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Turbulent transition by photon-correlation spectroscopy
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The technique of photon-correlation spectroscopy was exploited to study turbulent pipe Ao~

behind a grid. %e measure the correlation function g (t) of the light intensity scattered by small

particles suspended in the turbulent Siid. The results imply that the probability distribution func-

tion for the small relative velocity fluctuations in the turbulent grid flou is Lorentzian-like. The sta-

tistical properties of the small velocity fluctuations over varying length scales possess a self-similar

feature. This self-similarity vvas seen only when the Reynolds number becomes larger than a

specific value %,. All the measurements suggest that the Sow changes its character at this point.

I. INTRGDUCTION

A quantity of fundamental interest in the theory of tur-
bulence is the velocity difference V(R, t), that a pair of
points in the turbulent Auid separated by a distance 8
differ in velocity by an amount V(R, t) =v(r(t)) v{r(t)—
+R ), where v(r (t) ) is the local velocity of the fluid. The
statistical property of the velocity fluctuations V(R, t)
can be characterized by its moments, (

~
V(R, t)

~

"), or
more generally, by its probability distribution function,
P(V(R))"

The distribution function P(V(R)) is accessible by the
technique of photon correlation spectroscopy (PCS), as
was Arst demonstrated many years ago by Bourke et al.
The photon correlation technique used here differs from
the standard one of laser Doppler velocimetry (LDV),
in that LDV measures the local velocity v(r(t)) whereas
photon correlation spectroscopy senses the instantaneous
velocity difference, V(R, t) With th. e PCS scheme, the
scattering is produced by small seed particles in the Auid,
which follow the local Aow. The photodetector records
the scattered light, which is the beating of Doppler-
shifted light scattered by pairs of Aowing particles. The
output of the detector is therefore modulated at a fre-
quency equal to the difference in Doppler shifts of all par-
ticle pairs in the scattering volume. For each particle
pair, separated by a distance R, this di8'erence is

q [v(r(t)) —v(r(t)+R )]=q V(R, t),
where the scattering vector q has the amplitude

q = (4nnliL)sin(8/2. ) .

Here 0 is the scattering angle, n the refractive index of
the Auid, and A, is the wavelength of the incident light.
With this so-called homodyne method, one records the
intensity correlation function g (t)= (I(t')I(t'+t ) ),
where I(t) is the intensity of scattered light, and the an-
gular brackets represent an ensemble average over many

realizations. The PCS technique can also be used to
probe velocity gradients in laminar Aows, in which case
the ensemble average is not needed because the Aow is
deterministic.

It will be seen that when V(R, t) is a stochastic vari-
able, as in turbulence, the light scattered by each pair of
particles suspended in the turbulent Auid contributes a
phase factor cos[q V(R )t] (due to frequency beating) to
the intensity correlation function, g(t), and g(t) is an in-
coherent sum of these ensemble averaged (or time aver-
aged) phase factors over all the particle pairs in the
scattering volume. The ensemble average of the phase
factor cos[q V(R)t] involves the velocity distribution
function P(V(R)). When the distribution function
P(V(R)) has the scaling form P(

~
V(R)

~

/u(R)) dis-
cussed below, the ensemble average of the phase factor
cos[q V(R}t] becomes the Fourier cosine transform of
P(V(R)). Therefore the measurement of g(t) yields a
weighted integral of the Fourier cosine transform of
P(V(R) ). (This weighting is required, because the detec-
tor is sensitive to all particle pairs in the scattering
volume, and for small R, more pairs will be found in the
scattering volume than that for larger R.) When the
direction of the scattering vector q is fixed, the one-
dimensional distribution function P{Vq(R }) can be mea-
sured, where Vq(R) is the component of V(R, t) along the
scattering vector q (we drop the subscript q hereafter
when no confusion arises). The PCS technique yields in-
formation about velocity Auctuations without introduc-
ing an invasive probe, such as a hot wire anemometer.
Nor is it necessary to invoke Taylor's "frozen tur-
bulence" assumption to interpret the measurements.

In theories of fully developed turbulence, ' "' ' the
dynamic process of turbulence is considered as a cascade
of turbulent kinetic energy from large scales to small
scales. Energy fed into the turbulence goes primarily into
the large eddies. The size of these eddies is determined
by the boundary of the system and establishes the outer
scale Lo of turbulence. From these large eddies, smaller
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eddies are generated, and then still smaller ones. The
process continues until the length scale is small enough
for viscous dissipation to occur. The smallest length
scale of the energy cascade is called the Kolmogorov dis-
sipation length' L&, which is equal to (v /e)', where v
is the kinematic viscosity of the Quid, F is the local energy
dissipation rate. According to the Kolrnogorov theory, '

only two parameters, R and c., are relevant to the tur-
bulence at scales in the inertial range, I.d ~~ R ~pl. o.

