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The complete set of Lyapunov exponents for a two-dimensional two-body shearing system is cal-

culated using an extension of the method of Hoover and Posch. The Lyapunov dimension is found

to be a decreasing function of the shear rate. This implies that the nonequilibrium distribution

function is a fractal attractor a&hose dimension is less than that of the equilibrium phase space.

I. INTRODUCTION

The nonequilibrium molecular dynamics (NEMD) of
shear Aow in periodic boundary conditions using the
"SLLOD" algorithm' is a we11-defined statistical mechani-
cal system which exhibits a nonequilibrium steady state.
The behavior of these systems (of 10 to 10 atoms) in
both two and three dimensions is relatively well under-
stood. The shear liquid exhibits a non-Newtonian viscos-
ity, pressure, and normal stress difference, each varying
as a function of shear rate in a nonanalytic way for a
significant range of the accessible strain rates
(10 &y&2). Recently the emphasis has shifted to-
wards a better formal understanding of the properties
and attainment of nonequilibriurn steady states. To test
such theories of the nonlinear response directly in corn-
puter experiments, the "SLLOD" algorithm for shear Bow
has proved to be a very useful model system. For exam-
ple, the transient correlation time function theory was
demonstrated to be correct by comparing its predictions
directly in NEMO simulations. To be able to character-
ize a nonequilibrium steady state completely we need to
obtain the nonequilibrium phase-space distribution func-
tion f(I,t). We can consider an ensemble of equilibrium
systems at time zero, to which we apply a steady shear.
The distribution function will change from equilibrium at
t =0 to the steady state distribution function as t~ oo.
Taking a two-dimensional system of X particles f ( I, t) is
a function of 2% position coordinates and 2X momenta,
as well as the time. In order to make some progress in
this direction we need to reduce the number of degrees of
freedom in the system. The smallest nontrivial shearing
system is X =2, and this is the one we shall investigate
here.

The two-body shearing system, with hard core pair in-
teractions, has been simulated using molecular dynam-
ics, while the relaxation time approximation to the
Boltzmann equation has been solved in both two and
three dimensions. The relaxation-time approximation
incorporates the biasing of the angle 8 between collisions
(due to the combination of the strain rate and the total ki-
netic energy constraint} but assumes that the coordinate
distribution remains uniform, These studies do indeed
show that this two-body system retains many of the prop-
erties of many-body systems; however, the Boltzmann
equation solution predicts analytic behavior of the viscos-

ity, pressure, and normal stress as a function of shear
rate. It was also shown that the distribution of velocities
in NEMO simulation is biased by the applied shear.

It has been clear that the effect of an applied Geld must
be to deform and distort the initial equilibrium distribu-
tion function. However, in a previous paper it was
shown that if the initial equilibrium phase-space distribu-
tion function exists on a subspace of dimension X, then
the Gaussian isokinetic nonequilibrium distribution func-
tion exists on a space with a fractal dimension which is
less than X. This is a much stronger result and it implies
that any phase point in the initial ensemble will move to-
wards a fractal attractor under the influence of a Geld and
that the size of the attractor is determined by the field.
The implication of this dimensional contraction for the
resolution of Loschmidt's paradox has been emphasized
recently.

The information dimension D& for the two-body shear-
ing system was shown to be a decreasing function of
shear rate, initially at y =0, DI -2.89, this value falls and
eventually approaches 1 at very large shear rates. There
are a number of difnculties in the calculation of the infor-
mation dimension. Gne must calculate the discrete entro-
py S(s) as a function of discretization length s and extra-
polate S(s)/Ins to a~0. Attempts have been made to
improve the extrapolation procedure' but problems with
systematic error still remain. In an attempt to better
characterize the system we have calculated the Lyapunov
dimension DL of the two-body shearing system. This re-
quires the complete set of Lyapunov exponents for the
system and no subsequent extrapolation procedure is
needed. This approach is generally believed" to be a
more accurate way of estimating the effective fractal di-
mension.

