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In the first part of this paper the moment method is employed to solve the nonlinear Boltzmann
equation. An expansion about a local Maxwellian distribution is used with the basis functions intro-
duced by Waldmann [in Handbuch der Physik, edited by S. Fliigge (Springer, Berlin, 1958), Vol. 12,
p. 29S). Earlier approaches are extended by the inclusion of more expansion functions (Sonine
polynomials) in order to obtain an approximation for the velocity distribution function. General re-
lations for the coupling of the moments are derived and the resulting transport relaxation equations
are solved for the special Couette geometry. The inhuence of the higher moments on the viscosity
coeScients is small, but the higher moments are essential for the distribution function itself. The in-

clusion of the quadratic collision matrix elements leads to minor modifications only. In another
part of the paper the velocity distribution function is obtained from nonequilibrium molecular dy-
namics. Excellent agreement with the predictions of the moment method is found provided that the
constant temperature constraint of the simulation is taken into account by incorporating a noncon-
servative external force term into the Boltzmann equation. The elect of this modification is dis-

cussed in detail for the viscosity coef6cients. The non-Newtonian Now behavior of gases is studied
on the microscopic level of the velocity distribution function. In addition an isotropic distortion of
the Maxwellian distribution is observed.

I. INTRODUCTION

Within the framework of kinetic theory, the pressure
tensor of a gas is determined by an integral over the
nonequilibrium velocity distribution function. ' The
viscosity, defined as the ratio of a (nondiagonal) element
of the pressure tensor and the shear rate, provides in-
direct evidence for its distortion by a viscous flow. The
velocity distribution function, of course, contains more
information on the microscopic mechanism underlying
the nonequilibrium process than the transport coefficient.
The experimental determination of the distortion of the
velocity distribution function by a transport process via
Doppler broadening3 is rather difficult; for the case of a
heat-conducting gas see Ref. 4. Here, molecular dynam-
ics can provide the desired data from a simulation of a
nonequilibrium experiment. First results for the linear-
fiow regime were reported in Ref. 5.

This article is devoted to an analysis of the velocity dis-
tribution function and its relation to the viscosity for a
gas undergoing a plane Couette Row. We proceed as fol-
lows. In Sec. II the kinetic theory based on the
Boltzmann equation is reviewed briefly. A modified mo-
ment method' is employed to derive an infinite set of cou-
pled equations for the moments, referred to as transport
relaxation equations. The moments are the coeScients in
an expansion of the velocity distribution function about a
local Maxwellian. The expansion functions (Sonine poly-
nomials), however, are known. To obtain the nonequili-
brium velocity distribution, the transport relaxation
equations have to be solved for the moments. For this
purpose an appropriate closure is chosen in Sec. III.

Since here the goal is to get an approximation for the dis-
tribution function itself, earlier approaches are extended
by including more expansion functions. The theory is
also capable of describing phenomena nonlinear in the
shear rate. In Sec. IV the transport relaxation equations
are stated explicitly for the plane Couette geometry.

The comparison of the kinetic theory with results from
nonequilibrium molecular dynamics (NEMD) is an essen-
tial point of this article. The basic ideas and the prob-
lems arising from the imposed constraints are discussed
in Sec. V. It turns out that the constant temperature con-
straint requires a modification of the Boltzmann equa-
tion, insofar as a nonconservative "drag" force has to be
added.

In Sec. VI the viscosity coeScients obtained from solu-
tions of the Boltzmann equation with and without an ad-
ditional force term are compared with results of the
NEMO computer simulation. Excellent agreement can
only be achieved by the inclusion of the external force.
Furthermore, the higher moments can also be evaluated
as S-particle averages from the simulation. The compar-
ison with the solution of the transport relaxation equa-
tions is again satisfactory. Some insight into the e5ect of
the quadratic collision operator is gained in addition.

The velocity distribution function itself can also be ex-
tracted from the simulation. The method and results for
the linear-Row regime are presented in Sec. VII. Finally,
in Sec. VIII the relation between the non-Newtonian How
behavior and the corresponding distortion of the distribu-
tion function is elucidated.

A few general remarks on nonlinear flow phenomena in
fIuids ' are in order. Usually, rheology focuses on the
rather complex Qow phenomena of polymer melts, disper-
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sions, and other, more exotic materials. The constitutive
equations of these substances are nonlinear and lead to
non-Newtonian behavior, such as shear thinning (or
thickening) and normal pressure differences.

The shear-rate dependence of ihe viscosity is related to
structural changes in the Quid, e.g., polymer chains align
in Aow direction. It is interesting to note that even sirn-

ple fluids, constituted of spherics1 particles, can exhibit a
similar non-Newtonian flow behavior. Again, it goes
along with changes in the internal structure of the fluid.
For dense fluids, where the dynamics is dominated by the
pair interaction, the Kirkwood-Smoluchowski equation
was used to calculate the distortion of thc pair distribu-
tion function due to the shear flow. The theory wss also
capable of describing non-Newtonian phenomena in sim-

ple liquids. It is conjectured that the resulting constitu-
tive equations can be employed in the description of more
complex systems.

It is well known that kinetic gas theory also leads to
non-Newtonian effects, More than 50 years sgo Burnett
calculated the nonlinear corrections for the friction pres-
sure. Here, in contradistinction to simple liquids, they
sre of kinetic origin; the "structural" changes occur in
the velocity space. In addition, the Boltzmann equation
provides a well-established theoretical basis for this den-
sity regime; thus comparisons with computer simulation
results can be considered as tests for the algorithm used.
The rheology of ideal gases has attained growing atten-
tion in the last years. "' But, so far emphasis hss been
laid on the transport properties alone.