A question of fundamental interest in the theory of tur-
bulence is how the statistical property of the relative ve-
locity Auctuations V(R, t) varies with the length scale R,
when 8 is in the inertial range. It was shown that' ' for
fully developed turbulence, the velocity fluctuations
V(R, t) are self-similar, i.e., the statistical properties of
V(R, r) over varying length scales R become identical un-
der an appropriate scaling of velocities. This implies that
(

~
V(R, t)

~

") is proportional to a power of R. It is easy
to show that this self-similarity fo11ows if the distribu-
tion function P(V(R)) is of the form P(

I
V(R)

I
/" (R))

where u(R) is a scaling velocity associated with length
scale R. Theoretical models have been developed" '
and have led to predictions of self-similarity of fully
developed turbulence. Experiments at very large values
of Reynolds nurgber in air channels, ducts, and in the at-
mosphere confirm some of these predictions. ' '6 In con-
trast, very little is known about "real" turbulence at
moderate Reynolds numbers. We use the word "real" to
distinguish the turbulence being studied here from the
chaotic behavior of nonlinear systems with only a few de-
grees of freedom. The experiments described here are an
investigation of the turbulent Qow at intermediate Rey-
nolds numbers.

We explore turbulence in the familiar geometry of pipe
How through a grid. ' The Reynolds number of this grid
Qow is defined as A =MU/v, where U is the mean How

velocity at the center line of the pipe, M the aperture size
of the grid which generates turbulence, and v is the kine-
matic viscosity (v=0.01 cm /sec in water). Several not-
able features of the turbulent Sow were found. When the
Reynolds number becomes larger than a transition Rey-
nolds number %, (-460), the intensity correlation func-
tion g (r ) obeys a scaling form, g ( t) =g (x), where

x =qu(L)t (Lo/L)i' .

Here L is the size of the scattered beam viewed by the
photodetector, and u(L) is the characteristic velocity as-
sociated with an eddy of size 8 =I.. In the Kolmogorov
theory' u (R)=(eR )' . The largest scale of turbulence
generated by the grid is denoted as L, o which is propor-
tional to the grid aperture size M. According to Eq. (1.1)
the characteristic decay time of the decaying function
g(t) is of the order of [qu(L)(LO/L)~] '. Because the in-

verse decay time is proportional to q rather than q, it is
clear that the relaxation of the velocity Auctuations can-
not be characterized by a turbulent di8'usivity.

Both the functional form of g (x) and its scaling argu-
ment x provide information about statistical properties of
V(R, t). Our measurements of g(t) suggest that the dis-

tribution function P(V(R)) is of Lorentzian form for
small values of V (R, t) when R ~%,. Equivalent-

ly the characteristic function [the Fourier transform of
P(V(R))] decays exponentially. The exponent y in Eq.
(1.1) shows a nontrivial R dependence, and reveals a
transition character when A is near and above A, . By
measuring how the characteristic decay time of g (r) de-
pends on L, we extract the % dependence of
(g= 1/3 —y ). A plot of g versus A exhibits a kink at %,
(-460). When % is near and above %„it was found that

(1.2)

where a lies between 0.5 and 0.2. When A ~ 1400, g has
climbed to and saturated at a value close to —,

' (the Kol-
mogorov value). Our measurements of g ( t) indicate that
in the range of 4605% 53600, the concept of the self-
similarity can still be applied to the velocity fluctuations
even though the fiow is far from being fully developed.

The next section of this paper contains the derivation
of the correlation function g (t) of the light intensity scat-
tered by the particles in the turbulent Quid. Experimen-
tal details appears in Sec. III and the results are present-
ed and analyzed in Sec. IV. Finally the work is summa-
rized in Sec. V.

II. THEORY

The starting point is to consider the electric field scat-
tered by X identical particles suspended in a turbulent
(luid. The diameter of the particles is taken to be small
compared to the wavelength X of incident light. In the
case where the polarization of the incident beam is per-
pendicular to the scattering plane, the scattered electric
field E (t) is a simple sum of the fields radiated by each of
the particles in the scattering volume, and has the form

=Eoexp( icot) g exp[ —iq r/(t)] .—
j=]

(2.1)

(2.2)

where the angle brackets represent the time average over
l' . Here

+r (t +i) r„(t +t)]I— (2.3)

Here r, (t) is the trajectory of the jth particle inside the
scattering volume, ~ is the angular frequency of the in-
cident light, and Eo is a proportionality factor involving
the distance from source to detector, relative refractive
index of the particles, and the wavelength k.

