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Quasilinear theory of the ordinary-mode electron-cyclotron resonance in plasmas
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A coupled set of equations, one describing the time evolution of the ordinary-mode wave energy
and the other describing the time evolution of the electron distribution function, is presented. The
wave damping is mainly determined by T}~, while the radiative equilibrium is mainly an equiparti-
tion with T&. The time rate of change of T„T~~, particle density (Xo ), and current density (J}}) are
examined for finite-k~~ electron-cyclotron-resonance heating of plasmas. The efects of collisional
broadening and collisional damping are also examined. For blackbody absorbing conditions it is

shown that the increase of T, with time in electron-cyclotron-resonance heating is exponential and

not linear. From the quasilinear theory it is found that the Ohkawa steady-state current drive

ei%ciency criterion is really a consequence of the conservation laws of energy, momentum, particle
density, and the collisional relaxation of the current density.

I. INTRODUCTION

Recently, there has been renewed interest in electron-
cyclotron-resonance heating (ECRH) of plasmas both in
connection with the need for supplementary heating in
magnetically confined devices and with ionospheric heat-
ing experiments. In the ordinary (0)-mode ECRH, the
electric field E of the heating wave is parallel to the
confining magnetic field 8=Bi„and the heating is a
consequence of the finite size of the electron Larmor or-
bits (p). Hence, intuitive expectations would suggest that
the 0-mode ECRH would only lead to a heating in the
parallel direction (i.e., to an increase in the parallel elec-
tron temperature T~~ since E~}8) with a heating rate that
is determined mainly by T~ (since this heating is due to
p}. However, in this paper we will show that the predic-
tions of the quasilinear theory are in sharp contrast to the
intuitive expectations. In particular, we will show that
the perpendicular heating rate (BTi/Bt) is very much

larger than the parallel heating rate (BT~~/Bt) and the
wave damping is determined mainly by T~~~, while the ra-
diative equilibrium is an equipartition mainly with T~.
Finally, we will obtain closed-form expressions for the
time rate of change of Ti, Ti, particle density (Nv), and
current density (J~~ ) for finite-k~, 0-mode ECRH. The pa-
per is organized as follows: In Sec. II,we present the
theory for a collisionless plasma. In Sec. III we consider
the efkcts of collisions and the steady-state rf current
drive and in Sec. IV we state our conclusions.

II. THEORY FOR A COLLISIONLKSS PLASMA

%'e will begin by assuming Landau's quantized particle
motion of the electrons in a uniform magnetic field' and
we shall use the notations and the results found in Ref. l.
For 0 mode the transition probabilities of absorption j„
and emission jE of Eq. (8) of Ref. 1 become
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"+'] means (n+1) for transitions between the quantum states
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transitions between the states
~
n, u, ) and

~

n —l, u,'). Here m =(4nN&q /p), co& ——(q8/pc), q and p are the charge
and mass of the electron, respectively, and the electrons are contained in a box of volume L . In Eq. (1) the Kronecker
5 indicates the conservation of z momentum and the Dirac 5 function indicates the conservation of energy. On making
use of Eq. (1), and Eq. (29) of Ref. 1, the classical limit of Eq. (13) of Ref. 1 becomes
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where the wave energy ek Nq, fin, Ei =pui /2, and th——e linear differential operator g = [(8/BEi )+ (k, /pcoi, }(8/Bv, )].
Equation (13) of Ref. 1 is the energy balance equation and Eq. (29) of Ref. 1 gives the prescription for taking the classi-
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cal limit of the quantum variables. Similarly, by applying the principle of detailed balance for the transition probabili-
ties per unit volume of emission and absorption between the pairs of quantum states, (

~
n, U, );

~

n + 1,U,
' ) } and

(
~
n, U, );

~

n —1,U,
") ), and then taking the classical limit, after a certain amount of algebra one can show that the time

evolution of the electron distribution function F(Ei,U, ) may be written

BF(F, U, )/Bt = g (2''q'k, 'u2/L'pena)i, )(

(coital,

/co)I (I+&,Q)[5(co coi—, —k, u, )QF(Ei, U, )]I

+ t(1+EiQ)[5(co co„——k, u, }F(Ei,U, )]I ) .