Two other very recent studies of similar Nose-Hoover
therrnostatted nonequilibrium systems have been made
but both of these are analogues of diffusion; they are
diffusion in a periodic Lorentz gas' and conductivity in a
one-dimensional periodic potential. ' In both cases a de-
crease in the effective dimension is observed.

II. LYAPUNOV EXPONENTS

Consider the trajectory I (t} of a d-dimensional, X-
particle system in phase space. The dimension of the
phase space is 2dX. In general the system trajectory will
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cover a surface whose dimension is lower than the full
phase space. The dimension of the surface is 2' —X„
where X, is the number of constants of the motion
(2dX —X, is the embedding dimension). If we want to
study the convergence or divergence of neighboring tra-
jectones then we consider a set of basis vectors in the
(2dX —X, )-dimensional subset of phase space called the
tangent space [5i,5z, 5i, . . . j, where 5,. =I,. —I'0. If the
equation of motion for the trajectory is of the form

then the equation of motion for the tangent vector 5; is

(2)

tion of the length of the tangent vector (5"), but as we

shall see numerically any such dependence is negligible.
For the constrained case the instantaneous multiplier g is
given by

5(r) F(r) 5(r) 5 ". (r)
5(t) 5(&.) 5(r).5(&)

The second equality follows from the equation of motion
for the unconstrained tangent vector. As the magnitude
of 5(t) is fixed, the denominator is a constant and assum-
ing ( g ) to be independent of 5,

T(I ) is the Jacobian matrix (or stability matrix BG/BI )

for the system. If the magnitude of the tangent vector is
small enough the nonlinear terms in Eq. (2) can be
neglected. The formal solution of Eq. (2) is

5;(t)=exp J ds T(s} 5, (0) . (3)

The mean exponential rate of separation of the ith
tangent vector gives the ith Lyapunov exponent

A, , (r(0)„5,(0))= lim —ln
t

(4)

and differentiating with respect to time, the Lyapunov ex-
ponent A, can be written as

It may seem from Eq. (7) that the exponent A. is a func-

The Lyapunov exponents can be ordered
&)t,M and if the system is ergodic, the ex-

ponents are independent of the initial phase I (0) and the
initial phase-space separation 5;(0).

A new method of calculating Lyapunov exponents has
been proposed by Hoover and Posch. ' It uses Gauss's
principle of least constraint to make the length of each
tangent vector a constant of the motion, and to maintain
the orthogonality of the set of tpngent vectors. The
method is simplest to describe if we consider its applica-
tion to the calculation of the largest Lyapunov exponent.
Take two trajectories I

&
and F'0, and define the tangent

vector 5, where 5=1 i
—I"0. In the Gaussian method the

equations of motion for one trajectory, I &, are changed
to include a constraint force term —(5. The multiplier g
is chosen to fix the length of the tangent vector
)~5~~=(5.5)' . The constrained equations of motion for
the tangent vector are

5=F—$5 .

If we assume that on average, the magnitude of the un-
constrained tangent vector 5" diverges exponentially,
then

( 5(&)'5 (&) &

5(&) 5(&)

This is an example of the application of Gauss's principle
of least constraint to constrain a mechanical system. In
molecular dynamics simulations it has become common-
place to use Gauss's principle to change from one ensem-
ble to another. ' Typically a fixed external field ensemble
is changed to the ensemble conjugate to it, the fixed Aux
ensemble. The application to Gauss's principle to the
calculation of Lyapunov exponents exactly parallels this
situation. In the past it has been usual to monitor the
divergence of a pair of trajectories. Here we monitor the
force required to keep those two trajectories a fixed dis-
tance apart in phase space.