The correlation function of the light intensity scattered
by the particles in the turbulent Auid is, by definition,

(E*(t')E(i')E*(r'+t)E(t'+i) )
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Q= g {expIiq [r. (t') r—„(t')]I}
k, j=1

semble average if the scatterers are randomly distributed
in the fluid.

Since the particles are assumed to follow the motion of
the fluid, we have

=N+ g {expIiq [r (t') —rk(t')]I }=N . (2.4) ri(t'+t)=ri(t')+ f dt"v(r, (t")), (2.5)

The fluctuation terms (k &j) do not survive a time or en-
where v(r (t)) is the velocity field of the {low at position

rj. Then Eq. (2.3) becomes

N

exp{iq [r (.t') rk(t—')+r (t') —r„(t')]Iexp iq f '+'dt "[v(r (t")}—v{r„(t")}]
kj, m, n =1

(2.6)

With the same assumption as we made for Eq. (2.4), the
fluctuation terins in Eq. (2.6) may be dropped, and the
remaining terms satisfy the condition [see Eq. (2.4)],

r, (t) r„(t)+—r (t) r„(t)—=0, (2.7)

when q&0. The two possible choices to satisfy Eq. (2.7)
are j =k, m =n, j&m and j=n, m =k, m &n. On drop-
ping the inconsequential contribution from the term
k =j =m =n, Eq. (2.6) becoines

I

Here the scattering volume is assumed to be quasi-one-
dimensional with length L, and h (R) is the number frac-
tion of particle pairs separated by distance R in the
scattering volume. When X particles are evenly distribut-
ed in a one-dimensional scattering volume with length L,
the fraction of particle pairs separated by E. is

it (R ) =(N n)/[N—(N —1)/2]

=(2/N)(1 n /—N) =(2/L)(1 —R /L) (2 11)

K=N + g (expIiq U(R(m., n), t')t I )
m~n

=N +2 g {cos[q U(R(m, n), t')t]}, (2.8)

If we assume the ensemble average of the turbulent veloc-
ity is equivalent to its time average, Eq. (2.10) may be
written in an alternative form

g(t)=1+ f dR h(R) f dV, (R)P(V, (R))
0 oo

&(cos[qVq(R)t ], (2.12)

g(t)=1+(2/N ) g (cos[q U{R(m, n), t' t}] }.
m yn

(2.9)

Here U(R(m, n), t)=v(r (t))—v{r (t)+R(m, n)), and
R(m, n)=r„—r . The integral in Eq. (2.6) is replaced
by U(R(m, n},t)t because the shortest turbulent eddy
turnover time, tz, is much longer than the time t of in-

terest in our experiment.
When N ~~1, the summation in Eq. (2.9) can be con-

verted into an integration over the scattering volume.
Therefore Eq. (2.9) becomes'

g(t)=1+ f dR h (R)(cos[q U( Rt')t] }. (2.10)
0

P(Vq(R))=u(R) 'Q(Vq(R)/u(R)), (2.13)

where u(R) is a characteristic scaling velocity, which, in
general, will depend on the direction of q, then Eq. (2.12)
becomes

where V (R ) is the component of U(R ) along q, and
P(V (R)) is the probability distribution function of
Vq(R). If the turbulence is isotropic P(Vq(R)) is in-

dependent of q.
If P( V~(R ) ) is assumed to have the scaling form

g(t) =1+f dR it (R)f 1[Vq{R)/u(R)]Q( Vq(R)/u(R)) sc[oqu(R)tV (Rq)/u(R)]
0 —oo

=1+f dR h(R)F{qu(R)t) . (2. 14)

The function F{qu(R)t ) is the Fourier cosine transform of the velocity distribution function Q( V (R)/u(R)).
The Kolmogorov theory of fully developed isotropic turbulence' gives

([V(R, t)]"}=a„([V(R,t)]'}""=&„(«)"", (2.15)

where B„are apparatus-independent constants and V(R, t) is the amplitude of U(R, t) Equation (2..15) applies to the
separation 8 in the inertial range I z ««8 «&1.0, where I.& is the Kolxnogorov dissipation length and L0 is the outer
scale of turbulence. Using Eq. (2.13), we have

{[V(R,t)]"}=f d[V(R)/u(R)]Q(V(R)/u(R)}[V(R)]"=8„[u(R)]", (2.16)
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8„=I dz Q(z)z" . (2.17)