For a collisionless plasma the set of Eqs. (2) and (3) is the
coupled pair of classical quasilinear equations, one
describing the time evolution of the ordinary-mode wave
energy and the other describing the time evolution of the
electron distribution function. In Eq. (2} the first term
which is proportional to eA yields the growth or damping
rate of the wave and is a consequence of a balance be-
tween induced emission and absorption; while the second
term which is independent of c.k is a consequence of spon-
taneous emission. It is seen that Eq. (3) is a Fokker-
Planck equation ~hose first and second terms account for
"diffusion" and "dynamical friction, " respectively. The
velocity-space diffusion term is proportional to the wave
energy el, and is again a consequence of a balance be-
tween stimulated emission and absorption. On the other
hand, the dynamical friction term [i.e., the term which is
independent of el, on the right-hand side of Eq. (3)] is a
consequence of spontaneous emission.

If we now assume that F(Ei,u, ) is a Maxwell-
Boltzmann distribution function, and c.I,

——0 at a time
t =0, then the solution of Eq. (2) is sk =E„'[1
—exp( —2y„t)], where

&'k '=(~kg Ti/~i, )/[1+( Ti /Ti )(cu cog )/a)i, )—=ka T,

for co=co&, the damping rate

2yk = (n' Deere Uz/2c coi, k, uii)

XI +(Ti/Ti)[(co cos)/cos))exp[ —Ua/Uii]

(4)

Ua ——(~—~i, )/kq, U
i
——(2k' T() /p, ), aild D (c ki /cd )

=(1—m~/co ) for ki &&kt~. In the limit k, ~0,

2yk =(ka Ti/y )(mDr0&/2c )5(co—coi, ) .

It is therefore interesting to find that although the wave
damping 2@k is determined mainly by TI~, the radiative
equilibrium between the electrons and the 0-mode radia-
tion field is an equipartition mainly with Ti. At equilibri-
um the energy per mode c'k '=k&Ti as a result of the
equipartition theorem. That is, the balance between in-
duced emission and absorption is determined mainly by

T~~, while the global balance between spontaneous emis-
sion„ induced emission, and absorption is determined
mainly by Ti. This result is somewhat in contrast to in-

tuitive expectations.
We now wish to calculate the time rate of change of

Ti, Ti, particle density (No), and current density (Ji ) for
finite k~~ ECRH. These are given by

2PUz
= I dU~ I dEiX

Here the angular brackets refer to an average, and we have written (Ei) =(puf /2) =(p(U +U )/2) =kzTi and
2

i i x y
(E,

,
~

) = (pu, /2) =kz Ti /2 since the perpendicular motion has two degrees of freedom, while the parallel motion has
only one; the average energy per degree of freedom is thus k~ T/2 as a result of the equipartition theorem. On making
use of Eq. (3), Eq. (5) yields
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where the terms in the curly braces on both sides of Eq. (6) have the similar one-to-one correspondence as in Eq. (5),
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and Fi, (u, )= Jo" dEiF(Ei, u, ). The somewhat lengthy

and tedious algebra leading to Eqs. (6) and (7) only makes
use of integration by parts over dE) and over dU, ; and the
constant terms resulting from these integrations vanish at
Ei =0 and Ei = ao and at u, =+ ao. Similarly Eq. (2) can
be rewritten as

/~r = (u'„—/co, )(sou, lk, u, t') y'

If we now assume that Fii(u, ) is a Maxwell-Boltzmann
distribution function so that

Fii(u, ) = ( I /n'i2u
li

)exp( —u,'/u 2ii ),
of Eq

I'k --(~Dcgpu~ /2c ) [ ei [1+(Ti/Tii)(co —mb)/mb]

( k, T, /~„)]F,i(u, =ua), (9)

where D=(c k', /c'u)=( 1—cu'/co') o k, )) II. n Eqs.
(7) and (9) the term that is proportional to ek is a conse-
quence of a balance between induced emission and ab-

sorption, while the term that is independent of ck is a
consequence of spontaneous emission. It may be noted
that Y„=O of Eq. (9) yields the previously discussed radi-
ative equilibrium solution ci, =kz T~ for u =u&.[0)

