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Interesting new aspects of atomic behavior in the presence of strong driving fields appear when

the driven atom resides not in free space, but in a region {such as an optical cavity) that displays a
frequency-dependent photon-node density. Under such conditions, it is found that a strong driving
field can modify the spontaneous decay properties of an atom, and thereby give rise to interesting
new features in the spectrum of strong-field resonance fluorescence. It is also found that a high level

of dressed-state polarization can be maintained in a sample of resonantly or nonresonantly driven
atoms by appropriate tuning of an enclosing cavity. Furthermore, for appropriate laser and cavity
tunings, it is found that the atomic states become highly squeezed. In the course of analyzing these
effects, a set of modified Bloch equations is derived that explicitly accounts for the finite response
time associated with a frequency-dependent photon-mode density.

I. INTRODUCTION

In this paper we analyze the spectral and statistical
properties of atoms driven by a strong, single-mode, light
field and coupled to a reservoir of electromagnetic field
modes whose spectral density displays a strong frequency
dependence. One realization of this system consists of a
driven atom confined within an optical cavity. As a pre-
liminary, we discuss recent work in the area of cavity
quantum electrodynamics, and attempt to place the
present results in proper context with it.

In 1946, Purcell' predicted that the spontaneous-
emission rate of an atom located in a cavity tuned to the
atomic-transition frequency would be substantially larger
than in free space. The enhancement results from a
cavity-induced increase in photon-mode density at the
atomic-transition frequency. Following this idea,
Kleppner predicted that the opposite effect, i.e., suppres-
sion of spontaneous emission, occurs if a cavity is em-
ployed to reduce the density of photon modes in the spec-
tral region of the atomic transition. In fact, Kleppner
predicted that spontaneous-emission could be eliminated
altogether by placing an atom in a wave guide below
cutoff. Kleppner's paper stimulated a series of experi-
mental works on this subject in both the microwave and
optical regimes. In most of the experiments, the dirnen-
sion of the cavity was comparable to the wavelength.
Quite recently, however, Heinzen et al. showed that
analogous effects can be observed in confocal cavities of
large dimensions.

%'e have recently shown that modifications of
spontaneous-emission rates may be effected not only with
the essentially passive means described above, but also
through a dynamical means, i.e., by imposing a strong
driving field on the atoms. In order for such a dynamical
effect to occur, the atoms must reside in a region of space

in which the density of photon modes varies appreciably
on a frequency scale set by the Rabi frequency of the
driving field. Cavities provide a natural setting for
finding such frequency-dependent mode densities, but
they may also arise in diverse environments, including
those involving the solid state. One purpose of' this paper
is to present a detailed treatment of the effect of strong
driving fields on spontaneous-emission rates in the partic-
ular situation where the irradiated atom is within a cavi-
ty. %e analyze resonance-Auorescence spectra for
features indicative of dynamical modifications of spon-
taneous emission. As we will see below, the spectra also
reveal other novel effects such as the polarization of the
atom-field dressed-state populations.

A second area of cavity quantum electrodynamics of
recent interest deals with the spectral and statistical as-
pects of collective and single-atom behavior. Studies in-
volving the role of quantum fl.uctuations in optical bista-
bility have led to the prediction of small photon anti-
bunching and squeezing effects. These effects are, in
fact, related to the photon antibunching and squeezing
found in the study of resonance Auorescence of a single
two-level atom in free space. ' This relation has been
established by Carmichael" and extended to multi-atom
systems by Lugiato. ' New insight into the statistical
properties of the quantum electromagnetic field in cavi-
ties has been achieved with the discovery of the vacuum
Rabi splitting, ' which can be alternatively considered as
another type of modification of the spontaneous-emission
process. In the regime, when the cavity width I becomes
comparable or smaller than the atomic spontaneous-
emission rate, the resonance-Auorescence spectrum con-
sists of two separate peaks. The splitting reAects the
splitting of the lowest excited energy levels in the Jaynes-
Cummings' model. Recently, Raizen et aI. ' studied
the light transmitted through an atom-containing cavity
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and observed substantial relative squeezing.
%e have investigated a number of quantum-statistical

aspects of strongly driven atoms in cavities, i.e., strongly
driven atoms coupled to frequency-dependent photon-
mode reservoirs. Under the conditions of strong or
moderate driving-field strengths and nonvanishing detun-
ings between the atomic, laser, and cavity frequencies,
large atomic-squeezing e8'ects have been found. '6 The
atomic squeezing exhibits itself as a squeezing of the
scattered-light field. Although the squeezing of the scat-
tered light is not as large in relative terms as the squeez-
ing of the atoms, the optical squeezing arises in a regime
quite unexpected on the basis of free-space results. ' The
present paper contains a detailed analysis of these effects.