So according to the Kolmogorov picture the characteris-
tic scaling velocity u (R) in Eq. (2.13) is

(2.18)

where c. is the energy dissipation rate of turbulent How.
Taking ihe intermittency of turbulence into account,

the p-model predicts' that

{2.19)

with y =(d —H/3, where d is embedding dimension and
His the fractal dimension of the turbulent active region.
In this case, Eq. (2.13) becomes

P( V, (R))=(R /Lo)"[u'(R)] 'Q( V„(R)/u'(R)),

(2.20)

where u'(R)=(eR)'~ ( Lo/R)~, which is the characteris-
tic turbulent eddy velocity with intermittency correc-
tions. Clearly, (R /Lo) r is the probability that a pair of
points in turbulent Quid separated by a distance 8 be-
longs to the same active region {a homogeneous fractal)

l

Here lt (R )(R /Lo) ~ can be thought as a joint probability
that a pair of particles separated by a distance R belongs
to the same active region of turbulent Now.

It should be noted that g (t) is not assured of having
scaling form g (t) =g(x), where x is defined in Eq. (1.1),
merely because the characteristic function F(y ) in Eq.
(2.21) is of this form. However, if F(y) is an exponential-

ly decaying function of its argument, and h(R) in Eq.
(2.21) is an algebraic function of R, then it is indeed true
that g(t)=g(x), in accordance with our observations.
We now examine the implication of the assumption that

F(q (eR )'~ t (Lo/R)r )=F(y) -exp( —y),
where

(2.22)

y =q(sR)'i t(L 0/R) r.

Inserting Eq. (2.22) and Eq. (2.11) into Eq. (2.21) gives

of turbulent How, and Q( Vq(R)/u'(R))/u'(R) is the ve-
locity distribution function in the active region. Then
Eq. (2.12) becomes

g(t)=1+ I dR h (R){R/Lo) ~F(q(ER)' t(LO/R)~) .

(2.21)

g (x)=1+2(L/Lo) rexp( —x) g x "Il ((3+9y)/(1 —3y)+1)/[(1+3y)I ((3+9y)/(1 —3y)+1+n )]

—I {(6+9y)/(I—3y)+1)/[(2+3y)l ((6+9y)/(1 —3y)+1+n )]I . (2.23)

Here x is defined in Eq. (1.1) with u(L)=(eL)' „and
I'{z) is the y function. If d =W (y=0), Eq. (2.23) be-
comes

g (x)=1+exp( —x) g x "[12/(n +3)! 720/(6+—n)!],
n=0

(2.24)

where x =qu(L)t. Note that the assumption of a single
exponential decay of F(y) implies that P( V(R )/u (R) ) is
a Lorentzian function. Of course, P( V(R)/u(R)) cannot
remain I.orentzian for very large velocity fluctuations,
otherwise its moments higher than the first would
diverge.

The above calculation of the correlation function g (t)
is made by assuming that the photodetector is an ideal
one (the detecting area of the photodetector is
infinitesimal small), and that g (t) varies on only one dom-
inant time scale. Of course, the validation of these as-
surnptions must be verified in the real experimental situa-
tion.

There are three characteristic times associated with the
decay of g(t), in addition to the time T =[qu(L)(LO/
L)~] ' [see Eq. (1.1)], which characterizes the velocity
fluctuations V(R, t). These are the following: (1) the tur-
bulent turnover time, t„=R/u(R), associated with ed-
dies of size R, (2) the time associated with the Brownian

motion of a difFusing particle tD=(2q D) ', where D is
the Stokes difFusion constant, and (3) the particle transit
time tU ——2)/U, where Xl is the diameter of the laser
beam. Homodyne light scattering spectroscopy is practi-
cal as a means of probing the spatial velocity fiuctuations
in a turbulent Now, only when the decay time T is much
less than all three of the above characteristic times„ i.e.,
when

T((( tt ttDtU) . (2.25)

From the correlation function g(t) (glance ahead to
Fig. 5), one gets a feeling for the typical decay time T; it
was always less than 100 psec in our experiments. This
characteristic time is much shorter than t&, which we es-
timated to be 10 sec or more. Thus in calculating g (t)
it may be assumed that each pair of seed particles
separated by a distance R, is moving at constant velocity
V(R, t) in the time intervals t of interest. This approxi-
mation is invoked in relating the measured correlation
function to the velocity distribution function P(V(R)).
At q =2.42 & 10 cm ', corresponding to a scattering an-
gle of 90', ta —j0 sec. Only in the laminar flow
domain did diffusion compete with the Aow fluctuations
in limiting the decay time of g (t). The lifetime broaden-
ing eftect due to the finite transit time tU was very small
in our experiments, the measured decay time T being al-
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mays at least a factor of 10 shorter than TU. Thus the
condition of Eq. (2.25) is almost always satisfied in our
experiments, and the homodyne scattering experiment
will almost always be dominated by the contributions of
the turbulent Auctuations in the form of Eq. (1.1).

