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Amplification of sound waves in an imploding plasma shell:- Exact results
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In an extended model, a rigorous proof is given for sound-wave amplifications in an imploding

plasma shell. It is shown that, in the absence of a massless free surface, the boundary conditions

give the exact eigenvalues which determine the asymptotic solution to the problem.

In 1978 Book' 6rst proposed the possibility of sound-
wave ampMcations (SWA) in an imploding spherical
target driven by charged particles or a laser beam. This
possibility arises from the adiabatic compression of a
quid layer of the target by a slowly increasing external
pressure, which is transmitted in the form of shock
waves. The external pressure compresses both traveling
sound waves and the {luid layer which supports the
waves. The occurrence of SWA {Ref. 1) was shown in a
hydrodynamic model in which self-consistency is
preserved by employing Sedov's similarity hypothesis.

While the model has some unique properties, it has
not been possible to carry out a rigorous analysis to
prove the occurrence of SWA in an imploding shell.
Particularly vexing is the fact that, in spite of its sim-

plicity, the model introduces a mathematical diSculty,
which prevents an exact determination of the asymptotic
behavior of perturbations. The diSculty arises from the
massless free surface of the model and manifests itself as
an end-point singularity in the eigenvalue equation. The
boundary condition on the perturbations at the massless
free surface is unknown; there is no density perturbation
at the massless free surface because there is no mass.
Thus, it appears that the notion of SWA has no physical
basis and must be discarded.

This need not be the case. It is the purpose of this pa-
per to show the occurrence of SWA in an extended mod-
el in which the massless free surface is absent. The
present model removes the massless free surface by in-
troducing a small, 6nite pressure at the inner surface.
At the same time it preserves the self-consistency by em-
ploying Sedov's similarity hypothesis. The asymptotic

behavior of the perturbations is obtained exactly by the
use of both the initial-value treatment and the boundary
conditions on the compressible perturbations.

%e shall examine the role played by the boundary
conditions in determining the asymptotic behavior of the
perturbations and study the extent to which the asymp-
totic behavior can be speci5ed by a given density pro5ile.
The exact calculation of the asymptotic behavior shows
that if y ~ —'„S%'A occurs for a finite value of the mode
number I and is insensitive to the aspect ratio of the
shell. Perhaps more important is the fact that ampli-
tudes of S%'A in the long-wavelength regime are larger
than those in the short-wavelength regime.

As in previous treatments, ' we consider an implod-
ing spherical shell that obeys the following ideal quid
equations:

pi( = —Vp

p+pV v=0,
(p/pr )' =0, (3)

with yg1. Here, the Lagrangian time derivatives are
denoted by dots. It is assumed that the plasma Quid is
initially isentropic.

We follow Book' but take P=p+ /p as an input pa-
rameter. Here, p+ and p are the initial hydrodynamic
pressures at the outer and inner surfaces, respectively.
The pressure at the inner surface can be thought of as
the pressure of a high-temperature, low-density gas at
the core and is comparable to the pressure of equilibri-
um blackbody radiation.

The simplest self-consistent description of the shell
motion, Eqs. {1)—(3), can be obtained by introducing
Sedov s hypothesis of uniform self-similar motion, which
in the Lagrangian representation is given as

R (ro, t)=rof (t), (4)

where the subscript in r is dropped. Here t, is the con-
stant of separation of variables and has the dimension of
time. It is scaled to unity for convenience. If we assume
the Quid is initially isentropic, a trial density profile
satisfying Eq. (6) can be constructed as

po(r) =[p+r '(r r)/(r+ —r )—
+pF —((r2 r2)/(r2 rz )]1/(r —()

where R is the radial position of a Auid element at time t
and ro is its initial position. By combining Eqs. (2) and
(3), together with the hypothesis of self-similar motion,
we 6nd the time-dependent density and pressure as

p(ro t) =po(ro» '
p (ro t) =po(ro» " .

Substitution of Eq. (5) into Eq. (1) and use of Eq. (4)
yield the equations for the unperturbed shell motion,
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where r+ and r are the outer and inner radii of the
shell; r &r &r+, po(r+)=p. , and po(r )=p . The
corresponding initial pressure pro6le is then given by
po(r) =ap$(r) with po(r+ ) =@+ and po(r )=p . In
addition, the uniqueness of the solution of Eq. (6)
demands that p+ and p must satisfy

(r2 r2 )/(c2 c2 ) t2

f (3y —i)j'

where

cr=V g,
CO=VXg,

2
(

2 2 2 2 )/( 2 2
)

y —1 2 2(r r—, }V.g+g. r —g' Vr, (12)

where c+ =yp+ /p+ ——a yp+ and c =Yi) /p
=aypy '. Equation (8) can be viewed as a sub»diary
condition on p. A direct substitution of Eq. (7) into Eq.
(6) with Eq. (8) shows that Eq. (7) is the unique solution
of Eq. (6) with po(r+)=p+.