%hile not of direct relevance to the present paper, we
note that the study of Rydberg atoms in ultrahigh Q cavi-
ties' has recently received a great deal of attention. In
this regime, a Jaynes-Cummings' model provides a good
starting point for the theory. Numerous novel effects
have been discussed and observed in this framework,
such as atomic collapse' and revivals, ' ' single-atom
masers, etc.

The remaining sections of the present paper are organ-
ized as follows. Section II provides a simple qualitative
explanation of dynamical modifications of spontaneous
emission and related effect. In Sec. III we describe in de-
tail our model and discuss the method we use to solve the
appropriate equations of motion. The main result here is
to obtain modified Bloch equations describing the evolu-
tion of the mean atomic inversion and polarization in a
region of space, e.g., a cavity, exhibiting a strongly
frequency-dependent spectral density of photon modes.
These equations are obtained for arbitrary mode-density
functions, provided that the mode density is essentially
constant over the radiative width of the atom, and for
driving-field Rabi frequencies larger than atomic radia-
tive width. Section IV is devoted to the discussion of
fluorescence power spectra. %e present there the method
of calculating the spectra and present closed-form ap-
proximate formulas for heights, widths, and positions of
the peaks in a modified Mollow spectrum. %e also
present there some new numerical results, concerning the
case of nonvanishing detunings as well as non-Lorentzian
mode-density functions. In Sec. V we discuss quantum-
statistical properties, such as squeezing, of strongly
driven atoms in the presence of a frequency-dependent
photon-mode density. Finally, in the Appendix, we
present the full set of equations for single-time, atom-field
correlations which can be used for a systematic extension
of our results into broader parameter regions than al-
lowed for under the approximations employed in the
present paper. Throughout, we assume that optical or
microwave cavities provide a convenient means of achiev-
ing the frequency-dependent photon-mode density central
to our analysis.

II. DYNAMICAL MODIFICATIONS
OF SPONTANEOUS EMISSION

The effects of interest here are all of a fundamentally
quantum nature. Nevertheless, considerable intuitive in-

sight and understanding can be gained by the discussion
of these effects within the framework of the semiclassical
Bloch picture. The Bloch equations in the absence of de-
tuning, damping, and in the rotating frame have the
form

"=Ox&, (l)
dt

where o =(o., o.z, o.3) is the Bloch vector and 0, ~hose
magnitude is equal to the Rabi frequency 0, is the
pseudofield vector. For convenience, 0 is assumed
throughout to point along the x direction, i.e.,
0=(Q, O, O). The solutions of Eq. (l) describe the preces-
sion of a spin vector o around the Q axis. In particular,
the o

~
component of the Bloch vector, which is parallel

to the driving field 0 (or, in other words, which is in

phase with the driving field) remains constant. If we
prepare the system in a state such that o. is initially paral-
lel to Q, the Bloch vector will, in the absence of damping,
stay in this position forever. This phenomenon is sorne-
times referred to as spin locking. %e now consider the
effect of damping.

In the case of an isolated two-level atom, the most im-
portant damping mechanism is spontaneous radiative de-
cay, and this mechanism is associated with the coupling
of the atom to the zero-point electromagnetic fields. %'e

may, therefore, try ta model the effects of these fluctua-
tions, within the framework of the semiclassical picture,
by introducing a driving field with small classical Auctua-
tions,

0(t) =0+50(t) .

These fluctuations are expected to trigger the decay of
the Bloch vector from the semiclassical trajectory to its
stationary state. One can easily perform a linear stability
analysis of the Bloch vector precession with respect to
field lluctuations 50(t), and one makes two basic obser-
vations.

(a) Fluctuations induce a change of the in-phase com-
ponent of the polarization o „which is proportional to
the time average of 50&(t)a2(t) —502(t)o&(t). Since oi
and cr& (in the lowest order) undergo Rabi oscillations,
the Auctuation-induced variation of o.

&
is significant if

and only if the field fluctuation 50(t) contains Fourier
components at the frequencies +0 (or F0+0 in the non-
rotating frame, where ~0 is the atomic transition frequen-
cy). In particular, if 50(t) only contains spectral com-
ponents whose frequencies are much smaller than 0, the
o.

&
component will adiabatically follow the motion of

0(t) and remain largely constant.
(b) The o 2 and o

&
components of the Bloch vector are

sensitive not only to Fourier components of 5Q at the fre-
quencies +0 but also to those at zero frequency. This
means that Auctuation-induced variations of o.