The correlation function measured by the correlator is
not properly normalized and has the form

7//

(
BT

g(t)=( n) [1+H(t)], (2.26)

where (n ) is the average number of photon counts per
sampling time. The fact that the detecting area of the
photomultiplier is of 6nite size may affect the functional
form of H(t) In .the simple case where scatterers move
independently, as in diffusion, the measured homodyne
correlation function g(r) can be factored into parts that
depend on the spatial variables (for example„ the angle
subtended by the photodetector} and the dynamics. z In
this case,

g (r) = (n )'[1+f ( A )G (i)], (2.27)

where f ( A) is a measure of the spatial coherence of the
scattered light across the face of the photodetector.
When the particles move coherently, as in laminar (low,
for example, no such factorization is possible. ' Never-
theless, in our experiments it was found that for different
values of L, q, and for large enough %, plots of
logio(H (r) ) versus logio(t) could be brought into registry
by translating the graphs relative to each other both hor-
izontally and vertically. This implies that a homogeneous
function can be factored out from H(t) for each %, hence
we write H(t) as

(2.28)

where G is a homogeneous function of L ~q "t, and f (L) is
the vertical translation factor [analogous to f (A) in Eq.
(2.27)]. The function G extracted from our measurements
contains information about the dynamics of turbulent
fluctuations, and its time dependence is the same as the
calculated correlation function g(r) —1. The scahng ex-
ponents g and p are to be determined from the experi-
ment, to be discussed in Sec. IV.

III. EXPERIMENTAL DETAILS

Figure 1 shows the physical arrangement of the experi-
mental setup. The fiuid, mater, is circulated through a
closed system by a pump. The water was seeded with po-
lystyrene spheres of diameter 0.06 pm, the number densi-

ty of polystyrene spheres being such that their mean
spacing is much larger than their diameter (dilute solu-
tion) and much smaller than the smallest eddy size of the
turbulent flow I.d. This assures adequate sampling of the
turbulent flow. Since the size of the polystyrene spheres
is much smaller than the wavelength of the incident light,
the scattering by these particles is nearly isotropic. A
section of the pipe of 2.0 in. diameter, is made of glass to
admit the incident laser beam and observe the scattering.
Undesirable velocity fluctuations produced by the pump
or by the pipe corners, are damped out by a screen (SC)
(aperture size is 2.0 mm) on the high-pressure side of the

FIG. 1. Schematic diagram of the experimental setup. LS,
argon-ion laser; L&,I.2, lenses; S, slit; G, grid; SC, screen; BT,
air bubble trap; PM, photomultiplier; COR, correlator; CP,
computer; IN, inlet of fiow; OUT, outlet of How.

grid (G), which generated the turbulence. The aperture
size of the grid M was 3.1 mm and the diameter of the
rods with which the grid is made of was 1.5 rgm. The
measuring point was on the axis of the pipe and 28 cm
downstream from the grid (y /M =90). The circulating
fluid was temperature controlled and its mean flow veloc-
ity U was varied by changing the pump rotating frequen-
cy. Ancillary LDV measurements established that the
mean velocity pro61e was virtually flat rather than para-
bolic in the direction transverse to that of the mean flow
when A ~ 280, and that the turbulent intensity
(5v ) '~ /U was 7% at % =700, where 5v is the fluctua-
tion part of the local velocity. Flow visualization showed
that the turbulence in our system did indeed originate
from the grid, rather than from other sources.

The lens L& in Fig. 1 focuses the incident beam from
an argon-ion laser to make the scattering volume as one
dimensional as possible on the axis of the pipe, while L2
forms an image of this volume on the slit S, of adjustable
width I.. The lens I.2 is placed in such position that the
size of the scattered beam is the same as that of its image
(the magnification is 1). It is the light passing through
the slit which illuminates the photomultiplier (PM). The
water inlet and outlet as well as a stand pipe (BT) where
air bubbles can leave the fluid, are shown in Fig. 1. The
output pulse train from the photodeteetor went to a com-
mercial correlator (COR), whose output is g (t). Also in-
dicated is the computer (CP) for storing and analyzing
the data. The laser beam was sometimes brought into the
fluid along the fiow axis, as shown in Fig. 1, but in the q-
dependence measurements, where the direction of q was
kept in parallel with the mean flow direction, it entered
through the cylindrical mall of the glass pipe.