Usually, the occurrence of non-Newtonian phenomena
in simple Auids is restricted to very high shear rates,
beyond the order of magnitude which is accessible in real
laboratory experiments. Consequently, computer sirnuls-
tions with nonequilibrium molecular dynamics are of
great importance. However, it is a priori uncertain
how accurately the computer model mimics the real ex-
periment. For the plane Couette Aow„e.g., the viscous
heat is removed by the moving boundaries which, in ad-
dition, drive the liow. In the corresponding computer
model, on the contrary, no boundaries are present. A
spatially constant temperature field and a linear velocity
gradient are enforced by homogeneous algorithms. De-
tails wil1 be given at the appropriate point in this paper.

The question of comparability to real experiments has
drawn some attention in the psst. Dufty' showed that in
general the transport properties of a system at constant
temperature differ from those of s system, where viscous
heating is a11owed. Only for Maxwell molecules the same
viscosity results for both cases. For general force laws es-
tirnstes of the di8'erence were given. Here, s detailed
analysis of the constant temperature constraint is
presented. Although the How field in the two situations is
the same, differences in the viscosities occur which are
due to the different temperature 6elds. Ladd and
Hoover, on the other hand, have demonstrated the
agreement of the distribution function for s Lorcntz gss
obtained from NEMO with an analytical solution of the
corresponding Boltzmann equation, using s relaxation
time ansstz. The full Boltzmann coBision term is neces-
sary for the pure gss studied here.

II. THE MOMENT METHOD

8
dt Bc 5t

+c Vf+ .(Kf)=

For dilute gases the time dependence of the distribution
function is separated into a terra due to an external force
K, which may depend on c, a term describing the free
flight of the particles (called "streaming term, " c Vf),
and a term due to collisions among them [called "col-
lision term, "(5fI5t)„„].

Following the notation used in Ref. 6, the dimension-
less (local) peculiar velocity V(r, t) is introduced by

+2coV—:c—v, co =Qks T/iri (3)

where v(r, t) is the average (streaming) velocity. It is use-
ful to express the velocity distribution in terms of V rath-
er than c, so F(r, V, r ) is defined by

n(r, t)F(r, V, t)d V=f(r, c, t)d c .

Then the local Maxwellian distribution simply reads

FM(V )=n exp( —V ) .

It is normalized according to

f F~(v )d V=1 .

The temperature and the average velocity are given by

3ks T(r, t) =——f (c v)'Fsr—( V')d'V,

v(r, t)= f cFM(v')d V .

For the noncquilibrium velocity distribution the follow-
ing snsatz is made:

F(r, V, t)=F (V )[I+4(r,V, t)] .
Hence, the deviation from local equilibrium is expressed
by the function 4(r, V, t)

A scalar product ( AB ) of two functions A and 8 de-
pending on V is defined by

(~a) = f ~aF (v')d'v .

Using this notation ( A ) is written for the (local) equilib-
rium average of'a function A. The noncquilibrium aver-
age (( A )) has to be evaluated with the distribution F.
Using (9) one gets

((~ )) =—f F~ d'v=(~ )+(~e) . (11)

The velocity distribution function f (r, c, t) describes
the state of a pure monoatomic gss and depends on posi-
tion r, particle velocity c, and on time t. The number
density n (r, t) is given by

n(r, t)= f f(r, c, t)d c . (1)

Similarly, the other macroscopic entities can be obtained
as averages evaluated with the distribution function f.

The temporal and spatial variation of f is governed by
the Boltzmann equation, which, in the most general case,
reads
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4( r, V, t ) =g a '( r, t }P'(V ), (13)

with

(p'QJ) =5" (14)

The expansion functions will be discussed in more detail
in Sec. III. Note, the label i stands for a set of indices, as,
in general, the functions P'(V) will be tensors.

The moments a '(r, t) are just the averages of the corre-
sponding expansion functions ( (((&') =0), cf. (11)and (14),

The normalization, the average velocity„and the temper-
ature can be obtained by taking averages with the local
Maxwellian distribution of the collisional invariants 1, V,
and V, respectively, cf. (6)—(8). Thus the second term on
the rhs of (11) should not contribute to these averages,
and the following orthogonality requirements for 4 can
be inferred:

(li, e)=0 for y, =l, v, v'.
The deviation from local equilibrium 4(r, V, t) is expand-
ed with respect to orthogonal functions ((&'(V) according
to

ed from Eq. (16), the nonequilibrium distribution func-
tion is known according to (9) and (13). The external
force K will be specified in Sec. V. Until then only the
properties of the transport relaxation equations (16) in
the absence of external forces are treated.

III. CI.OSURK OF THK TRANSPORT RKI.AXATION
EQUATIONS

The transport relaxation equations (16) constitute a
highly coupled system of difFerential equations for the
moments a ', which has to be solved to obtain an approxi-
mation for the velocity distribution function in nonequi-
librium. In the following, the most relevant moments
have to be selected in order to 6nd a closure, which is ap-
propriate to describe the nonequilibrium distribution
function itself, rather than the transport coef5cient,
which is only an average taken with this distribution.

Our choice is guided by the results of Ref. 6 and by ob-
servations made with nonequilibrium molecular dynam-
ics computer simulations, as wi11 be demonstrated later.
First, let us turn in more detail to the expansion (13).
Taking into account the tensorial character of the expan-
sion functions it reads.'=(cy'& = «y'&) . (15)

(22)
In the following we restrict ourselves to the case of a sta-
tionary, isothermal, plane Couette ilow (V v=0). For
this case the following transport relaxation equations for
the moments a' as derived from the Boltzmann equation
read

d
a'+g Ck~k+~Pi+r~I 7.+&"

dt

with

r!(2l + 1)!!1/2&@
1!I ( 1 + r + —,

'
)

XS1+&n(V ){V„V„I (23}

+~IJ+Q g I,Jka k a
J'

k

(16)

where S' ( V ) is a Sonine polynomial of degree r. ' Note,
an expansion with respect to irreducible tensors is used,
which has the advantage of clearly indicating the symme-
try of the directional distortion.