2 and o.
3

will be non-negligible even if 50(t) only contains frequen-
cies close to zero.

On the basis of these observations, one can conclude
that the Rabi frequency provides a means of controlling
which reservoir spectral components contribute to
Bloch-vector damping. If the reservoir exhibits spectral
structure, it follows that variations in Rabi frequency may
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lead to changes in the Bloch-Uector damping rate. In free
space both in the optical and microwave regime, the
spectrum of the vacuum fluctuations, or, alternatively,
the density of photon modes, is practically constant, and
one ~ould not expect a dynamical modification of spon-
taneous decay rates. The situation may be dramatically
different in appropriately designed cavities. There, as we
mentioned, the photon-mode density may be strongly fre-

quency dependent, and exhibit maxima and minima. In
passive experiments, the frequency dependence of the
cavity photon-mode density leads to enhancement or in-

hibition of spontaneous-emission rates above or below
their free-space values.

Consider then a driven atom in a cavity. %e assume
that the atomic frequency coo, laser frequency co&, and

cavity frequency m, are all equal. Suppose that we

prepare ' an atom in one of the dressed states (so that
initially the Bloch vector is parallel to 0). If the Rabi
frequency 0 is much smaller than the cavity width I (so
that the frequencies +0 lie close to the maximum in the
photon-mode density), the Bloch vector will be driven
away from the locked position and tend toward the sta-
tionary state. On the other hand, if the Rabi frequency 0
is much larger than the cavity width (so that the frequen-
cies +Q lie in a spectral region of low-photon-mode den-
sity), there will be practically no vacuum fluctuations in
the cavity to trigger the decay. The 0

&
component of the

Bloch vector (which corresponds to the population inver-
sion of the dressed states ) will remain constant for a
very lang time.

Note that the two other components of the Bloch vec-
tor will, in fact, attain their stationary values relatively
rapidly even for 0 pg I . This is due to the fact that their
decay may be triggered by vacuum fluctuations at zero
frequency (corresponding to modes at the center of the
cavity resonance where the mode density is high) as well
as by Auctuations at frequencies +Q. %e should, howev-
er, expect that for 0~~I, the damping of 02 and o3
(which correspond to the dressed-state coherence) may be
reduced.

All the effects discussed above should be reflected in
the power spectrum of resonance Auorescence. For
A~~I" we should not expect any departures from the
standard Mollow result (expect that the high mode den-
sity in the cavity will lead to a broadening of the Mollow
peaks). However, for 0 ~&I, we should expect a dramat-
ic narrowing of the central peak, which corresponds to a
suppression of the decay rate of o &. Since the decay rates
of o z and o 3 can be reduced only a limited amount, the
narrowing of the sideband peaks should be less pro-
nounced. Of course the intuitive ideas presented above
must be carefully and quantitatively analyzed on the level
of modified Bloch equations. Independently, they should
be analyzed on the level of equations for two-time, atomic
correlation functions since the quantum regression
theorem does not hold. As we have show in abbreviat-
ed form such analysis does indeed confirm the intuitive
conclusions outlined above.

An intuitive analysis may also be presented in the case
of nonvanishing laser-atom detuning 6, =~J —~0 and jor
laser-cavity detuning 52=m, —~, . In such cases, the

semiclassical Bloch motion is sensitive to fluctuations of
the characterlstlc frequencies 0, +(0 +ki ) . Smce the

cavity supports only the vacuum Auctuations of the
characteristic frequency b, z (viewed as usual from the
frame rotating at the laser frequency), we may again by
appropriate choice of parameters modify (i.e., enhance or
suppress) the damping rates of the dressed-state inversion
and coherence. The detailed discussion of these effects
and their relation to squeezing accompanies the presenta-
tion of the numerical results in Sec. IV of this paper and
in Ref. 16.

It should be stressed that the driving-field-induced
modification of radiative damping predicted here follows
from the same essential physics that gives rise to the
field-dependent damping analyzed in other contexts.
These other contexts include solid- and gas-phase relaxa-
tion, atoms exposed to strong incoherent fields, laser
phase fluctuations and their effect, ' ' and autoionization
spectra. ' As mentioned previously, dynamical narrow-

ing or broadening of spectral lines, can be expected in any
case where one considers the interaction of an atom with
a reservoir that exhibits a suitably structured spectrum.
In the present example, the only requirement on the spec-
tral structure turns out to be one of scale (relative to the
Rabi frequency). The situation may be more complicated
in other physical systems. In a cavity, the reservoir
spectral structure is simple, consisting of periodic peaks
superimposed on a more or less constant background.
The background arises from the open sides of the optical
cavity.