In the usual formulation of the classical quasilinear
plasma kinetic theory (CQPKT) (Refs. 6 and 7) based on
the Vlasov-Maxwell equations, it is extremely difBcult to
obtain the dynamical friction term of Eq. (3). That is, in
CQPKT one assumes that the wave energy Ek is much
greater than kz Ti; and consequently, one can neglect the
dynamical friction term in Eq. (3) and the spontaneous
emission terms of Eqs. (5)—(9). Then I'z of Eq. (9) be-
comes

I'k —
Al, (ux

/unpin'

)[1+(Ti /Til )(cu co~—)/co~ ]

&& exp( —uR' /u 2ii ), (10)

where A& (ekmD——co /2c ). In Fig. 1 we have plotted
the dimens|onless functions

[(robust

/k, u
ii
)+(2Tj /Tii )](Y'k/Az ) =Zl, (Ti ),
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FIG. 1. Plots of the dimensionless functions Zq( T, ), Zk( T~i ), Z&(%0 },Z&( JI~ ), and Zk(ck ) as a function of co/co& for two dift'erent
angles of propagation:, 8=2', ———,9=10'. (a} Zk(T, ), (b) Z&(J~t), (c}ZI, (c& }, (d) Z&(Tt },and (e) Zl,.(NO}. Conditions are
kg T, =3 keV, kgTI~ ——2 keV, and cob/2m =9&(10' Hz.
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(uii Iui )(I ' I& )=Zg(T~ )

(I'k/~k)=Zk(&o)»

( uii /u
ii

)( I'k /3 k ) =Zk (J
i
),

for two difkrent angles of propagation. In this figure
these functions Zk ( Ti )' Zk ( T( ) Zk (iV0 ) Zk (Jii an

Z„(e„) illustrate the behavior of BTi IBr, BT~~ IBt,
BN /Br BJ~~ /Br aild Be /Bt, respectively, as a func~tion

of co/cob for a given value of k [see Eqs. (6) and (8)]. It is
interesting to note from this figure that the Doppler effect
due to the finite value of k, does not yield the usually ex-
pected Gaussian broadening as found in the literature.
However, it leads to a somewhat symmetric Doppler
splitting for BTi IBt, BJi/Bt, and Bek /Bt as a function of
co/~b, and to an antisyrnmetric splitting for BTl /Bt and
BXoIBt as a function of co/cob. For tokamak plasmas the
confining magnetic field 8 ~R ', where R is the major
radius of the torus. For these plasmas the Doppler split-
ting in frequency will map over as a splitting in major ra-
dius R around the resonance zone R =Rb, where ~=~b.

In Eq. (6) the sum over k goes over essentially as an
integral over der. Thus for radiative equilibrium the an-
tisymmetric functions in Eq. (6) will integrate to zero.
That is, for the antisymmetric terms of Eq. {6),whatever
the particles gained from or lost to the waves for co glob
are again lost to or gained from the waves, respectively,
for co&cob Consequ. ently, from Eqs. (6) and (8) one can
show that

y„(B.„IBr)= [B(L—'X,k, T, )IBr],

g (k, /co)(Be& /Bt)

= —[(L p, /q)(BJ~t/Bt) (L puz )(BNu—/Bt)],
(11)

(BX,IBr)=0,

B(L 'E,k~ T~, )/Br] =0

The first three expressions in Eq. (11) represents the con-
servation laws of energy, momentum, and particle num-
ber density, respectively. The last relation represents the
fact that an equilibrium distribution of waves does not
spend any of its energy to increase the particle's parallel
temperature. This clearly shows that the coupled set of
Eqs. (2) and (3) is self-consistent, and the heating is pri-
marily in the perpendicular direction. Indeed from Eq.
(6} it is relatively easy to see that (BTi/Bt)/
(BT,