The orthogonality condition (14) now reads

The following definitions have been used:

c]=~~., & v, y'y ), ' =&((}' (y )),
fy=«, (y')yJ), ~"=(y' (y y")—), - (18)

with the projection tensors 5'.". .

~a~~'~' —~( ~u'~»'+~& ~' ~&')

For /=2

(24)

(25)

rt„= (1.,„(y'&y~&, &2m', x—~= IZ, —
BV~ (26)

(20)

g&( . . ) and Q( ) are the linear and quadratic parts or
the collision operator.

The symmetric traceless part of a tensor is denoted by

j, e.g., the shear gradient is decomposed according
to

(21)

with yk„=—{Vku„I and co, = T&e,k,Vku„. With a' calculat-

for an arbitrary second rank tensor 3„.
To select the appropriate moments it is useful to dis-

cuss the coupling due to the several terms in (16). Of spe-
cial interest is the first expansion tensor of rank two,

y„'„=&2{V„V„)'. (27)

In kinetic gas theory the friction pressure tensor {P„„I
is given as

{P„„J=2P f F(V){V„V, I
d'V

=2p « {V„V.)')&,
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cf. (11), with, p =»Ikp T. Hclicc, «(I})I„» ls pfopol'tlonal
to the friction pressure tensor. The corresponding mo-
nicnt, cf. (15), ls denoted bp 7T~„, 111 order to stlcss Its

meaning as a dirncnsionless friction pressure tensor,

„„—=.„".)=«((t„'„»=f~„„j'/(»). (29)

Duc to 'thc orthogonalltp condition (24)~ spy ls thc onl))

moment, for which the rhs of (16) is nonvanishing.
A coupling of tcnsors of odd 1ank and thc drlvlIlg tcrIIl

y„„can only be achieved via the CIt-matrix elements.
But for the plane (homogeneous) Couette Aow, no gra-
dients of the moments can occur; thus odd ranked expan-
sion tensors need not be considered. As the differential
operator I.& acting on terms proportional V gives zero,
it does not occur in the transport relaxation equation for
the scalar moments. Thus the tensorial expansion func-
tions P"„-Sszz'(V )f V„V„j are eigenfunctions of L),,
and I f -5~" for tensors of rank two. The operator L),,
Oouples scalar moments to second rank tensors and vice
versa. It has to be discussed in more detail later.

The first fourth rank tensor ( —
f VVVV] ) is an eigen-

function of Lz„and, therefore, cannot couple via I Ii„ to
the second rank tensors. As the matrix elements of the
linear collision opegator ~'~ couple tcnsors of equal rank
only, it is the quadratic collision operator a)'J alone,
which couples fourth rank tensors to m„. In Ref. 6 it
was shown that this coupling is negligible. The coupling
was related to the occurrence of a normal pressure
difference (P I' ) in the p—lane normal to the Bow.
Computer simulations conf((rm that this does not occur
even for shear rates beyond the applicability of the theory
presented here. It is conjectured that the coupling of this
fourth rank tensor to the other moments is also negligi-
ble. Hence, only scalar and tensorial moments of rank
two are included.

The coupling via the quadratic collision operator is
rather complex and will be neglected for the moment.

l

When the results are presented in Sec. VI the
modifications due to this coupling will also be discussed.
Hence, at this stage, nonlinearities arise solely from the
streaming term. The only second rank tensor considered
in Ref. 6 is P„,. Computer simulations give reason to in-

clude more tensorial expansion functions; thus here the
inhuence of

and

y„2,=—~4/7( V' —', ) I V„v„j' (30)

Pq, =v'4/63(V —9V + —", ) f V„V„j (31)

$ =v'8/15( —,
' V ——,

' V2+ —", ) (32)

(33)

are the first two scalar expansion functions, whose CCect
on the velocity distribution is to be investigated in the fol-
lowing.

Before the chosen sct of transport relaxation equations
is finally written down, a few general relations for the 1 g
and I'$, terms are stated, which give an insight into the
structure of the transport relaxation equations even
beyond the closure chosen here. They can be derived us-
ing general relations for the Sonine polynomials

is studied.
In the Newtonian-How regime the efFect of (I}„„onthe

viscosity is rather sr@all, for a Leonard-Jones gas at
T =2.75 (in reduced units) the effect is less than 1%.
Another extension is the inclusion of scalar expansion
functions into the set of selected moments. The first two
scalar expansion functions ((t)'=1 and P —V ——,') are

collisional invariants and, due to (12},do not contribute;
therefore,

~ &L (y„"„}(('p&a'p)——2f~„,~ a„", j (3"',

y),„&LI ((t„'„)gp&a"p ——
f y„„a2"j I6"[2+—,'(r —1)]+5" '

', v'2(r —1}(2r+3)j-,
yl.„&L2„(()}@,)p'&a"=y&~"—,', v 15(2»+3)[5"'v 2(2» +1)+5'"+)2v r ],
y),.&L),(0")It)'p&a "p=y)a').". [~'" 'I 2(» —1}(»—2)+&" 'I/(» —1)(2»+1)] . (37)

«member, a'"'=0 «r» =1,2. Hence, with (35) and (36) we conclude that the operator Li„couples a„'"„' with thc mo-
ment a„'"„"and the two scalar moments a'"' and a'+". On the other hand, (37) expresses that the streaming term

couples a'+" only with a„'"„' and a„'„".Hence, with respect to the streaming term, the transport relaxation equations
are closed. Only the matrix elements of the linear collision operator couple with higher-order moments. To close the
systcIQ of cquat1ons this type of coupling to h1gher MOIQcnts has to bc ncglcctcd.