IV. RESULTS

In Sec. II me stated how the measured correlation
function was analyzed to establish that G(t) is a scaling
function of the control parameters U, q, and L [see Eqs.
(2.26) and (2.28)]. Here we detail how the exponents g
and p were determined. When G(t) was plotted versus
time r on a log-log scale, for fixed A and q but difFerent



P. TONG, %. I. GGI.DBURG, C. K. CHAN, AND A. SIRIVAT

-2
io 8( ) L(mm)

45 P. I 0 80 6
x 60$ ]0 I $6+

90 044 806

I l I I i i il l

scaling function G(x)= I[g ( )/(rn )']—) I /
f(L) vs x =qu(L)r(Lo/L)r at indicated parameters

values of I., these curves could be brought into coin-
cidence by sliding one curve horizontally with respect to
an arbitrarily chosen one by an amount 5(L). A plot of
log[5(L)) versus log(L) showed the data points to lie on a
straight line, and the slope of the straight line g turned
out to be a function of R.

Similarly, it was found that for fixed A and L, but
varying q, plots of log[6(t)] versus log(t) could also be
superimposed by translating them horizontally by an
amount 5(q). As long as R exceeded a certain value

(R, -460), 5(q) was found to be roughly proportional to
q. This result is in notable contrast to difFusion, where
fluctuations relax at a rate proportional to q . The fact
that the decay rate of G(t) is proportional to q rather
than q2, assures that V(R, t) is not Gaussianly distributed
and that one is not dealing with a difFusive phenomenon.

In the manner described above, it was established that
G ( t) =G (x) when % ~ A„where x is proportional to
qtL ~' '. Since x must be dimensionless, we write it as in

Eq. (1.1) with u(L)=(eL)'/, so that g= —,
' —y. The pa-

rameter s, which has the dimension of the energy dissipa-
tion rate in the Kolmogorov theory, is not directly mea-
sured in this experiment, nor are any assumptions made
about it. Nevertheless, we do Snd that the velocity u(L)
which brings our data into the scaling form, is roughly
proportional to the mean fiow speed U. If we use the
equation which relates the dissipation rate e with the dis-
tance behind the grid in the fully developed turbulence
case' (e- U /M), our result of u(L)- U could be
thought as an indirect check of u (L)—e'/s.

The scahng behavior of G(t) discussed above is
displayed in Fig. 2, which shows G(x) as a function of x
for various values of 8 (or q), L, and %. The exponent
g(A) could be determined by an alternative method de-
scribed below. From the scaling behavior of G (r) it is ex-
pected that the half-decay time T of G (t) should be pro-
portional to [L&ql'] ' [see Eq. (2.28)]. Figure 3 shows

IO
I I I $1 f

V~y 8'= 460
0, )5

4J
4P

IO
i(aX

"~x % = l400
0.$$ x

~ =2200
0.29 -~~ ~ o

-6
IO I s i s a l

IO

~ a ~

t

Slit width L (mm)

FIG. 3. The half-decay time T of g(t) vs slit width L at

q =2.42X10' cm '. The number labeled below a line is the
slope of that line.

how T varies with slit width L (in mm) at a fixed
q=2. 42)&10 cm ' (8=90'). The three curves corre-
spond to %=460, 1400, and 2200. It is seen that in-
creasing I. reduces T when I. is in the range of 0.1

mm &I. & 1.0 mm. This is because opening up the slit in-
creases the size of eddies seen by the photodetector, and
larger eddies should have a shorter decay time. The
starting point of the power-law behavior of T is at
L =1.0 mm. This limitation was due to the coherence
length of the optical system.

Ideally, T should be independent of L when L &Lz,
since there are no eddies smaller than I.&, and in fact one
might hope to measure Lz [L&-0.01 mm at % =3000]
by finding the value of L at which T levels off as L is de-
creased. Unfortunately, I.& could not be determined in
our experiment because the diameter 2) of the laser beam
could not be reduced below 0.1 mm, and Xl ~yLz. Thus
the turnover in T(L) at small L was controlled by the
laser bearo diameter. In fact, Fig. 3 reveals a decrease in
T as I. is reduced below the beam diameter, an efFect
which we do not fully understand. Focusing attention on
the decade of L, over which log(T) varies linearly with
log(L) (see Fig. 3), we extract the slope g in the equation,
T-L ~. It is seen that g does not vary with A in a
monotonic fashion. The numbers below each straight-
line segment in Fig. 3 are the values of g at the three indi-
cated Reynolds numbers.