III. THE MADEL

An experiment in which the effect discussed above
should be observable consists of the following: An atom-
ic beam is injected into an optical cavity and is driven by
a laser beam. The laser light may be injected directly into
the cavity modes (which eventually Ilows away from the
cavity through the mirrors) or into the side modes.
Field-dependent effects are to be moni. tored through their
effect on ihe atomic-Auorescence spectrum.

The Hamiltonian for this system may be written
(c =Pi= 1 )

where the free atomic Hamiltonian is

No
03, (4)

In Eq. (5) the reservoir has been divided into two parts,
one consisting of so-called cavity modes (c ) and the other
background modes (b). The density of cavity modes is
large only in the vicinity of the cavity resonance frequen-
cy ~, . Geometrically, their spatial structure is close to
that of the cavity resonant mode. On the other hand,

coo is the atomic-transition frequency, and 0'3 the atomic
inversion operator. The free-field Hamiltonian consists
of two parts

m, =f dk c '„c„+fdk b ', b,
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background modes contribute equally at all the frequen-
cies. Their density sets a lower limit for spontaneous de-
cay rates of atoms whose transition frequencies are far
from cu, . Their spatial structure is quite diferent from
the cavity resonant mode. In the process of Auorescing
into the cavity mode, the cavity photons (described by

ci„ci, ) are created. Fluorescence out the side of the cavi-

ty creates background photons.
The atom-field interaction Hamiltonian consists of

three terms,

—(oe '+o ~ ' )+ f [g, (k)a c&+H.c. ]dk

+ f [g&(k)cr b„+H. c. ]dk .

Vtot ~c + Vb (10)

At this point it should be stressed that for the particular

The first term describes the interaction with the coherent,
monochromatic laser wave of frequency ~&. The strength
of this interaction is characterized by the Rabi frequency
0, which is given by the product of the atomic-transition
dipole moment and driving-field amplitude. The second
and third terms describe the interaction with the two
reservoirs and are responsible for spontaneous as well as
stimulated einission. The functions g, (k) and g&(k)
characterize, respectively, the density of cavity and back-
ground modes in the cavity. %e find it useful to
represent the g functions through reservoir response
functions. Since the background modes provide an
infinitely broad reservoir (with fiat spectrum), their
response should be immediate. Therefore we postulate
for v g0,

f dk
~
g„(k)

~

e ' =yi, 5(~) .

The coeScient yb is a measure of the amount that the
background modes contribute to the atomic
spontaneous-emission rate. This contribution does not
depend on 62. On the other hand, as we have said, the
cavity modes describe a finite bandwidth reservoir, i.e.,

J dk ~g, (k)
~

e ' =K(r) . (8)

The function K(7) should vanish for I"r y~ 1, where I is
the cavity resonance width. In the following, we shall
consider two particular examples of the cavity-mode
response function K(r).

For optical cavities, the function ~g, (k)
~

should be
of appreciable magnitude only in the frequency range
close to a cavity resonance, and we can model

~ g, (k)
~

as a simple Lorentzian that peaks at the cavity resonance
frequency co, and possesses a half width at half maximum
of I . In such a case,

K(r) =Ki (r) =y, I"e

and, as expected, the reservoir response time is I" '. The
coeFicient y, describes the contribution of the cavity
modes to the spontaneous-emission rate when cop=N, .
The total enhanced value of the spontaneous emission
rate for up ——~, is therefore

for k —co, &&e this becomes

8(k —co, )
fg, (k) f'~

Qk —co,

where 6 is a step function and the small constant e
smoothens the singularity in the density of modes. In
this case, the function K(~) can be expressed in terms of
some special function; however, for our present purposes,
it is suScient to write a formula for the Laplace trans-
form of the reservoir spectral function

K(z)= f e "K(r)dr . (12)

For microwave cavities we obtain

y, v'e.
K(z) =K~(z) = (13)

lz +i E'
with Im(&iz ) &0 for Re(z) ~0. Note that if the atomic-
transition frequency is detuned from the cavity frequency
by an amount 5,:—~p —co, &0, then the cavity modes
contribute to the spontaneous-emission rate by an
amount

e
y, (&3)= =y, (14)

where the approximately equal to sign holds when
63~~@. Note, however, that this contribution does not
diverge at 63~0, which is a consequence of the smooth-
ing introduced in Eq. (11). Equation (11) suggests that e
should be related to the cavity width. The effective cavi-
ty width is much larger, however, due to a very slow
asymptotic decrease of y, (b 3) cc (b, 3)

' for b, 3 large and
positive.