%e see immediately that in contrast to the previous
analysis, '2 the present model has well-defined, physically
observable surfaces on both sides of the shell. Perhaps
more importantly, we may now find appropriate bound-
ary conditions on perturbations at the free surfaces. The
point is that for an imploding (or expanding) shell with a
massless free surface there is no appropriate boundary
condition on perturbations for the simple reason that
there is no mass to be perturbed at the free surface

Next, the time-dependent part of Eq. (6) has the first
integral

where the initial values f (0)=1 and f(0)=0 have been
used. FIere a=3(y —1). For y= —'„Eq. (9) can be in-
tegrated once again to give

f (t)=(1—t')'" .

&2 &2 (p)y —i)/y &2 /&2 }(p(y—i)/y 1)—i (13)

where P=p+ /p . One notices at once that in the limit
P~OD (i.e., p ~0), r, ~r and that Eq. (11) reduces
to that obtained by Book.

In order to study S%A, we 6rst seek a solution, corre-
sponding to compressible perturbations, to Eq. (11},sub-
ject to boundary conditions V f, =O at r =r~. It can be
shown that the homogeneous equation in o satisfies the
following coupled equations:

P ~'

(} —1), , 1 d, dW. l(l+1)
2 r2 r r r2

L

dW„
+(2y —1)r

" +{3y—2+lan„) W„=O (14)

p(r+g) =po(r)(1 —V g),
which is derived from Eq. (2), has been used.

To compare Eq. (11) with that of Book, it is first use-
ful to rewrite r) with the aid of Eq. (8), which gives

For other values of y, Eq. (6) must be integrated numeri-
cally and the results difkr considerably from Eq. (10) for
other y values.

In order to study the stability of an imploding shell,
we now introduce the Lagrangian displacement g(r, t)
and linearize the equations of motion. Straightforward
but tedious algebra gives the Srst-order equation in g' as

f' y "g= [(y —1)/2](r —r, )Vcr

+(y —1)trr+ r Xei+(r.V)g',

or

f y S'+l2 S(t)—0

o (r, t) =S(t)W„(r)Y) (8,y)

and p„ is the constant of separation of variables.
In the following, we examine the analytic structure of

Eq. {14)to determine whether it is possible to implement
the boundary conditions V.g'= 0 at r +, which is
equivalent to W„(r~)=0, and thus to determine the ei-
genvalues p„. It is first helpful to transform Eq. (14} to
the hypergeometric differential equation,

Z~ 2y l GZ~
x (1—x) + 1+(1+—,')— 1+(l +—,

' )+ x
dx y —1 dx

1 ([1k{i+—,
' )](2y —1)——,'+p, „IZ„=O, (16)

where x =r /r and Z„=r*"+' '+' W (r). This
equation has regular singular points at x =0, 1, and ao,
and has the general solution near the singular point
x=1 as

Z„(x)=e, 2F)(a„b„c);1—x)

+e2(1 —x) y/'y "2F)()22, b2, c2, 1 —x) .

a) =(a~+id}/2,
bi =(a~ id)/2, c, =(—2y —1)/2,

a+ ——1+(l + —,
' )+y /(y —1),
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dr r2(ri —
r 1

)"/'" "W {r)W„(r)=c„5„„,5 (18}

where W„(r) is the eigenfunction corresponding to an ei-

genvalue p,„and c„ is the normalization constant. The
eigenvalue p„ in Eq. (14) is the number for which Eq.
(14} possesses nontrivial solutions subject to the bound-
ary conditions W„(rz ) =0 and is given as p, „
=[(y—I )/2]p'„—(3y —2), where

d = (2p„+4y —3)/(y —1)—(i+ —,
' )'

—(2y —1)'/(y —1)

ai (——Pz+id)/2,

b2 (p——+ id—)/2,

c2 ———1/(y —1),
P, =+(& + -,

'
) —1/(y —1),

and e1 and e2 are arbitrary constants.
For a finite value of p p+/p, x ~1 at r=r+ and

thus the arbitrary constants e, and e2 can be determined
by the boundary conditions W{r+ )=0. However, in the
limit P~co, x =1 at r =r, which is a singular point.
Thus in this limit, Eq. (14) does not have a general solu-
tion which is 661te at r =r