Figure 4 shows more clearly the variation of g with A
(dashed curve, scale on right). Note the abrupt change of
g at %, -460. This same kink is also seen in the varia-
tion of T itself with A (solid curve in Fig. 4, scale on left).
The latter measurements were made at q =2.42)&10
cm ' (8=90'), L =1.0 mm, and the incident laser beam
entered the turbulent stream antiparallel to the fiow
direction. Somewhat below A, the profile of the mean
velocity, as determined by LDV, has become Hat in the
direction transverse to the pipe. The Sow visualization
confirmed that when J7 is below %„the Sow is already
pluglike, a phenomenon one often associates with a
chaotic state, and that the How approaches a homogene-
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FIG. 4. The variations of the exponent g ( X ) (extracted from
half-decay time T) and T (~) with A. The solid and dashed
curves are drawn by eye through the data points.

TABLE I. The variation of the exponent p with Reynolds
number 4' at I.=1.0 mm. Note: %'=0 is Brownian motion,
A =125 is laminar Row.

ous turbulent state when % reaches A, . Combining the
discussions on Fig. 2, we therefore associate the abrupt
change at A, (-460), with the onset of the relative ve-

locity fluctuations being self-similar. As the Reynolds
number is increased to above 1400, the exponent g rises
to about —,

' which is the Kolmogorov value.
Also measured was the q dependence of the half-decay

time T. Here the direction of q was kept fixed, namely
parallel to the flow direction, while its magnitude was
varied. The slit width was also fixed at I.=1.0 mm. To
satisfy these conditions it is necessary to vary both the
direction of the incident beam and that of the observa-
tion, which limited the range of q-values that could be
spanned. It was found that T(q) also was of power-law
form T-q ". Our measurements of p versus R are
summarized in Table I, where p is given for seven values
of W, from 0 to 1860. Note that when the flow is absent
or laminar, the decay time of g(t) is limited by the
difFusive motion of seed particles. In this case T
=rid =(2q D) '. As the turbulent level is increased, the
exponent p falls below 1.0, and again increases toward
1.0, a value which was obtained at A =1860. Thus @=1

is chosen for the scaling form of 6 (x), where x is defined
in Eq. (1.1). 7.20

6.96

C)—6.72

L = Q. emrn

8 = eo

H= ives

In Sec. II it was shown that if the characteristic func-
tion F (the Fourier cosine transform of the probability
distribution function P) is an exponentially decaying
function of the single variable y in Eq. (2.22}, then g(t)
has the scaling form g (x) given by Eq. (2.24). This equa-
tion was extremely well fitted to our measurements of
g(t) in the range of A 5 1400 (i.e., when y-0). An ex-
ample of this good fit is seen in Fig. 5 (solid line), which
shows g (t) at %= 1395, q =2.42 X 10 cm ', and L =0.6
mm. But what surprised us is that, even when the Rey-
nolds number is in the transition region (460 5% 5 1000),
our data can still be 6tted to the same functional form as
that in Eq. (2.24). To obtain this fit it was necessary to
redefine x as that in Eq. (1.1) and let y be a function of
Reynolds number %. There is only one adjustable pa-
rameter, T' (x =t/T'), in this fitting procedure, and T'
exhibits the same L-dependence as that of the half-decay
time Tas shown in Fig. 3.

The above fitting suggests that the velocity distribution
function P(V(R)) has the scaling form P(V(R)/u(R))
even though the How falls far short of being fully
developed. The 6tting also indicates that the functional
form of this scaling function P( V(R)/u(R)) is Lorentzi-
an, at least for the most probable part of P( V(R)/u (R))
since g (t) is relatively insensitive to the rare fluctuations
of velocity in our experiment. %e note parenthetically
that our measurements of P( V(R)) are consistent with
those obtained in strongly turbulent systems by Anselmet
et al. '5 They find that P( V(R)/u(R)) decays exponen-
tially over five decades (P varies from 10 to 10 ) when
V(R}/u(R) p2. 0. However, the most probable part of
P(V(R)/u(R)) (P &0.1) is clearly not of exponential
form, and indeed decays roughly as a Lorentzian function
out to V(R)=2u(R), where u(R)=( V(R) )'~ .