Having defined the basic features of the model system,
we turn our attention to the derivation of the modified
Bloch equations, i.e., equations for the mean values of
atomic observables. In doing that we shall use the stan-

choice of K(r) given in Eq. (9), our model can be alterna-
tively described using the quantum Langevin equation
or master equation describing the interaction of an atom
with a single, damped, cavity mode. If that approach is
chosen, the system's dynamics have the appealing proper-
ty of being Markovian. %e prefer, however, to use the
approach based on the Hamiltoman description [see Eq.
(3)] for the following reasons.

(i) One of our aims will be to eliminate the reservoir's
degrees of freedom completely in order to obtain reduced
atomic dynamics. Such dynamics will be non-Markovian
independently of the choice of K(r), provided that the
reservoir response time I ' is finite.

(ii) The quantum Langevin approach cannot be used if
the function

~ g, (k)
~

does not have a Lorentzian shape,
and, as discussed in the next paragraph, non-Lorentzian
shapes are not unknown.

For microwave cavities (wave guides), the appropriate
form of the function

~ g, (k)
~

is

Q(k —co, )e
~g, (k)

~

8(k —,)
k —N~ +6'
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dard Heisenberg-equations approach. %e allow for arbi-
trary values of the effective cavity width I", the Rabi fre-
quency 0 and the detunlngs 5 i =6)I

—630 and

A2 ——~& —~„except that I and Q are both assumed large
compared to y, and yb. In such a case we may eliminate
the photon degrees of freedom by solving Maxwell's
equations and substituting the solutions into the Heisen-
berg equations for the atomic operators. At that point, a
Born approximation can be performed which corre-
sponds to a first-order term in a systematic expansion in

y„/Q, y, ,/I, where v=c, b. In performing the Born ex-
pansion, one must not, however, perform the Markov ap-
proximation, as is usually done when dealing with
spontaneous-emission processes in free space. The
reason for this lies in the fact that the cavity-mode reser-
voir has a finite bandwidth which may be comparable
with other typical frequency scales such as 0, A„or 52.

Let us start by writing a complete set of Heisenberg
equations for our system in the rotating frame:

do
dt

=i b,&+i (Q/2)o 3+i fgb(k)o &b&dk

6,'+'(t) = fg, (k)c„(t)dk, (15b)

respectively, and using Eqs. (7) and (8), we obtain

6 '„+ ~(t) =6 ',+,„'„iy,—c"(t),
r

6','+'(t)=6' i+„„'„i—f IC(t t'—)e ' cr(t')dt',

(16a)

GO 0
dt

=i b, o (t)+i —o', (t ) y&o (—t)
2

where the homogeneous parts 6 '„+t„, (v=c, b) depend
only on c&(0) and bt, (0), respectively. Inserting the ex-
pressions (16a) and (16b) into Eqs. (14a)—(14c), we may
perform the quantum-mechanical averaging, making use
of normal ordering in Eqs. (14).

The resulting averaged equations contain, however,
contributions from two-time atomic correlation func-
tions. For example, the equation for (& ) =o takes the
form

+l g, k o'3CI, dk (14a) + f IC(t t')e—' (&,(t)&(t'))dt'.
0

(17)

GO' . ~ . 0
dt

= —ib, & i ——&
&

i g—,'(k)c t,.&&dk
2

i fgb*—(k)b J, &&dk, (14b)

Since K(t t ) is—of the first order in y„ it is sufficient for
lowest-order results to calculate the correlation function
in zeroth order (i.e., neglecting both parts of the atom-
reservoir interaction). The usual way is then to express
two-time correlation functions as linear combinations of
one-time averages. If we denote the vector

dt
=iQ(& —& )+2i f [g,'(k)b '„o —g„(k)& b„jdk x=(o, cT ) cTy),

the zeroth-order Bloch equations take the form

(18)

+2i f [g,'(k)c t, & —g, (k)& c&]dk, (14c) dx = —~ox
dt

dc

dk
i (k —b, t)c—„ig'(k )o,—C (14d) where the matrix Go is

dC I

dt
=i(k —62)c „+ig,(k)&

dbms

dl
i(k —b2)—bt, ig&(k)&—,

db~
dt

=i(k —bi)b i, +igb(k)&

(14e)

(14fl

(14g)

—l Al O —lQ/2

0 iA, iO/2
—i0 iQ 0

Similarly denoting

Xi(t, t') =((&(t)&(t') ), ( & (t)&(t') ), ( &$(t)&(t') ) ),
The index k enumerating diferent photons has been
chosen so that k =0 corresponds to photons of the fre-
quency co, in the laboratory frame. The initial state of
our system can be assumed to be a tensor product of the
atomic ground state and the vacuum states of both pho-
ton reservoirs.