~

/Bt) ~ [cob /(co —cob }]&& 1. That is, the 0-mode
ECRH would lead to a heating mainly in the perpendicu-
lar direction. This result is consistent with the conserva-
tion of parallel canonical momentum. Since the parallel
z coordinate is cychc or ignorable' in the Hamiltonian
& =(p —q A/c)'/2p (where A= A"'+ A."', A"' is the
vector potential of the applied magnetic field, and A"' is

the vector potential of the 0-mode electromagnetic field),
the parallel canonical momentum p, =pu, +qA, (xi, t)/c
is a constant of motion. Since A,' ' is a constant and A, "
is an oscillating bound function, v, must be oscillating
and bound as well indicating that on the average elec-
trons do not gain parallel energy. Energy is fed to the
particular motion by the qv, 8&"/c force, where 8~ ' is
the wave magnetic field. This indicates that the perpen-
dicular heating rate is mainly determined by T~~. A simi-
lar reasoning is given in Ref. 9 assuming that the parallel
canonical momentum is conserved. Here we justify this
assumption by pointing out that the parallel coordinate is
cyclic in the total Hamiltonian.

Let us now examine the limiting case of Eq. (6) for ex-
actly perpendicular propagation. In the limit k, ~0,

Z, (T, ) =[(~bu„/k, u2l)+(2T, ITl)](I,"I~, )

~(~b /2)5(~ ~b ),—

Zb( T~)) =(uq /u)( )( I'k/&k )~0,
Z„(XO)=(Y„'/A„)~0, Zk(J~~)=(ug /u~~)(I'k/&b)~0

Zb(sk )=(couR Ik, ui )( Yk/Ab )~(~/2)5(~ b )—
Here we have used the fact that the Dirac 6 function
satisfies the relations x 5(x)=0 and x 5'(x) = —5(x). This
limiting case illustrates the reason for grouping the terms
in the form shown in Eqs. (6) and (8). It may again be
noted that Zb (Ti ) = —Z„(eb ) is a reliection of the con-
servation laws of energy when k, ~0. In the convention-
al collisionless hot-plasma quasilinear theory the only
mechanism responsible for broadening and/or splitting
the resonances is the longitudinal Doppler e6'ect. Since
for k, ~0 the longitudinal Doppler shift vanishes, it is
apparent why this theory predicts a 5-function resonance.
A more exact theory should incorporate other mecha-
nisms" that may be responsible for resonance broadening
and/or splitting.

III. THE EFFECTS OF COLI.ISIONS
AND STEADY-STATE CURRENT DRIVE

Thus far we have considered a collisionless plasma.
That is, in Eqs. (2) and (3) we have neglected the effects of
electron-ion collisions. Collisions basically have a two-
fold effect on these equations. First, a collision can give
rise to a broadening of the cyclotron resonance. If one
wishes to take this into account then one should replace
5(co —cob —k, u, ) by

(v/2m)/[(co —cob —k, u, ) +v /2],
where v(ui, u, ) is the collision frequency. Second, in Eq
(2) it can give rise to a collisional damping which must be
added to the right-hand side of this equation. One can
show that for 0 mode with E~~B, the collisional damping
may be written
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~sk cilpekv(ui, u~ )
du~ 28'uidui

Bf „— o (co—k, u, ) +v (ui, u, )
F(ui, u, ) . (12)

Neglecting k, u, in Eq. (12) and for to=cob »0, the ap-
proximate form of Eq. (12) may be written

BCk Gap
2

VEI
Bt ~b

(13)

where v is the average value of the collision frequency. It
should be noted that this term is proportional to c,k and
hence it has to be compared with the damping term due
to absorption minus induced emission in Eq. (2). In the
limit k, ~O, the approximate form of this cyclotron
damping may be written

Ty N —cob
2yksk = (1—to&/co ) 1+

TI( cob

(~~ ul s„/4c )(V/2~)
X '

2 2(to —cob) +v /2

=(1—to~/co')(co~ul /4c v)s„ for co=top . (14)

For co=to»&co, it is seen from Eqs. (13) and (14) that
when ui/c »2v/tot„2yksk »(Bs„/Bt)„. That is, when
u

i /c &»/cob one can neglect the collisional damping ill

Eq. (2}. For the conditions of Fig. 1, u
i
/c

=2X2&&10'/(5X10')=SX10 ' and v/to, =(6X 10'/
(2m X9X10' }=10 for an electron density n =3)&10'i
cm . Hence, for normal tokamak discharges one can
neglect the collision damping contribution to Eq. (2) and
the radiative equilibrium is indeed a balance between ab-
sorption, induced emission, and spontaneous emission
(i.e., a balance between the Einstein A and 8 coefficients).