Finally, the following 5ve equations are obtained {stationary state):

0) "m.„„+a)"a„"„'+a)"a"„'+2fr„~,n„„j0+2fy„„m,„.j0= —I/2y„. . ,

~"a„".'+~"~„„+~"a„"„'+2f c„~la„",' j'+ —", f y„„al'.„' j'+ 4&2/7I y„3~).,j'+14''2/105y„a"'=0,
33a(3) + 23a(2) + 13~ +2[c ~ a(3) j0+ o Iy a(3) j0+ f y a(2) j0+213/2/105y ~(3)+6/3/5 (4) ()

co0 a' )+020 a' '+4/v'15y&„I»2„+23/14/15yi~p' =0,
44a(4)+~34a(3)+4/1/5y~(2) +6/3/5y ~(3) ()

(39)

(42)
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For the scalar expansion functions the matrix elements of
the linearized collision operator are denoted by ~o'.

Note, the equation for the friction pressure (38) is only
modified by terms involving nondiagonal parts of the col-
lision matrix co'J. For Maxwell molecules these nondiago-
nal elements vanish, and they are small for a Lennard-
Jones gas. For T =2.75, cu' =0.01m' =—0.001ar", thus
co' can be neglected. In any case, the effect of the addi-
tional moments on the friction pressure tensor and, there-
fore, on the viscosity coeScients, is small, a result which
was to be expected since earlier computer simulation
studies' showed satisfactory agreement of the viscosity
coefficients with the results obtained in Ref. 6. However,
for the velocity distribution function itself, all coefficient
in the ansatz (13) contribute equally. For this purpose,
our choice of moments seems to be the most complete
one that can be calculated with reasonable eff'ort.

A glance at Eqs. (35)—(37) indicates a hierarchy among
the moments, at least for the coupling due to the stream-
ing term. So there is some hope that the onset of non-
linear behavior on a microscopic level of description can
be described using the approximation introduced above.

Some general remarks about our solution method seem
to be appropriate at this point. Note, the highest order
expansion functions, tensorial and scalar, involve V . In
Grad's moment method' such terms can only stem from
contractions of a tensor of rank 6. Hence, an equivalent
calculation can be expected to be extremely cumbersome.
Furthermore, it would involve much redundant informa-
tion as only contractions, namely scalars and second rank
tensors, are needed. The expansion with respect to irre-
ducible tensors seems to be more appropriate for prob-
lems beyond the Burnett order.

y„,=(V„U„j =yte"„e~ jo,

(46)

and

V y+
V@V ~ PV~2

t7 —2 3'N, ,E, „» U, E, e e e, .
2

Some useful relations for the basis tensors are

(47)

T„' T~ =5'J for i j =+,—,0,
Ie„z„e&T„j = kT„„"—for k =+,—,0, (49)

+6I T„'~T~.j'= T„'., —

&6I T+,T'„„j'= T+„, — (50)

(51)

r~ +n "~ +n "a'"=0, (52)

+n"m +n' a' '=0,
3

(53)

as can be verified easily.
Using these relitions, Eqs. (38)—(42) can be rewritten

in terms of the components of the tensors, Eqs. (51)—(61):

IU. TRANSPORT RELAXATION EQUATIONS
FOR THE COUETTK GEOMETRY

The transport relaxation equations (38)—(42) are now
rewritten for the special Couette geometry: How in x and
shear gradient in y direction. Then, the irreducible
second rank tensors have only three independent com. -

ponents: the xy component and two diagonal elements.
It is useful to decompose them with respect to three
orthonormal basis tensors Tp+„, Tp„, and Tpo„defined by

n"~ —v'8/21r~, + n "a'"—ra'"—+

+n"a',"+ ra"'=0,14
3/105

n"m +ra'"+n22a"'+n"a"' =0

—3/8/211m +n 'm — —a( '

7 3

+0 a' '+0 a' '=0

(54)

(55)

(56)

T~+, =&2I e„"eg
(43)

n32a(2) 4+3ra(2) +n33a(3) r (3)ao

Pv ~2 P v P, v ——,'3/3I ao '+ I a' '+&18/5I a' '=0, (57)
&105

To„=&3/2I e'„e' j

3// 2[ 3'„e'„e——)(e"„e"„+e~e~)],
0 a' '+I a' '+0 a' '=0
43/3r (2)

+ n32a
(2) s +3ra (3) +n33a (3)

+ ao —
7 a+ ao

(58)

e„' ' are the unit vectors in x,y, z direction, respectively.
The corresponding components of the tensorial moments
are introduced by, e.g.,

&8/15r~, +&28/15ra")+n,"a"'+n,"a"'=O, (6O)

&8/5ra' '+&l8/5ra' '+n a' '+n a' '=0 . (61)

The following abbreviations are used:

(45) '=co", I =yr, n'~=a)'~r, ni=cogr . (62)

and analogously for a„' ' and a ' '.
Furthermore,

r is a characteristic relaxation time, I the reduced (di-
mensionless) shear rate. The matrix elements co'J and a)I)'
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33 ~6 ~{22) 2 11
COO = —Pl Vi

15 3
(63)

of the linear collision operator can be expressed in terms
of the tabulated Chapman-Cowling integrals 0'~'~'. '

They must not. be confused with the reduced matrix ele-
ments O'J defined in (62). The tensorial elements co'J can
be found in the literature. For A@I| one obtains

and a' ', is a pure nonlinear e8'ect.
Our intention is to compare the solution of the trans-

port relaxation equations with results obtained from
NEMD computer simulations. Section V will briefly in-
troduce the method, and it is sho~n thai the coupling be-
havior is modified due to the constant temperature con-
straint used in NEMD.

f133 33 g 11 z
0 =COO N

44 2 (63II{2,2) 2gII(2, 3)+4/(2, 4))
coo —» n

~34= '&—42m (2n"" 7n—"")
105

(64)

Qo ——20 ——'=1.07 .

Remember, (P„„I
=&2Pm„, hence, the resulting

viscosity coeScients in terms of the components of m„„
read

1 P
(66)

1 p(P„„Py) = ——m'—
y

" "
y

&3 P
i)0—= — [P„——,'(P„„+Pyy }]=— —m'0 .