The linear Maxwell equations (14d)—(14g) can now be
solved and their solution may be inserted into Eqs.
(14a)—(14c). Denoting the positive frequency parts of the
cavity and background electric fields as

'(ti) =fgt, (k)bt, (t)dk (15a)

(21)

X,(t=t', t')=(0, (o,(t')+1)/2, —o(t')) . (23)

Quite similarly, one can express the correlation functions

X2(t, t')=((& (t')&(t)), (& (t')o (t)), (& (t')o3(t)))

the zeroth-order equations for the correlation functions
are

dX,
dt

= —G,X, .

The initial conditions for Eqs. (22) are easily stated for
t=t'. %e have then
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=o (0)+i5Q*(z)/2z,

[ +y~~( )] ( ) —'[n —5Q( )] ( )

(24b)

+i [Q 5Q—'(z)]cr (z) =o3(0)—yi(z)/z . (24c)

The z-dependent (in general complex) coefficients yi(z),
yi(z), and yi(z) have obvious interpretations as non-
Markovian damping rates and radiative (Lamb) shifts of
the bare atomic states. Correspondingly, the coeScient
5Q(z) may be interpreted as a non-Markovian radiative
shift of the dressed-state energies.

The analytic expressions for the above-discussed
coefficients read

K (z i b, z—)
yi(z) =yb+~i

through the single-time averages x(i').
The right-hand side of the Bloch equations will depend

then only on the single-time atomic averages, and the
dependence will be through typical convolution-type
memory integrals. An elegant way to represent them is
to use a Laplace transform technique. After a tedious but
straightforward calculation, one obtains the Laplace-
transformed Bloch equations in the form

[z i—bi+, yi(z) jo (z) i—[n 5—Q(z) ]o 3(z) /2

=o (0)—i 5Q(z) /2z, (24a)

[z+ib, , +yi(z)]rr (z)+i [Q 5Q—'(z)]o 3(z)/2

b, inK *(z+iS2)—i 5Q'(z) = 0'
QK '(z i n—'+i b, z)

0' —6,
QK*(z+i Q'+ b z)

0'+5,

n'=(n'+b, ')' '

denotes the dressed-state transition frequency in the ab-
sence of interaction with the reservoirs. The above equa-
tions may be simplified substantially for particular
choices of cavity response (or alternatively spectral func-
tions) and for particular choices of other parameters,
such as 5, =0 or hz ——0 (see Sec. IV).

%e remind the reader of the two spectral functions dis-
cussed earlier. For optical cavities with Lorentzian line
shape, we have

y, I
KL (z) =KL (z) =

I +z
(26a)

On the other hand, for microwave cavities (wave guides)
close to their fundamental frequency, we obtain

y, V'g
K~(z) = — — with Im( &iz ) & 0 for Re(z) & 0,

iz +i ~ E'

Q [K(z+iQ' ib2}+—K(z in' ——ibz)
20' y, V'g

KM(z}= — — with Im(& iz ) &0—
iz i—&e—

(26b)

b,K *(z+ib2)
yi(z}=yb+

Q [K '(z+i Q'+id 2}+K'(z —in'+id 2)]
2Q'

(25b)

0
yi(z)=2yb+ [K{z ibz)+K "(z +id—i)]20'

n'[K(z+in' ib, , )+K *(z —in'+i~, )]
2(n' —b, i )

Q2[K(z in' i 5—2)+K *—(z +i Q'+i b 2)]

2(n'+b, , )

(25c)

E,QE(z id~)—
i5Q(z) = 0'

t QE(z+iQ' —ikey)

20'
QE {z i n' —id ~)—

Q'+ 4)

for Re(z) & 0 . (26c)

The modified Bloch equations (24} together with Eqs.
(25) are the main results of this section. We shall end this
section making a few general comments on the form of
Eqs. (24).

(i) These equations are valid only in the sense of the
Born expansion in y, and yb. Strictly speaking, they are
reliable only up to terms of the order (y, /Q ) or
(y„/I ), where v=b, c. Higher-order correction may be,
however, calculated in the course of a systematic expan-
sion. The explicit calculation of the single-time mean
values is described in the Appendix. Higher-order
corrections are included simply by breaking down the
hierarchy of the equations for one single-time correlation
function at a sufBciently high level.

(ii) Equations (24) contain the usual (Markovian) con-
tribution from the background modes.