Similarly, one has to add the rate of change of the elec-
tron distribution function due to collisions
[BF(Ei,u, )/Bt], to the right-hand side of Eq. (3). How-
ever, this term is independent of c.k snd consequently
does not affect the heating rates of Fig. 1. Usually, this
term is larger than the dynamical friction term of Eq. (3).
If one wishes to solve the much more complex problem of
the 6nal steady-state values Ty TI~ No and J~~ in rf plas-
ma heating, one must balance this term against the
velocity-space quasilinear diffusion term of Eq. (3). In
this paper we have not attempted to solve for this steady
state. This is an extremely difficult problem to solve
analytically and has to be done numerically with the aid
of computers. For numerical solutions the needed
[BF(ui, u, )/Bt], are those of Chandrasekhar and
Spitzer. '

%e now wish to examine the eSciency of rf-driven
plasma current in 0-mode ECRH. This emlciency, by
which the practicality of a reactor incorporating rf-
driven steady-state current msy be assessed, is J~~/P, the
amount of parallel current generated per power dissipat-
ed. In ECRH this steady-state current J~~ is produced by
the cyclotron damping of the waves traveling in only one

=(L p/q)vJi . (16)

Now the rf power dissipated per unit volume is given by

, y (a.„/at) =a(X,k, T, )/at,1

where we have made use of the first relation of Eq. (11).
Thus from Eqs. (16) and (17) we get P =(co/k, )(vp/q)Ji,
which is precisely the Ohkaws steady-state current drive
efficiency criterion of Eq. (15). This exact agreement of
our results with that of Ohkawa not only shows the self-
consistency of our coupled pair of quasilinear equations
(2) and (3) but also shows for the first time that this
current drive eSciency criterion is really a consequence
of the conservation laws of energy, momentum, particle
density of Eq. (11), and the collisional relaxation of the
current density.

%'e now wish to show that if the absorbing resonant
plasma layer is optically thick to the incident rf power,
then the initial increase in the perpendicular temperature
in the absorbing volume is exponential and not linear in
time. Neglecting the spontaneous emission term in Eq.
(2), (Bs„/Bt)= 2yksk, where the —damping rate 2yk is
given by Eq. (4). Also

'3

g[]~ fdAk fdtoD ~co [], (18)
2&C

direction, either parallel (or antiparallel) to the confining
magnetic field. The waves have net parallel (or antiparal-
lel) momentum, which, upon being absorbed by electrons
traveling with the wave parallel phase velocity, exerts a
force that drives the electric current. Usually the Ohmic
current decays because of the momentum loss between
electrons and ions by Coulomb collisions'
v =to~ lnA/2m%Du . If opposite forces are applied to elec-
trons and ions separately and. their strengths are equal to
the momentum loss rate, the current will be maintained.
The required force per unit volume is qXoqJ~~, where

i) = (pv/&Oq ) = (4~v/to~ ) is the plasmas resistivity.
Hence the wave power P required to maintain a steady-
state current J~~ is given by

P =(to/k, )qNortJi ——(co/k, )(vp/q)Ji

This is the Ohkawa' steady-state current drive eSciency
criterion.

In quasilinear theory this steady-state current J~~ is a
consequence of a balance between the erst velocity mo-
ments of (BF/Bt) of Eq. (3) due to the wave particle in-
teraction and the Fokker-Planck collision operator
(BF/Bt),. Since the collisional relaxation of the plasma
current (BJt~ /Bt)„= —vJ~~, it is seen from Eq. (11) that for
0-mode rf heating

g (k, /co)(Bs„/Bt) = (k, /~o)[B(L—& k T, )/i)t)
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where d QI, is the element of solid angle. But
2yA. ——U 2Imk, where Im stands for the imaginary part
and the group velocity Uz