(67)

(68)

for T=2.75, where r defined in (62} happens to be equal
to 1.001,

0"=1, 0 '=0' =0.059, 0 =1.20,
0"=023=0.107, 033=1.60,

V. IMPLICATIONS OF THE MODEL SYSTEM

Given the pair potential of the particles, molecular dy-
namics simply consists of an integration of the Newtons
equations of motion of N particles in a (cubic) box. In
general, N is of the order of 100 to 1000, the present case
is for %=8 =512. To simulate quasimacroscopic sys-
tems periodic boundary conditions are employed.

To model a shear- Row by nonequi. librium molecular
dynamics, the periodic, boundary conditions have to be
modified, and several algorithms are at hand to generate
a linear-Now pro51e. The one used in this study is a
minor modification of the method introduced by Evans,
using a sort of least-squares 6t to adjust the How 6eld at
every time step. The viscous heat is removed by simply
rescaling the peculiar velocity of the particles. The equa-
tions of motion are integrated using a fifth-order
predictor-corrector scheme. The time evolution of the
system is followed for some 10000 timesteps and more,
corresponding to about 1000 "collision times" (time be-
tween collisions}.

In this way time averages of macroscopic quantities,
such as the pressure tensor, shear modulus, etc., as well
as of microscopic distribution functions, can be obtained.
AH these quantities are evaluated as X-particle averages
at fixed timesteps and then time averaged. For the tem-
perature, e.g., one has

Neglecting all nonlinear terms in (51) and disregarding
the coupHng to higher moments one simply gets

m. + ——1", i.e. , g+ —I'v,

m ].

2 N, .
—'ks T=——g (c'—v)2, (73)

the Newtonian limit.
If only the coupling to higher moments is disregarded

the solution obtained in Ref. 6 follows, viz. ,

+=ala(1+ 31 ) r) —= I"1+ rlo= il rl+2 —1

As 0' is small no remarkable effect of the higher mo-
ments on the viscosity coefficients can be expected. How-
ever, as will be seen later, they have to be included when
the velocity distribution itself is regarded.

In Sec. VI it will be shown that a'+' and a'+' can be ex-
tracted from nonequilibriurn molecular dynamics. The
occurrence of these coeScients is not a pure nonlinear
effect; e.g., if the transport relaxation equations (51)—(61)
are linearized —with respect to deviations from local
equilibrium —and solved for a'+' and a'+', one obtains

F12 @12

~12]y23
g — g —— I"— 0.003I" .0 0 Q

The scalar distortion, expressed by the coefKicients a' '

where c' is the velocity of particle I. It is also interesting
to note that the kinetic and potential contribution to the
pressure tensor, and hence to the viscosity, can be ex-
tracted separately. In the following we focus on the ki-
netic part only, which is related to a distortion of the ve-
locity distribution function.

In this study a Lennard-Jones system with density
n =0. 1 and temperature T =2.75 (in standard reduced
units) is considered. This corresponds to an Argon gas at
T =330 K and a pressure I' = l2 Mpa, i.e., a fairly dense
gas. The mean free path is I =3.2. Despite these restric-
tions the system turns out to be a good, and computation-
ally e%cient, model for an ideal gas.

It is conjectured that this is due to the fact that the
second Virial coefficient has its node (Hoyle temperature)
close to this state point; the potential contribution to the
pressure is less than 2%. Some exploratory calculations
have been performed with a density n =0.01 leading to
the same results but consuming much more computer
time. Data for the hnear-Sow regime at T=1.2 and
n =0.07 have been presented in Ref. 5. The potential
cuto8' was set at the standard value r =2.5, and the in-
tegration stepwidth ht =0.005 was used. Thirty-two
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(74)

The reduced force E& is introduced by

E~:—&2mcoE& .

For conservation of kinetic energy the simple ansatz

(75)

can be made. However, this choice is not unique. %ith
the use of (12) and (46) —(48) P is determined from (74)

runs with a maximal number of 2400 timesteps were per-
formed. The (pre)averages obtained from each run were
again averaged over all 32 runs. The resulting standard
deviations are displayed as error bars in the followi. ng
plots. For the highest shear rates considered in this study
only 400 timesteps for each of the 32 consecutive runs are
needed to get a reasonable statistic. The simulations were
performed on a Cray Research 1-M computer and, more
recently, on a Cray Research XMP computer. It should
be mentioned that the SLLOD algorithm ' was also
tested, leading to the same results.

The constant temperature constraint, inherent in most
NEMD simulations, has drawn much attention in the last
years. ' ' A fiuid undergoing viscous Aow will usually
heat up. To prevent this the simplest way is to rescale
the velocities according to (73) after each integration
step. An alternative can be derived from the Gauss prin-
ciple, one of the most general principles of classical
mechanics, which is also applicable to nonholonomic
constraints. The exploitation of this principle for the
constant temperature constraint leads to an additional
nonconservative force in the equations of motion. It is
certainly interesting that the same force is necessary to
guarantee T =const for a Boltzmann gas undergoing
viscous flow. The balance equation for the (kinetic) ener-

gy can be obtained from (16) if V is substituted for P'.

which substitutes for 0'~ in the transport relaxation equa-
tions (51)—(61).

Note, the 0 '~ are no longer symmetric. They read

0"=II"+2', 0"=II",
n "=n"+&14Pr, n"=n22+4Pi,

0 =0, 0 =0 +6Pr,
0 "=033+6Pr,

n 33=n33+4p, n 34=n34,

no43=no43+&42Pr, h,"=nt4+6Pr,

(81)

for w see Eq. (62). The hierarchy which was discussed for
the coupling behavior of the streaming term is not
afFected by this addition; the higher moments still couple
only via the (small) matrix element Q' to the viscosity.

VI. VISCOSITY COKFFICIKNTS AND HIGHER
MOMENTS

The transport relaxation equations (51)—(61) constitute
a system of 11 coupled equations. For constant matrix
elements 0'~ the system is linear in the moments and its
solution trivial. However, the modified matrix elements
O'J [Eq. (80)] depend on ~+ via P [Eqs. (76) and (77)].
Hence, the modified transport relaxation equations are
solved self-consistently by an iterative scheme: the nth
solution is obtained using P as calculated with the
(n —1)st solution. The convergence is fast even when the
matrix elements of the quadratic collision operator are in-
cluded (see below).