As an example of the Hoover-Posch technique to a
particular problem, consider the Lorenz model. ' The
equations of motion are

cr(x —y)—
y = (r —z)x —y

xy —bz

(10)

where o, r, and b are predetermined positive parameters.
To calculate the Lyapunov exponents we use a method
which is very similar to the Gaussian method of fixing
bond lengths and bond angles in simulations of alkanes. '

The principal difference is that, rather than applying the
constraint symmetrically to both trajectories (or sites), we
leave one trajectory I 0(t) unconstrained. This ensures
that the origin of the set of tangent vectors is a real physi-
cal trajectory. We then constrain trajectory 1,(t) to be a
fixed distance from I o(t). Trajectory I 2(t) is constrained
to be a fixed separation from I o(t), and orthogonal to the
first tangent vector 5,(t)=I,(t}—I 0(t). Introducing the
double script notation 5;- =5 —5, , we have that the ith
tangent vector is 5; =5O,-, and 5; where i&0 is an ortho-
gonality condition; for example, fixing the distance 5,2

maintains the orthogonality of the first two tangent vec-
tors. Trajectory I 3(r) is constrained to be a fixed separa-
tion from I o(t), and 5O3 orthogonal to both 5oi and 5O2.
The equations of motion for the individual constrained
trajectories are
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The equations of motion for the separation vector 5,, can
be obtained from the equations of motion for the trajec-
tories. For 5, to be a constant of the motion,

5;, 5,, =0. (12)

Substituting the equations of motion for 5,J into Eq. (12)
gives a set of six coupled linear equations, of the form
AX=8, to solve for the multipliers g;, where

5ol

512 501 512 502

502 512

51z

0

0 0

513 501

5o3 5o3.513 5o3.5z3

0 51.3 503 513 513 523

—5z3 5oz —5z3.51z 5z3 5o3 5z3.513
2

(13)

501 Fol

502 F02

512 Flz

503 F03

513 F13

5z3 Fz3

(14)

As 5111 is orthogonal to 50z, the third term on the right-
hand side is zero. From Eq. (7) we see that the ith
Lyapunov exponent is defined by

(50; 511;)=A,;50; . (16)

Combining Eqs. (15) and (16), the second Lyapunov ex-
ponent is given by

(17)

Similarly, the third Lyapunov exponent can be calculated
by consldcrlng thc equation of motion fof 5o3~ substituted
into Eq. (12)

0

5o3 5o3= 5o3 5 o3
—(4+4+4»o3

+&3503.5ol+ 06503.5oz =o

We have seen from Eq. (9) that the largest Lyapunov
exponent is simply the average of the multiplier g, . To
relate the second and third Lyapunov exponents to the
set of Gaussian multipliers g;, consider the equation of
motion for tangent vector 50z derived from Eq. (11), sub-
stituted into Eq. (12),

5oz 5oz=5oz. 5 oz
—5oz [(2502+4(502 —5ol))

=502.5 oz
—(02+4)5oz+ 03502 5ol

As 5pl 502 and 5p3 are all orthogonal, the last two terms
on the right-hand size are zero, and using Eq. (16), we
find that

4=&04+03+4& . (19)

The observation that the Lyapunov exponent depends on
both the length multiplier and the orthogonality multi-
pliers is a little counter-intuitive. Hoover et al. I3 have
formulated a similar method using orthogonal forces, and
in that case the Lyapunov exponent is related to a single
multiplier.

The scheme developed above was used to calculate the
Lyapunov exponents for the Lorenz mode1, which are
shown in Table I. The equations of motion were solved
using the 4th-order Runge-Kutta scheme in double pre-
cision (64 bit) arithmetic, with a timestep of 0.01. A typi-
cal simulation run length was 2&(10 timesteps. The
tangent vectors werc periodically rescaled and reorthogo-
nalized using the Gram-Schmidt procedure, to remove
accumulated error in the differential equation solver. For
most simulations we used o. =16, r =40, and b =4. The
initial phase point was (x,y, z)=(10,0,30) and the initial
tangent vector directions were (1,0,0), (0,1,0), and (0,0, 1).
These were chosen to allow direct comparison with the
previous results. ' ' It appears that the optimal value
of thc tangent vcctoI for 64-bit arithmetic ls ln thc range
10 —10 . At this level the error estimates are small-
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Tangent vector length
$2

TABLE I. Lyapunov exponents for the Lorenz model.