(iii) Terms associated with the cavity modes have
characteristic convolution-type memory integrals in the
time domain (z dependence in the Laplace-transformed
picture). The memory extends over the cavity response
time I" ' for the Lorentzian cavity line shapes, Eq. (9).
The memory has a long-time algebraic tail for the non-
symrnetric nonanalytical cavity line shapes such as de-
scribed in Eq. (11).

(iv) In the hmit I »Q, y, and for Lorentzian cavity
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response, Eqs. (24) reduce to the usual Bloch equations
with y,. =yb+y, . [see Eq. (10)].

(v) For the wave-guide case [Eq. (11)],the usual Bloch
limit can be also found, but it requires a more complicat-
ed set of conditions. Namely, e must be large and 52
must be of the same order. Also it is necessary that
0,6, ~~ e. The latter conditions folio~ from the fact that
the density of photon modes [see Eq. (11)] has a max-
imum at k —co, =e, which is close to zero for small e but
shifts towards the violet when e grows. This limit, how-
ever, does not interest us, since in fact the main motiva-
tion for introducing Eq. (11) is to study the drastic depar-
tures from the usual Bloch-type behavior.

IV. PO%"KR SPECTRA QF FI.UGRESCKNCE

S„(k}= lim (b „(T)b„(T)). (29b)

S„(k}=—Im[limzgb(k+62)(o bk+t, )] .
z —~0

Denoting

x(t)=(o(t),o (t),o3(t)),

(30b)

the modified Bloch equations (24) can be written in the
Laplace-transformed matrix form

Equation (29) expresses the power spectrum in terms of a
single-time mean value. Using the Maxwell equations
(14d)—(14g), we immediately find the "optical theorem"

S, (k) = —Im[lim z g, (k+62)(o ck+~ )], (30a)
z~Q + 2

The power spectrum of the Auorescent light is given by
the well-known formula

G(z)X(z) =x(0)+R(z), (31)

S„(co}=lim Re J e'"'(6'', , '(t+r)6', +'(t))dr, (27)
I'-~ oc 0

where v=6 or c, depending on which of the Aelds is
detected. Equation (27) relates the spectrum to the La-
place transform of the stationary field-autocorrelation
function and can be evaluated in terms of atomic-
autocorrelation functions. However, since the reduced
atomic dynamics are non-Markovian and the quantum
regression theorem does not hold, the equations for the
atomic-autocorrelation functions have a form diferent
from the Bloch equations [Eq. (24)] and must be derived
separately. This additional exercise can be avoided if one
makes use of the identity

Y, (t) =((o'cl, (t}), (o 'cl„.(t) ), (o 3ck(t) ) ),
Yb(t)=((o'bt, (t)), (o bk(t)), (o3bk(t)) ) .

In Laplace-transformed form, the equations read

G[z+i(k —52)]Y,,(z)

(32a)

(32b)

II [z + i( k —h2) ]o (z)
ig „*(k) —T(z)+ z+t k —b~

(32c)

where R is a vector giving rise to the inhomogeneous
terms on the right-hand side of Eqs. (24). A calculation
similar to the one discussed in Sec. III allows us to derive
the equations fulfilled by the vectors

S„(k)= lim (B', '(k, )6',+'(k, T)),T~ oc
(28)

where the vector T(z) is given by

( ' —'(k T) = I e —'"' 8' '(t')dt'—
By direct inspection, one can theo show that, in fact,

0

T(z) = [o 3(z)+1/z]/2 (33)

S,(k}= »m (c „., (T}c„„(T)), (29a) A direct calculation of the z ~0 limit in Eq. (30) leads to
the Anal expressions for the spectra. They are

5;3o„+R;(—ik )o'„

S„(k)= ~b —S~(IC) .
I g, (k+t}2}

I

'

r

5;2(o3,(+ I).
S,(k)= Re ~g, (k+bi)

~ g G2, '(ik)
i =1

(35)

Here the subscript st denotes stationary values of the
atomic moments obtained from Eq. (31},i.e.„

lim x(t) =x„= lim[G '(z)R(z)z] .
I ~ oo z~O

Equations (34) and (35) exhibit two important properties.
(i) The cavity-mode spectrum contains the density-of-

modes factor
~ g, (k+6, )

~

. This factor accounts for the
direct effect of the photon-mode density on the spectrum.
For example, in the case of a Lorentzian cavity line shape

and with the laser, atom, and cavity all resonant, this fac-
tor leads (for II ~& I ) to a suppression of the amplitude of
the spectral sidebands. Such suppression has a "passive"
character and can be easily predicted. It is much more
diScult to predict the dynamical narrowing or broaden-
ing of the peaks in the spectrum.