To demonstrate the efFect of the thermostatic force" it
is useful to neglect the coupling to higher moments and
to consider Eqs. (51)—(53) only, i.e., the viscosity problem
alone. The results are shown in Fig. 1. The dotted
curves represent the results of Ref. 6, while the solid
curve stems from the modification described above. The

Due to (69), one has P~ 0. At least for the purpose of
comparison with the results of isothermal NEMD, this
external force has to be included into the Boltzmann
equation. The coupling behavior of this extra term can
be treated in the same general way as in Sec. III. Two re-
lations are useful,

V„(P")=2(r —1)P"+&2(r —1)(2r —1)(t " ', (78) 0.5 0. EI n. 7 n. 8 n. 9 1.n

V„(Pq„)=2rg~+ &2(r —1 )(2r +3)Pq„' .

Hence, the inhomogeneity term in (16) vanishes for all
moments ( & P'& =0), and the E'J matrix elements (19) fol-
low from (78), (79), and (14). They can be considered as
modifications to the matrix elements of the linearized col-
lision operator, see also Ref. 14. Both are combined to
define a modified coupling element

Q 'J:—0'~+ ~K'J

FIG. 1. Viscosity coeScients as functions of the reduced
shear rate I for a Lennard-Jones gas at T =2.75 and n =0.1.
Solution of the transport relaxation equations with the
modi6cation (80) (solid curves) and without (dotted curves)
compared ~ith NEMO results. The coupling of higher mo-
ments to the friction pressure is neglected (see text}.
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viscosity coef5cients as obtained from NEMD were cal-
culated according to (66)-(68) and the kinetic part of the
pressure tensor, in turn, as indicated on the rhs of (29).
The averages, of course, are evaluated as X-particle time
averages in the simulation. In the same way the higher
moments can be obtained from NEMD, cf. (15). The re-
sults compared with solutions of the modified transport
relaxation equations are resented in Fig. 2. Note, the
two moments a'+) and a(+) have a leading term linear in
I', cf. (71) and (72), while the other, pure nonlinear, mo-
ments are divided by I in the plots. These higher mo-
ments are even more sensitive to the inclusion of the ex-
tra force term. Hence, instead of comparing with the
unmodi6ed solution the influence of some quadratic col-
lision matrix elements is exhibited. The dashed curves
were calculated by considering the matrix elements of the
linearized coBision operator only. To get the full curves
the transport relaxation equations (51)—(61) were again
extended to include two matrix elements of the quadratic
collision operator (16) and (18)„viz.,
—2, 1) s +7~(O(2, 4) 7'(2, 3)+ )4) fl(2, 2))

245 12

and

(82)

For (55) and (56) the corresponding terms are

ir —~o (85)

——,~ 6o3 ' (m'++a' —m'o),~-211 2 2 2

The matrix element co '" couples [n„zmij to (2.„(„',while

co3
" couples m„„m„„to the scalar moment a' '. %ith the

decomposition (45}and the properties of the basis tensors
(50) the additional term on the Ihs of (54) reads

(84)

velocity distribution can be extracted from the NEMD
simulation, independent of the moments considered so
far. The approximate solution obtained from Eqs. (22)
and (9) and the calculated moments displayed in Fig. 2
will be compared with the fuH distribution function. This
will give indications about the quality of the closure
chosen in Sec. III.

VII. VKL(OCITY DISTRIBUTION FUNCTIONS

To demonstrate how the velocity distribution function
F(V ) can be obtained as a N-particle average, the follow-
ing expansion is introduced:

F(V)=F*(V')+F„',( V')[P„P„jo+ (88)

F' is the scalar, isotropic part, hence, using (22) and (9),

Fs( V2) F ( V2)( 1+&(3)y3+& (4)y4+. . .

The symmetric irreducible dyade [VV j will be
decomposed using the basis tensors T+„T„„T„„for the
Couette symmetry. With the orthogonality relation (48)
the tensorial product in (88) reads

F„'„(v') [ P„P'„j'=F""(v') O'„P,

+ ,'F'("-)( v')( P„P„P',P—', )'

+F'"'( v')( O', P,
' ——,

' ), (90)

(P, P', ——,')=-,'[P, P', ——,'(P„P'„+O'„P', )j . (91)

Using the ansatz (75) and (77) the angular integration in
(28) can be performed and for the xy component the re-
sult reads

where P„', denotes the x,y, z component of the unit vec-
tor V and the three partial distributions I ', F' ', and

', corresponding to the three components of the mo-
ments, were introduced. Note,

respectively. The matrix element 93 " leads to an extra
contribution on the lhs of (60},

P J F""(V')V4ZV= ~,(} )7, (92)

+ro3 "(m2++n' +mo2) . (87)

It is cumbersome to calculate the other matrix elements
for the quadratic collision operator. Nevertheless, these
tedious calculations were carried out, but, only the two
simple elements (82} and (83) are of a magnitude which
cannot be neglected.

The agreement between data extracted from the simu-
lations and solutions of the modi6ed transport relaxation
equations, as presented in Fig. 2, is satisfactory for al-
most the whole range of shear rates covered. For (re-
duced) shear rates greater than I —=0.8 higher moments,
a„' ' and a ' ', which are also evaluated in the simulation,
increase remarkably, hence, they can no longer be
neglected.

It should be pointed out again that for the viscosity

problem neither the higher moments nor the quadratic
collision operator need to be considered. They are need-
ed to Snd an approximation for the velocity distribution
function itself. In Sec. VII it will be shown how the full

i.e., there is a close relationship between the shear viscosi-
ty rI+ and the distribution function F'2"( V ).