Ref.

10'
10
10—4

10-'
10—8

10—lo

1.373(3}
1.375(1)
1.375(1)
1.375(1)
1.375(1)
1.375(1)
1.36
1.37
1.37(8)

—0.001(5)
—0.003(3)
—0.003(3)
—0.003(3)
—0.003(3)
—0.003(4)

0.00
—0.02(9)

—22.373(5 )
—22.372( 3 )

—22.372(3 )
—22.372( 3 )
—22.372(3 )
—22.372(4)

—22.37
—15.2(21)

18
19
21

o.=10, r =28, and b =—,'
0.905(5) 0.000(1)
0.91 0

—14.571( 1)
—14.6 20

est. The Lyapunov exponents do not show any depen-
dence upon the tangent vector length.

III. TWO-BODY PLANAR COUETTK FLOW

Gaussian thermostatted planar Couette How which can
be driven by the following set of first-order equations of
motion:

Pi
q; = +n„yy, ,

Pi =Pi —&x'Ypy& —p& ~

N

X (Fr pi 1'Jpxtp'y( )—
(21)

(22)

where n„ is the unit vector in the x direction, and y is the
strain rate. %e consider an infinite system made up of
periodic replications of the central two-particle square,
constructed using the usual sliding brick periodic bound-
ary conditions. The dissipative fiux J(I ) due to the ap-
plied field is given by the adiabatic time derivative of the
internal energy Ho. Here this is the shear stress P„(1 )

times the volume V,

tal kinetic energy constraint and the fact that the total
momentum is zero.

In this paper we present the Lyapunov exponents for
the two-body shearing system with Lennard-Jones pair
interactions (with the pair potential cutoff at its
minimum), at a reduced temperature r" =kTA&& 1.0——
and a reduced density of p' =pa =0.4. The simulations
were performed using the 4th-order Runge-Kutta method
to integrate the equations of motion, with reduced time
step 0.002. A typical simulation length was 5&10
timesteps and the length of each tangent vector was 10

A useful characterization of the system is given by the
effective dimension. This may be calculated from a cov-
ering of the attractor, "or from a scaling relation for the
discrete entropy, "or from a knowledge of the Lyapunov
exponents. Kaplan and Yorke have conjectured that
the effective dimension of an attractor can be related to
the set of Lyapunov exponents by

(24)

where n is the largest integer for which g,",A, , &0.
There is a second postulated relation between Lyapunov
exponents and dimension due to Mori,

The shear rate dependent viscosity ii(y) is related to the
shear stress by the constitutive relation

=no+ pl 1++ (25)

For two-body planar Couette Bow in two-dimensions we
find the total phase space reduces from eight degrees of
freedom to three. ' These three variables are the relative
separation of the two particles (x,z,y, 2)=(xz —x„yz
—y, ), and the direction of the momentum vector of par-
ticle 1 (p„„p,) with respect to the x axis, which we call
0. The magnitude of the momentum p is Axed by the to-

where mo and m + are the number of zero and positive
exponents, respectively, and k —is the mean value of the
positive or negative exponents (depending upon the su-

perscript). Farmer gives a modified form of the Mori
dimension which is found to give integer dimensions for
systems of an infinite number of degrees of freedom.
Farmer's version of the Mori dimension gives values
which are worse than the standard form, so the values we
report in Table II are those obtained using Mori s origi-
nal prescription.
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Shear rate
'v

TABLE II. Lyapunov exponents for two-body planar Couette flow.

