results, and mill

therefore not be included at this time. ) By inspection of
the states in Table I, we can see that if

~ p ) is added to
the ground state, orthogonalization could be accom-
plished by adding eithe~

~ d„» ) or
~ p, ) to the

~
8, )

state. Instead, we add
~

4s ) to both the ground state and
the

~
82 ) and

~

8 i ) states.
There are two reasons for using

~

4s ) to reorthogonal-
ize the states. First, introducing

~

4s ) into the ground
state has already been determined to be of great use in

simulating the observed azurin hyper6ne data' and
therefore has a separate justification outside of the LEFE
simulation. Second, adding

~ p„) or
~ p» ) into the

ground state implies the presence of a residual ligand
electric field along the molecular x or y axes. These same
electric fields have the correct symmetry properties to ad-
mix

~

4s ) into the
~
Bz ) and

~
83 ) excited states, thus

making the admixtures self-consistent in terms of the

As discussed in the Appendix, at the present time we will
take for the ratio 8 the Lorentz factor (2+@,)/3, where

e; is the dielectric constant of ice. At the low tempera-
tures used in the experiment e-3 (Ref. 29), which makes
R ——,'. Therefore Cj 3, from Eq. (34) into which the C;
calculated from Eq. (24) are entered, should be compared
with

0

Cmax 2 1 X 10 A/cin

ligand fields.
The admixings of

~

4s ),
~
p„), and

~ p ) into the
ground state,

~ p„) and
~ p» ) into the

~
A, ) state, and

~

4s ) into the
~
Bz ) and

~
83 ) states are represented in

the HAOM model of Table IV, in which we have includ-
ed only those states from Table I that are directly in-
volved in the calculation of C,3 and C23.

Using the states of Table IV, we attempt to quantify
the experimental LEFE data on azurin by determining
what admixing coefficients will lead to calculated C» and

C2& values as required by Eqs. (34) and (35a). It is infor-
mative either to let b,„and b

~» (taken equal, as will a,„
and ai, for simplicity) be nonzero or a,„and ai be
nonzero, in order to separate the effects of D2-breaking
admixing into the ground state from admixing into the

~
»I, ) state. The coefficients P„P2, P~, y, 5 are, of

course, present when the site is taken to have D2 symme-

try. In order to reduce the dimension of the coefficient
search space, we constrain the P coefficients and o (the
admixing coeflicient of

~

4s ) into the ground state —not
to be confused with a J 3 which characterizes the experi-
mental LEFE data) to values that have been found realis-
tic in simulating various spectral data from low-
symmetry cupric sites in proteins. ' ' The additional re-
quirement of orthogonality of the states then couples the
ground-state admixing coe5cients to the excited-state ad-
mixing coefFicients and the number of undetermined pa-
rameters available to simulate the LEFE data is reduced
to 1.

Cases A and 8, lines 3, of Table III show the effects
upon C;& of varying b„(and consequently b,», b2„and
b&, ) with o of the ground state kept constant. As can be
seen in lines 3b and 3c, to produce a value of CJ 3 near

Ci 3" of Eq. (35a) requires moderate mixing of Dz-
breaking orbitals into the ground state (4—8%) and a
larger D2-breaking admixture into excited states ~82)
and

~
8& ). Lines 4a and 4b (together with lines 3a) show

that, at constant b, , reduction in o increases C~ 3, stat-
ed differently, by decreasing o. one can obtain CJ 3 of ap-
propriate size with smaller admixtures to the ground
state. Relatively large values of CJ 3 can be generated
with moderate x and y character in the ground state, e.g.,
case 84c.

C. Reorthonormalization of manifold with
~

A, ) state
modification

In Sec. V it was shown that C&3 and C23 will be
nonzero if the D2 symmetry of the HAOM is broken by
adding

~ p ) and ~p») into the
~
3, ) state. To quantify

the size of the admixing coefficients requires reorthonor-
malization of the manifold involved. The mixing of

~ p„)
and

~ p ) into
~

A, ) forces modification of the
~
82 )

and
~
83 ) states and again we introduce

~

4s ) into these
states to effect orthogonalization. Orthogonalization also
requires

~

4s) to be present in the
~

A
&
) state. This is

easily justified by the fact that
~

4s ) transforms as the I,
irrep of the D2 point group and could be present in

~
A, ) before the symmetry is lowered, as shown in Table

I.
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The requirements of orthogonality and axiality again
restrict the number of free parameters introduced by the
D2-breaking admixtures. Table III shows horn the C;3
vary with the size of a,„=a, (which determines the
value for bz, b&——, ). In cases A and 8, lines 5, y =0.20,
which implies a small (-2%) contribution of the D2
allowed