Next we can show that Eq. (14) reduces to a Sturm-
I.iouville problem and that the solutions to Eq. (14}form
a complete set of orthonormal functions,
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FIG. 1. Smallest eigenvalues p for y= —', , 3, and 2 plotted
against the mode number. Here p= 1.0X10~ and the aspect
ratio is 10.0.

lim f P(l, y, r)/f (t)]=a, f' '+'d'
1 lt

(20)

~)„——I ( —,')I [ id/(—2a)]

X [ I [—,'+(2 —id)/(4a)]I"[ —,
' —(2+id)/(4a)]I

hm[Q(l, y, t) /f (t)]-$, f" +'"' 4+c c (21)

where P(t) and g(t) are the linearly independent solu-
tions of Eq. (15). Here

+
d& &2(&2 &i )(2y —I)/(y —1)rr r —r1

&n

2
d ~n i (i + 1)+

dr r
(19)

bI „——i I ( ,') I"[ i—d /( 2a—) ]

X [I'[—', +(2—id)/(4a)]l [—,
' —(2+id)/(4a)] j

(22)

An important feature of Eq. (19) is the explicit end-point
singularity in the limit proc, for which W„becomes
singular at r =r . As a result, the stability analysis
based on a model with a massless free surface breaks
down since the eigenvalues are indeterminate. This ap-
plies also to the expanding plasma shell in which the
outer surface is taken as a massless free surface. ' lt is
notable that the peculiar physics of a massless free sur-
face manifests itself in the form of a mathematical singu-
larity. This explains why the massless free surface is an
ill-de6ned surface, and it may not be a physically realiz-
able entity.

The integral representation of the eigenvalue is
suScient for most elementary problems, but it is not
suitable for W„given in Eq. (17). However, it is clear
from Eq. {16) that, for a finite p value, the eigenvalues
can be determined exactly by solving Eq. (16) numerical-
ly as an eigenvalue problem. Figure 1 shows that the
smallest eigenvalue increases with the mode number.
This result is quite diferent from that of the approxi-
mate calculation for a shell with a massless free surface. '

For a given p,„, the solution of Eq. (15) can be ex-
pressed in terms of the hypergeometric functions [see
Eqs. (20) and (21) of Ref. 1] and the asymptotic values
are given by

where d =[8ap„—(a+2) ]' and a=3(y —1).
It is clear from Eqs. (20)-(23) that in the limit t ~t,

(i.e., f(t)~0), the limits diverge for all values of i if
a(2 (or equivalently, y& —,'). Moreover, Fig. 2 shows
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FIG. 2. Absolute valves of aI', y,pI„) for y=3 3 and
plotted against the mode number 1. Here pI „ is the smallest ei-
genvalue for a given i with p=1.0X 10 and the aspect ratio is
l0.0.
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that the amplitudes of ampli6ed sound waves in the
long-wavelength regime are larger than those in the
short-wavelength regime. This implies that. the oc-
currence of SPICA in the long-wavelength regime will
persist even in the presence of viscosity or other dissipa-
tive processes. However, this prescription for determin-
ing the stability criteria of traveling sound waves begs
the question. Namely, the limits in Eqs. (20) and (21)
should diverge for finite values of P(t} and 9'(r}, the
time-dependent parts of a(r, t}, since f(t}~0 as t~t, .
To put it another way, the limits do not necessarily sug-
gest the occurrence of SWA.

Book argued in favor of these limits as the stability
criteria by demonstrating that a model-independent esti-
mate, based on standing sound waves, is in agreement
with the limits. However, the point of this discussion is
that a standing sound wave cannot exist because of a
pressure gradient across the Quid layer. In addition,
there still remains the question of whether SWA can dis-
rupt a uniform implosion.

To clarify the behavior of sound waves in an implod-
ing plasma shell, we have carried out numerical simula-
tions using a one-dimensional Lagrangian code which is
written specifically for this purpose. It is found that
SWA occurs for a reasonable value of y (i.e., 1&y &2),
which supports the essential correctness of the stability

criteria, but that it does not disrupt a uniform implosion.
However, we have observed an instability driven by
SWA at the inner surface. This instability can provide a
decisive test for the occurrence of S%A, because it can,
in principle, be observed in experiments.

The conclusion is that, in an imploding spherical shell,
S%A can occur in the long-wavelength regime provided
that the external pressure matches with the prescribed
time-dependent pressure pro61e given in the present
model.

Finally, we note that for P& 1.0~10, it was not pos-
sible to obtain exact eigenvalues. This can be under-
stood by noting that the contribution from the singular
point is no longer negligible for this value of P [i.e.,
r&~r, see Eq. (13)].

%e conclude with a remark about the analysis of
Book. ' Although his model contains a massless free sur-
face, his conclusion on 8%A is in agreement with ours.
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