Dimension D„
Kaplan- Yorke Mori

0
0.2S
0.5
0.75
1.0
1.25
1.S
1.7S
2.0
2.25
2.5
2.75
3.0
3.5
4.0
4.5
5.0

2.047(2)
2.063(3}
1.995(3}
1.922(4)
1.849(5)
1.807{4)
1.800( S )

1.733(4)
1.649(9)
1.575(3)
1.61(2)
0.2616(8)
0.678(5)

—0.111(4)
0.427(4)

—0.674{5)
—0.132(2)

0.002(2)
—0.046(2)
—0.187(4)
—0.388(3)
—0.63(1)
—0.873(5)
—1.121(2)
—1.424(3)
—1.54(1)
—1.60(1)
—2.14(1)
—2.12(1)
—2.69(1)
—2.62(1)
—4.25{1)
—2.96(1)
—1.97(1)

—2.043(2)
—2.1192(3)
—2.242(3)
—2.442(3)
—2.74(1)
—3.17(1)
—4.12(5)
—5.63(6)
—7.36(8)
—9.25{9)

—11.5(1)
—19.84(3)
—19.85(2)
—17.49(4)
—14.43(5)
—10.78(3)
—8.152(3)

3.003
2.952
2.81
2.62
2.445
2.295
2.14
2.058
2.015
1.981
1.75
1.123
1.252
0
1.10
0
0

3.00
2.90
2.64
2.36
2.10
1.89
1.68
1.49
1.37
1.29
1.24
1.02
1.06
0
1.05
0
0

When the shear rate y is zero, both methods of calcu-
lating the Lyapunov dimension agree. However, as soon
as the shear rate changes from zero, differences appear.
In the Kaplan-Yorke formula the value of n is 2 from

y =0, until the magnitude of A,z exceeds that of A. , (some-
where between y =2 and 2.5). This means that
2gDL g3 in this range. For y g2 the dimension is be-
tween 1 and 2 as long as A, , remains positive. The value

of A, 3 is irrelevant as soon as 1~2
comes negative the dimens'ion is equal to zero. The
Kaplan-Yorke formula can never give fractional values
between 0 and 1.

In the Mori formula the value of A, 3 always contributes
to the dimension and its large negative value tends to
dominate the denominator, reducing DL. The transition
from dimension greater than 2 to dimension less than 2 is
somewhere between y =1 and 1.25. Indeed, the Mori di-
mension is systematically less than the Kaplan-Yorke di-
mension. Qf the tw'o routes to the dimension the
Kaplan-Yorke method agrees qualitatively with the infor-
mation dimension results, whereas the Mori method
does not. In particular the Kaplan-Yorke method and
the information dimension both give a change from
values greater than 2 to values less than 2 at about
y =2.5.

The sliding brick periodic boundary conditions in the
Couette Aow algorithm induce an explicit time depen-
dence into the two-body shear How system. This is most
easily seen by removing the potential cuto8'. The force on
particle 1 due to particle 2 is then given by a lattice sum
where the positions of the lattice points are functions of
time. The three equations of motion are then nonau-
tonomous and hence do not have s zero Lyapunov ex-
ponent. These three equations can be transformed to
four autonomous equations by the introduction of a trivi-
al extra variable whose time derivative is the velocity of
the lattice points. In this form there is a zero Lyapunov
exponent associated with this extra variable.

IU. SUM RULES FOR LYAPUNOV EXPONENTS

The largest Lyapunov exponent indicates the rate of
growth of trajectory separation in phase space. The larg-
est two exponents, I,, and A, 2, give the rate of growth in
two orthogonal directions. We can use these two direc-
tions to define an area element V&(t), and growth in this
two-dimensional volume element is given by

V2(t) = Vz(0}exp[(A., +A&)t] . (26)

Similarly, the three-dimensional volume element is relat-
ed to the three largest exponents by

V3(t) = V&(0} epx[(A, ~+A&+Bi)t], . , (27)

V2 ———,
' [2(l, 1~+I, /, 2+121,2 ) —(1 i + 1 ~~ +I,2 ) ]'~ (28)

Using Eq. (11}to construct the time derivatives of I, , I2,
and I,2, it can be shown that

V, = V,"—(g, +g, +g, ) V, , (29)

where the u superscript refers to the unconstrained time
derivative. As the constrained time derivativ of V2 is
zero, combining Eqs. (29) and (26) yields Eq. (17).