I
4s ) in the

I
3 i ) state. In cases A and 8, lines

6, y =0.50, which implies a larger
I
4s ) character

( —10%). Lines 5c show that if y =0.20, a 2 —4% contri-
bution from each of

I p„) and
I p ) to the

I A, ) state
will give calculated C~ 3 values at least —2C~3" of Eq.
(35a). However, this also requires admixture of

I
4s)

into both the
I 82 ) and

I 8, ) states of not less than
10%, which is rather large. Lines 6b show that if y is
raised to 0.50, then —,'Ci 3" of Eq. (35a) can be reached

again with a 2 —4% contribution from each of
I p„) and

Ip ) to the
I 3, ) state, but now with only a 2 —6'%/ad-

mixture of
I
4s & '«o bo

Clearly the smaller admixtures of Dz-breaking orbitals
are preferable because they imply smaller modifications
of the versatile Dz model.

VII. CONCLUSION

%ithin the framework of a hybrid atomic orbital mod-

el, we have investigated the linear electric field effect on
the g values of low-symmetry cupric sites. Starting with

D2 symmetry electronic states based upon other experi-
mental data (optical absorption, CD, EPR, MCD), we

have used group-theoretic selection rules to determine
symmetry-breaking modifications necessary to account
for observed LEFE signals. Admixture of

I p„) and

Ip~) orbitals to the ground or
I

A, ) excited states,
along with the admixture of

I
4s ) to the

I ~r ) and
I
~i )

states, leads to LEFE signals calculated from g-value per-
turbation which account in large part for the data from
blue cupric proteins.

There is another contribution to the LEFE signal not
discussed in this paper. The presence of an applied elec-
tric field will also have an efFect on hyperfine interactions
due to the perturbation of the orbitals. This is not the
modulation of the spin-echo envelope that has been stud-
ied earlier but a hyperfine efFect that can produce a dc
shift in the size of the observed LEFE signal. The poten-
tial importance of this hyperfine contribution is that,
through reducing the magnitude required of the calculat-
ed C, , it may lead to good quantitative agreement with

the data from blue cupric proteins with relatively small
values of the D2-breaking admixture coelcients, includ-

ing a value for o. close to that used in simulations of EPR
hyperfine splittings. A realistic HAOM mould be able to
reproduce data from a variety of measurements with the
same coeScients. Small symmetry-breaking admixtures
are attractive because they leave the model close to be-

longing to the well-understood„readily visualized, point
group D&. Our preliminary investigation of hyperfine
efFects on the LEFE indicates that they add to the g-value
signal calculated here and aHow the use of reasonably
small D2-breaking admixtures, including a value of o in

the range determined from other experiments. %e report
on this in a future paper.
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dicated in Sec. IID, the equations that connect the C;3
and o.
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EL /Eappiied (A 1)

This relation, between the local and applied electric
fields, is considered below. The approach employed here
in calculating 8 is based upon the Lorentz cavity field ap-
proximation. If the cupric ion were part of a homo-
geneous crystal of dielectric constant e, this approach
would give FL ——Eapphed (e+2 ) /3, resulting in 8 = (e
+2)/3. In the case at hand, the cupric ion is in a more
complicated environment.

%'e picture the cupric ion as located in a protein shell
that can be viewed as a continuous medium of dielectric
constant e ( T), which is surrounded by the continuous
medium of ice with a dielectric constant e, (T). This pic-
ture faces the same complication found in Lorentz field
treatments, namely, how to handle corrections due to the
nearest and next-nearest neighbors of the ion of interest.
The Lorentz treatment separates the local electric field
into contributions from several sources. If the volume
occupied by the protein molecule were assumed to be a
spherical vacuum, then the electric field within that
volume would be

6;+2Ep=E0 applied

The approximation of the protein as spherical is not bad
for the case of azurin which has been described as a "Aat-
tened pear, " and has both prolate and oblate charac-
teristics. However, the copper atom, while not exposed
to the solvent, is located near the surface rather than in
the central region of the molecule. Figure 1(a) shows the
general features of the system consisting 6f the copper
atom bound within the protein structure which is, in
turn, surrounded by the ice phase. One can begin to
quantify the factors influencing the local electric field by
taking the system to have spherical symmetry, i.e., the
copper atom is at the center of a spherical shell of pro-
tein. The local electric field experienced by the cupric
site is now split into separate contributions:

ECU Ep +Ep +Ep +~p (A3)

Epo is the field produced by all charges external to the
protein molecule, Eq. (A2). Epi is the depolarization field
from the surface charge induced on the protein molecule
when it acquires an induced dipole moment. E2 is the
Lorentz cavity field, the field from induced charges on
the inside surface of an imaginary spherical cavity within
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EL "=EP0+ EPI +EPI =EP0 P—P/3' + PP/3e

=EP0 E——, I;,d(e; +2)/3 . (A6)
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FIG. 1. (a) Schematic view of blue cupric protein molecule in

frozen solution. (b) Idealized site geometry. The sulfur atom ly-

ing above the copper atom is not shown in the lower drawing.

EP EP +EP —E—P /p P (A4)

If the protein is assumed spherical then EPI —— PP/3e-
where I'P is the volume polarization of the sample. This
gives an average electric field in the protein of

EP EP +EP —E—P /g —EP PP/3p
P o P (A4a)

To find the local electric field at the cupric site, assumed
to be at the center of a spherical cavity inside the protein,
we must add EP2. If the cavity is spherical and the polar-
ization is uniform in the continuous medium surrounding
the cavity, then the electric field E2 at the center of the
cavity due to the surface charge density on the inner sur-
face of the cavity is

EP —PP /3g P (A5)

Adding up all the contributions to the local field (but ig-
IlorlIlg EPI for tile IIIOIIleIlf) gives

the protein and concentric with the Cu site. The cavity is
normally pictured large enough to include nearest and
next-nearest neighbors. EP3 is the field from charges or di-
poles inside the cavity.

The overall average electric field in the protein is

Equation (A6) shows that the local electric field experi-
enced by the cupric site does not depend on the presence
of the protein shell. This is only true if the protein mole-
cule and the imaginary cavity centered within it are
spherical, in which case the electric field of the induced
polarization charges on the outer surface of the protein,
E&&, cancels with the electric field of the induced charges
on the inner surface, EP2. If the shape of ihe protein is
not spherical like the imaginary cavity, then EP and EP2

will not completely cancel. Furthermore, the surface of
the protein is not uniform, there being hydrophobic
patches in azurin (and plastocyanin). The structure of
the water immediately surrounding the proteins of in-
terest is not accurately known at this time.

Contributions to the local field from the nearest neigh-
bors, EPl of Eq. (A3), will have an eff'ect. Part of this
effect is incorporated in calculations employing the
HAOM, a model which implicitly includes covalency, but
there are other sources to be considered. In the blue cu-
pric proteins, at the present stages of refinement of x-
ray-determined structures, the copper atom is seen to be
roughly coplanar with, and bonded to, three atoms at dis-
tances of 2.0—2.2 A (a thiolate sulfur and two imidozole
nitrogens); the copper is also bonded to a thioether sulfur
about 3 A distant. By considering the idealized model
of this site shown in Fig. 1(b), one can estimate the mag-
nitude and anisotropy of the contribution to EP3 from
electric dipoles induced in the atoms. Here, the radius of
the Lorentz cavity is 2.8 A with the copper atom at the
center; at 2 A are one sulfur and two nitrogens, and also
included in the cavity at 2.8 A is the second sulfur. The
values of polarizability are taken as 1 and 3 A for N and
8, respectively. One c@n readily calculate that an elec-
tric field in the x direction (parallel to the copper-thiolate
sulfur bond) is increased by 50% at the copper atom. In
the y and z directions, the field is decreased by 25%.
These numbers serve to demonstrate that electric dipoles
induced inside the Lorentz cavity probably have a
significant effect upon the local field. The approach of
water molecules to the cupric site must also be con-
sidered. %'hile the hydrophobic environment of the site,
shown in crystallographic models, ' would repel water
molecules, a nonrandom arrangement of nearby waters
could, possibly, produce a noticeable electric field at the
copper atom. Without detailed information on where
these water molecules are located, there is little upon
which to base a calculation, even to the extent of deter-
mining the sign of their contribution to E3. For the
present, then, we take the effect of EP3 to be negligible, in
which case Eq. (A6) applies and leads to the result that
the R of Eq. (Al) is the usual Lorentz factor R =(e,
+2) /3. e, = 3 at liquid-nitrogen temperature and
below, ' so 8 =—', .
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