The same holds true for F' ' and q and I" ' and go,
respectively,

) (p p ) p F(22)( V2) V4gV
2 xx yy

(93)

,'[P„,'(P„,+P —)j= P J—F—' '(V )V dv
15

= —no(}')r . (94)

As the friction pressure I'„ is nonvanishing even in the
Newtonian regime, one can try to detect I' " for low
shear rates. Shear thinning should appear as a deforma-
tion of F' " in a way that the integral (92) leads to lower
values for I'

The occurrence of the distribution functions I ' ' and
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F' ', on the other hand, is a pure nonlinear eftect, related
to normal pressure dHterences. The relation to the ex-
pansion (22} is the following:

F„'„(V') I f'„f'„I'=F„(V')(~„,(t„',+ a„",'(t„'„

+&„",'Q„' + . ) . (95)

Using (45) and (95), the definition

tractable form; hN- denotes the mean number of parti-
cles in the jth shell, and (b, V, ) is the corresponding speed
interval covered. The normalization condition (6) can be
written as, cf. (88),

64—g (bE )=1=I F(V)d V
j=l

=2n J F'( V ) Vd ( V )

and the expansion

( f'„1)'„j'=&ZP'„V,T'+. + 1 y2(P'„' P,'—)T„

+&3/2( ~,' ——,
'

)T„'„,

one finally ends up with

F(21)( v2) ~2F ( V2)(
I
yl

I

+a(2)
I
yz

I

+ '"
I
P'I + ),

F' '(v )=~2F~(v )(m'
I
P'

I
+a' '

I Q

+ '"
I
4"

I
+

(98)

Iy'I =-„&7(v'-9V'+ —", )v'.
The (partial) distribution functions F', F' ", F'

' are X-particle averages of

ps(v —v'), y P'„f',8(v —v'),

(101)

g —,'( & „' —P,')6( v —v'),

g(f",——,
' y( v —v'),

+ao&" Iy'I+ "}.(100)

Note, that the
I

O'
I

are known functions of V; e.g., with
(27), (30), (31), and (96) one gets

=-2n g J, F'(V )Vd(V )
(hv. )

= g 2nF'(V )V (b V2) .

In the last manipulation the mean value theorem has
been used. For each shell j one obtains

(bE, )
FS( V2)

2rrv (b V )E
(103)

In order to achieve good statistics for the few fast parti-
cles, the intervals are chosen such that on the average the
particles are equally distributed among the shells.

This turns out to be essential for the following. In this
way the intervals for very low speeds ( V &0.2), as well
as for high speeds ( V ~ 2. 5) get broader, thus the mean
value theorem should be evaluated exactly. This was
done numerically, assuming that I" does not deviate
strongly from the Maxwellian distribution. Finally, the
limiting radius was V =8.6 and on the average only less
than 0.1% of the particles are not included in this sphere.
For the other distribution functions the same intervals
and grid points were used. Aside from some normaliza-
tion factors, which arise from the angular integration,
they are obtained in the same way as the isotropic part.

Figure 3 shows the scalar part F'(V } for y=0. 1,
reproducing the Maxwellian distribut1on w1th high accu-
racy. Another measure of the quality of the scalar distri-
bution function can be obtained when F' is used to calcu-
late the normalization integral (6) and the temperature
according to (7). The agreement is perfect.

respectively.
For their calculation the "essential" part of the veloci-

ty space is divided into 64 spherical shells. In these shells
the above averages are evaluated, thus the distribution
functions are obtained at 64 points. The number of parti-
cles in the shells will be proportional to V exp( —V );
hence, a limiting radius can be found, assuring that "al-
most all" particles are included, e.g., 98% of the particles
have speeds with V &5. But, the few faster particles
contribute considerably to the momentum transport,
hence, they must not be neglected. Note, the integrand
in (92)—(94) is proportional to V . Therefore, one has to
extend the 11M1t1ng Iad1us as far ss 1s cons1stent w1th a
reasonable statistic for each shell.

Before this discussion is continued, it is shown how the
6-function averages can be transformed in a numerically

0.20-

0. 10-

0 OS-

0.00
0

I I I I

2 3 4 5

FIG. 3. The scalar part F' of the velocity distribution func-
tion for the shear rate y=0. 1 linear-How regime) compared
with the Maxvvellian distribution tdashed curve). The straight
line refers to the logarithmic scale.
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FIG. 4. The partial distribution function E(") for the shear
rate y=0. 1 {linear-Bow regime) compared with the linear
theory, cf. Eq. {104).

The tensorial distribution functions, being nonequili-
brium properties, cannot be extracted in this quality.
Figure 4 shows F' "(V ) for the same shear rate.
Thirty-two runs with 2400 timesteps each were per-
formed. The results of each run were recorded, thus the
curves plotted are averages of the 32 runs. The standard
deviations are shown as error bars in the plot. The result
is compared with the linear theory, i.e.,

~,= —yr and F''2t'(V')= 2F„—(V')V't r . (104)

When the distribution function F' " is used to evaluate
the friction pressure I', the agreement is 99%. This is
due to the smoothing of the integration and to the fact
that the slow particles, for which the statistical error is
maximal, do not contribute noticeably to the integral.

VIII. MICROSCOPIC ORIGIN OF NON-NEWTONIAN
FI.O% BEHAVIOR

%hen the shear rate is increased, nonlinear efFects can
no longer be neglected in the discussion of the velocity
distribution function. They are related to non-
Newtonian behavior on a macroscopic scale, e.g. , shear
thinning and normal pressure difFerences. Figure 5 shows
F' " for y=0. 5, again compared with the linear theory
(dashed curve) and the nonlinear theory presented in the

preceding sections (solid curve). Especially for highet
speeds, which are important for the momentum trans-
port, the deviations from the linear theory are most pro-
nounced. Shear thinning is clearly visible in a distortion
of the corresponding distribution function. Evaluating
the integral (92) using F' " gives the explicitly extracted
mean value of I'„» up to 4', which is less than the stan-
dard deviation of this quantity.