The Snite values of y which we measured as a function
of A and the above fitting assure that our observations
cannot be fully explained by either the Kolmogorov
theory (in our notation, this theory gives y =0), or the in-
termittent turbulence theories„such as the P-model
[where the exponent y is a constant independent upon
R]. The inapplicability of these models is hardly surpris-
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0.84
1.0

0
125
280
460
775

1400
1860

Aa —-~

I
4 ~0
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FIG. 5. A typical correlation function g(t) vs t. The solid
curve is a 6t to the incomplete y function in Eq. (2.24).
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FIG. 6. The variation of the exponent g (extracted from I }with yl. The solid curve is drawn by eye through the data points, and
the dashed curve shows the oscillatory behavior of g. The inset is a plot of log, o[g (t}/( n ) —1] vs t at indicated parameters.

ing, considering that only moderate Reynolds numbers
sre reached in our experiments. What is pleasingly unex-
pected is that the flow does exhibit a striking self-simil'ar
behavior as long as R exceeded A, .

It is also known from Eq. (2.24) that for small values of
t, log, o[g (t)—1] is a linear function of time t with a slope
proportional to qu(L). The inset in Fig. 6 shows
a plot of log, o[g (t) /( n ) 2 —1] versus time t at % = 1600,
8=90', snd L =0.6 mm. It can be seen that only st large
t does the curve start to deviate from linear behavior.
The reciprocal of the slope of the straight line Stted from
short-time data gives a typical relaxation time I of g(t).
With this motivation, we analyzed another set of correla-
tion functions measured with various values of A, L and
at fixed q (8=90'). A semilog plot of g(t)/(n ) —1

versus t was made for each g(t) to extract the relaxation
time I . For fixed A and q but different values of L, I as
a function of slit width L obeys a power law, I (L)-L
(a log-log plot of I versus L is very similar to that in Fig.
3), and the exponent g turns out to be a function of %.

The variation of g with A determined in the way de-
scribed above is displayed in Fig. 6. It is clear that Fig. 6
and Fig. 4 are similar for the same covered region of R;
but at the higher A end, Fig. 6 shows more clearly that
g(R) saturates at a value close to —,

' (Kolmogorov value}.
In addition, it can be seen in Fig. 6 that there is a small
amplitude oscillation superimposed on the saturation line
of g, while Fig. 4 only shows the onset of the oscillation.
This oscillatory behavior of g was also seen at the same
region of mean How velocities when the gnd was re-
moved. It should be noted that the amplitude of these os-
cillations is comparable to the experimental uncertainty
in g.

It was found that when g ( t ) /( n ) —1 was plotted
versus t on a semilog scale, for 6xed I. and q, the devia-
tion of these curves from a straight line gets larger as A

is increased (i.e., the number of data points lying on a
straight line decrease). This kind behavior was also ob-
served from curves of 1 o,g[og(t)/(n ) —1] versus t at
fixed R and q but increasing values of L. The above ob-
servations can be understood, at least qualitatively, from
the energy cascade picture of turbulence. Our calcula-
tion of the correlation function shows that g (t) is basical-
ly s weighted summation over many exponentials involv-
ing various length scales. As % is increased, the tur-
bulent energy cascades down through an increasing num-
ber of length scales. Since eddies at each length scale sdd
another exponential to the correlation function, the devi-
ation of g(t) from pure exponential behavior should in-
crease as A (or L) is increased.

To further study the transition at %, -460 in Fig. 4,
the exponent g as a function of [% —A, ]/%, is plotted
on a log-log scale in the vicinity of A, . It was found that
sll the data points lie on a straight line over about one
and a half decades. So we have

g(%)—
I [.8 %,]/%,)— (4.1)

with a=0.21+0.07. If A, is taken as 280, as in Fig. 6,
u =0.45+0.08.

V. SUMMARY

We have studied grid-generated turbulence with the
rarely exploited technique of photon correlation spectros-
copy. Measurements of this type give access to the prob-
ability distribution function P( V(R ) ) that a pair of parti-
cles in the fiuid, having separation R, differ in velocity by
V(R, t) At moderate . Reynolds number the intensity
correlation function g (t) has the scaling form g (x),
where x =qu(L)t(Lo/LF, and u(L)=(sL}'~' is the
characteristic eddy velocity. This self-similar behavior is
seen only when A&%, (%,-460). All measurements
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ments suggest that the Now changes its character at this
point. The exponent g (or y) may be regarded as an addi-
tional parameter that is needed to characterize the flow at
moderate turbulent levels. In the vicinity of %„g as a
function of % is approximately of the form
g- [(%—R, )/R, ] . Our measurements are consistent
with the assumption that I'( V(R ) /tt (R ) ) is of Lorentzian
form at small values of V(R, t). Equivalently the charac-
teristic function I' (y) decays exponentially.
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