——(Bco/8Rek~)=c(1
—co~ /co )', since the real part of the 0-mode dielectric
coefficient D =(c Rek~/co) =(1—co /co ). Here Re
stands for the real part. For A:, ~0, yI, and Imk are both
proportional to 5(ru co—&) and for a tokamak plasma
cob &r R ' implying dco= d—co~ =(cos/R)dR, where R is
the major radius of the torus. Thus, on making use of
Eq. (18), Eq. (17) becomes

, y(ae, /at)
1

J 3

1 g 2ykek
L 3

most increase exponentially in time as given by Eq. (22).
However, the absorbing volume AV is only a small part
of the total tokamak plasma volume V = 2m R oa, where
a is the plasma minor radius and Ro is the central plasma
major radius. hV=ARA, where A is the launching an-
tenna vertical spot size area on the resonant layer of
width hR a1ong the major radius. If Doppler width is
the dominant absorption line broadening, then
AR =(R /co&)(k, vr), where Ur is the thermal velocity In.

general, the energy will flow out of the absorbing volume
as determined by the local value of the transport
coeFicients, and one must do a complete power balance
study to obtain the exact form of T~(t). Thus T~(t) of
Eq. (22) is an upper bound.

IV. CONCLUSIONS

fdQg f deva) (1—a) /co )
i

2yl, el,

=(co&/2m Rc )(1—cozjco&) rsl, ,

where the optical depth'

r= f 21mk dR = f (2y&/U )dR

(19)

=(1— / )' ( R k T„/2 ) .

(20)

Here we have made use of Eq. (4). The power P absorbed
on a single transit of the absorption region is
P =Po[1—exp( —

& )], where Po is the incident ECRH
power. If the wall reAection coeScient r is large, then

P =P,[1—exp( —~)]/[1 —r exp( —r)],
and multiple transits will enhance the ECR absorption
considerably. For ~&2, the system absorbs the incident
power like a blackbody and I' =I'o. In this case, within
the absorbing volume the absorbed radiation Geld reaches
thermodynamic equilibrium with the plasma electrons in
a time of order 1/2yA. regardless of the collisional relaxa-
tion of the electron distribution function, and cj, =kz 7,
as a result of the equipartition theorem. Thus from Eqs.
(17) and (19) we get

(PINoks T~)=(1/k' TL )[B(ks T~)/Bt]

=(ml, rl2vr NORc )(1—co~ lcoq ) . (21)

The solution of Eq. (21) for [Po/Noks T, (t)] 5 1 is

T~(t)=T~(t =0)exp[(cuI r/2m NoRc )(1—co~/coI, ) r] .

In conclusion we have presented a coupled pair of
quasilinear equations for the 0-mode electron-cyclotron
resonance in plasmas. One of these equations describes
the time evolution of the 0-mode wave energy and the
other describes the time evolution of the electron distri-
bution function. %e have shown that this coupled pair of
equations is self-consistent by proving that these equa-
tions satisfy the conservation laws of energy, momentum,
and particle density. It is found that although the wave
damping is determined mainly by T~~~, the radiative equi-
librium is an equipartition mainly with T~. In 0-mode
ECRH the heating is primarily in the perpendicular
direction even through E~~B. We have also presented
closed-form expressions for the time rate of change of T~,
T~~~, Xo, J~~, and cA. It is found that the Doppler efFect
due to the finite value of k, does not yield the usually ex-
pected Gaussian broadening. However, it leads to a sym-
metric Doppler splitting for BT~ IBt, BJ~~ IBt, and Bel, /Bt,
and to an antisymmetric splitting for BT~1/Br and BNo/Bt
as a function of co/co&. All these results are somewhat in
contrast to intuitive expectations.

For normal tokamak discharges we have shown that
the collisional damping of the 0 mode is negligible in
comparison to the usual cyclotron damping. In quasilin-
ear theory it is found that the Ohkawa steady-state
current drive eSciency criterion is really a consequence
of the conservation laws of energy, momentum, particle
density, and the collisional relaxation of the current den-
sity. Finally, we have shown that if the absorbing reso-
nant layer in ECRH is optically thick the increase in T~
in the absorbing plasma volume is exponential and not
lineal 1I1 tiIIle.
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