More appropriate to compare with our nonlinear
theory is a presentation such as in Fig. 6, where F' "/EM
is plotted for the same shear rate y =0.5. Even for lower
shear rates it reveals the occurrence of higher order poly-
nomials in the expansion (98), corresponding to the
coeScients m+, a'+', and a'+'. Insertion of the calculated
moments gives the solid curve in Fig. 6. The agreement
is again excellent even in this very sensitive presentation.

The same holds for the scalar part I", whose deviation
from the Maxwellian distribution was not to be expected.
Indeed, the results presented here motivated the con-
sideration of the scalar moments in the moment method.
For @=0.1 (Fig. 3) no deviation from the Maxwellian
shape occurred. For y =0.3 (Fig. 7) the logarithmic scale
reveals a small deviation in the tail of the distribution. If
(F'/FM —1) is plotted (Fig. 8), the result should have
a' 'P as the leading term. Indeed, one gets a reasonable
fit for the data with the polynomial P ( V ) and the calcu-
lated coelcient a' ' alone. Again, the tail of the Maxwel-
lian distribution was of great importance. Considering
the small absolute values of I"or F'2" for V y4 (Figs. 5
and 7), it is surprising how accurately the simulation re-
veals the interesting e6'ects of these few and fast particles.
Note, the distortion of the directionally averaged scalar
part of the distribution function couples only indirectly,
via the second tensorial moment, to the friction pressure,
cf. (38) and (39).

The distribution functions F' ' and F' ', being pure
nonlinear entities, cannot be extracted in this quality.
For the shear reate y=1.0 they are displayed in Fig. 9.
These distortions of the velocity distribution function
resemble the occurrence of normal pressure difFerences in
the gas. The evaluation of the integrals (93) and (94)
gives viscosity coef6cients g and go which deviate by
8% and 14%, respectively, from the mean values extract-

5 s Z 3 4 S S
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FIG. 5. The partial distribution function I'' " for the shear
rate y =0.5 {nonlinear-How regixne). Comparison of NEMO re-
sults with nonlinear (solid curve) and linear theory (dashed
curve).

FIG. 6. The partial distribution function I' '"' of Fig. 5 divid-
ed by the Maxwellian distribution, ef. (98). Comparison of
linear theory [dashed curve, cf. (104)] and nonlinear theory
{solid curve).



FIG. 7. The scalar part I"of the velocity distribution func-
tion for the shear rate y =0.3 (nonlinear-Bow regime) compared
with the Maxwellian distribution (dashed curve). Small devia-

tions occur on the logarithmic scale.

-Q. 06-'

FIG. 9. The partial distribution functions I'' ' and I"' ' for
the shear rate y=1.0, cf. (99) and (100). The occurrence of
these distortions is a pure nonlinear efFect and related to normal
pressure differences, cf. {93)and (94).

ed explicitly from the simulation.
The limitation of the closure chosen in this work to

shear rates y g0. 8 is apparent in Fig. 9 as well as in Fig.
2. But, at least qualitatively, agreement with predictions
of the theory presented can be observed.

The closure of the transport relaxation equations
chosen in this article is appropriate to approximate the
velocity distribution function for a Couette flow far from
equilibrium. The agreement between predictions of ki-
netic theory and results from NEMO computer simula-
tions is excellent provided that a "thermostatic force, "
inherent in most NEMD calculations, is taken into ac-
count explicitly. The conclusions that can be drawn out
of this study are twofold.

Concerning the kinetic theory of gases, which is more
than 100 years old, new light is shed on solution methods
for Bow far from equilibrium. The moment method as
used in this work turned out to be more suitable for prob-
lems beyond the 13-moment description than, e.g.,
Grad's method. ' It is shown that for the viscosity prob-
lem alone higher moments as well as the quadratic part of
the collision operator can be neglected. However, they

5 6

FIG. 8. The deviation of the scalar part I"of the velocity dis-
tribution function from the Maxwellian shape for the shear rate
y=0.3, cf. (89). The coe%cient a' ' stems from the solution of
the modi6ed transport relaxation equations.

are essential to approximate the velocity distribution
function.

NEMO, on the other hand, can sti11 be considered to
be in its exploratory stage. Generally, it is aimed to mim-
ic the corresponding "real" experiment as closely as pos-
sible. In its 6rst decade transport properties of liquids as
obtained from the simulations were compared to experi-
mental data. Kinetic gas theory based on the Boltzmann
equation

offers

a well-probed and mell-established
description for the velocity distribution function. The re-
sults obtained from the exploitation of the moment
method provide a test for the simulation even on a micro-
scopic level of description. The excellent agreement of
the two approaches used in this work lead us to the con-
clusion that NEMO can indeed provide a valuable sup-
plementary "experiment, " especially in domains where
current laboratory facilities fail.

Of course, constraints used in the simulation have to be
taken into account. So far, their e8ect on the underlying
kinetic equation was generally neglected. In this study
the explicit inclusion of the "thermostatic force" in the
Boltzmann equation was essential.

The work presented here encourages one to study
boundary e8'ects of gas How. Again, a theory to describe
the How close to a boundary is at hand. The moment
method and thermodynamical concepts are invoked to
solve the Boltzmann equation with boundary conditions.
In Ref. 26 the heat-conduction problem between parallel
plates was solved using this theory. It is interesting to
note, that the scalar moment a' ' was considered in Ref.
26.

It is conjectured that for the Couette How too, one has
to include more than the commonly used 13 moments to
describe the Aow field close to the boundary. Following
the line of this paper a combined approach using both
nonequilibrium molecular dynamics and the theoretical
concepts mentioned above seems to be promising.

Note added. An analytic formula for the shear-rate
dependence of the viscosity coeScients as discussed in
Sec. VI (Fig. I) has been derived recently. It perfectly
fits the NEMD data even up to the (reduced) shear rate
I =10.
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