If we consider the volume element Vz, where X is the
dimension of the initial system, then we have that the
phase-space compression factor gives the rate of change
of phase-space volume,

This type of construction has been used' ' to calculate
the Lyapunov exponents, It is also possible to use this
ides to show that the Gaussian orthogonality multipliers
contribute to the Lyapunov exponents. We illustrate this
here by considering the area element defined by the
tangent vectors 50, and 50'. Let 1, =(5oi), Iq ——(5O2),
and I,2

——(5,2); then using the cosine rule, the area V2 is

given by
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TABLE III. Lyapunov exponents for two-body planar Couette Aow.

Viscosity
( —a+ysinHcos8&

0.5
1.0
1.5
2.0
2.5
3.0
5.0

0.30
0.263
0.285
0.333
0.366
0.460
0.072

—0.434(10)
—1.521(6)
—3.53(3)
—7.36(1)

—12.03(4)
—21.85(2)
—10.25(1)

—0.438
—1.50
—3.48
—7.36

—12.03
—21.85
—10.26

2p
y = sin8,

m

p
8= — sin8+ cos8+ ysin 8,

(31)

where p is the magnitude of the momentum of particle 1,
F„and F» are the components of the force on particle I
due to particle 2. Although we have eliminated the ther-
mostatting variable a from the dynamics, its value can be
obtained from

cos8+ sin8 —y sin8 cos8, (32)

and the phase-space compression factor is given by

ae
8

= —a+ y sin8 cos8 . (33)

In Table III we compare the result obtained from Eq. (33)
with the sum of the Lyapunov exponents.

V. CONCLUSIONS

In summary, the results presented here confirm the fact
that an ensemble of two-dimensional two-body shearing
systems whose initial distribution has dimension 3, con-

so the average of the divergence is equal to the sum of the
Lyapunov exponents. The divergence is easiest to calcu-
late if we write the equations of motion, Eqs. (20), in
terms of the minimum number of variables, that is x &z,

y, 2, and 8. Dropping the subscripts, the equations of
motion are

2p cos8+yy,
m

tracts with increasing shear rate, onto an attractor of di-
mension less than 3. This change in dimension was 6rst
observed by calculating the information dimension. Al-
though the results obtained here do not agree precisely
with the information dimension calculations, the trends
are similar. The Kaplan-Yorke I.yapunov dimension is 3
at equilibrium; drops steadily towards 2 at approximately
y =2.5, approaching 1 at y =3. As the calculation of the
information dimension is beset with systematic errors, we
believe that the results presented here are the best char-
acterization of the attractor to date.

It has been 6rmly established that the behavior of the
simplest nontrivial NEMD simulation of planar Couette
flow is dominated by a fractal attractor. This behavior
must now be expected in NEMD simulations of any size.
The calculation of mechanical averages in NEMD simu-
lations is well understood, but a workable predictive ther-
modynamics has yet to be obtained. Critical to such a
theory will be an understanding of the nonequilibrium en-
tropy. The existence of a fractal attractor is a vital clue
in this direction, but as yet we only have information
concerning the rate of approach to the attractor, and
conjectures about its efFective dimension, To proceed fur-
ther we need to know more about the structure of the at-
tractor itself and how frequently each part of the attrac-
tor is visited by a steady state trajectory. If the whole ini-
tial phase space forms the basin for the attractor we ex-
pect the system to come to a unique steady state. Howev-
er, at high shear rates, y & 2. S, this is almost certainly not
the case, and the 6nal steady state will depend upon the
initial phase point. The two-dimensional two-body sys-
tem considered here is an ideal model system for such
studies.
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