(ii) The spectrum of the background modes does not
contain the factor

~ g, (k+6, )
~

. This feature follows
from the fact that the density of the background modes is
constant in the frequency range of interest.
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o)(t)=e " "[cr ()0)+ rci„(Q)(er' "—1)] .

The decay constant is given by the formula

yi(0)+ yi (0)
y(Q)=

2

(37}

3 b+
2

f'2 r2

I 2+(Q —b2) I' +(Q+bi)

(38)

whereas the stationary value of cr, is

i [5Q(0) 5Q"—(0)]
2y(Q)

p2 p2

2y(Q) 1-'+(Q —i(),,)' I'+(Q+b, , )'

(39)

Equations (38) and (39) have a very simple physical inter-
pretation. The decay constant y(Q) is bounded from
below by the contribution from the background modes

I

For the next few paragraphs we will concentrate on the
situation in which the cavity profile is Lorentzian [Eq.
(8)] and the atomic and laser frequencies coincide
(b, ) =0). In this case the equations are simple enough to
discuss analytically, at least for large Q. Let us first look
at the Bloch equations (24). In the limit of strong excita-
tion (Q »yb, y, ), the dressed-state description is par-
ticularly convenient. In the case 6,=0, the population
inversion of the dressed states is equal to the 0.

&
com-

ponent of the Bloch vector. ' In the lowest order in

y /Q and y, /I, o,(t) behaves as

yb (which may in principle be very small, much smaller
than the spontaneous-emission rate in free space). The
damping constant is substantially affected by the cavity
modes contribution if and only if the Rabi frequency
shifts the frequency of the sidebands close to the center of
the cavity line. In mathematical terms,

~
Q+h2

~

or

~

Q —b,2 ~

have to be smaller than the cavity width I".
Obviously, by changing 0, we msy dynamically suppress
or enhance the rate y(Q). For i()2 ——0, y(Q) will decrease
from the value y, +yb (for Q « I ) to yb (for Q» I ).
Similarly, for 52~~I, we may encounter a situation in
which y(Q) will grow from the value yb (for Q « I ) to
yb+y, /2 (for

~

Q —62
~

&&I ), and then decrease to the
value yb for n~ (x) .

The dressed-state population inversion is obviously
zero for 52 ——0. However, as soon as 52&0, the densities
of the photon states corresponding to sideband frequen-
cies ml+Q are dift'erent. For positive h2, the density of
the cavity modes is larger at ~I —Q. That means that the
transition from lower to upper dressed states should be
more eScient than the transition from the upper to the
lower dressed state (at coi+Q). In e8'ect, in the station-.

ary limit, the lower dressed state should be less populated
(cr) &0). As we see from Eq. (39), it is indeed the case.
The inversion of the dressed-state population is, in fact,
proportional to the dift'erence of photon-mode densities at
co( —Q and co(+ Q. This result implies that a high g cavi-

ty can be employed to maintain a large steady-state inuer-
sion of the dressed-state levels even in the case of zero
atom-laser detuning.

Similar analysis shows that the dressed-state polariza-
tion

o'+ (o 2+ io 3——)/2

behaves as

(r} e
—[y'(n)+in'(n)}) [o (())+~ (e[y'(n)+(n'(n)]) 1)] (40)

where y'(Q) and Q'(Q) are defined as the real and imagi-
nary parts of

yi(z)+ yi (z)

4
)(.(Q) =

5Q(z)+5Q'(z)
2

(41)

respectively. Explicit calculation gives

3yb y, I" I 2

y'(Q) =
I +62 4[I +(Q —b2) ]

I 2

4[I'+(Q+ b,, )']

y, (Q —i)),2)I y, (0+42)
Q'(Q) =Q+

4[1 +(Q —b2) ] 4[1 +(Q+&2) ]

Note that y'(Q) is the width of the sidebands in the
[luorescence power spectrum. As we see from Eq. (42), it
too gets dynamically suppressed or enhanced, depending
on the value of Q. Equation (43) indicates that the posi-
tion of the sidebands is shifted and that the shift changes
sign for Q =

~

b z ~

.
The above analysis indicates that the Auorescence into

the background modes should have a spectrum consisting
of three Lorentzian peaks. The central peak has a width
as given by Eq. (38) and height =(1—o, „)/y(Q). If the
stationary value of the dressed-state inversion is close to
+1, the central peak height becomes small. This is a
rather striking and novel e6'ect. The conventional
dressed-state theory applied to strong-field-induced reso-
nance scattering predicts that the height of the central
peak is equal to the sum of the populations of the dressed
states divided by the decay rate of the o. , component of
the Bloch vector. This statement is true, however, only
in free space, when the stationary value of 0.

&
„equals

zero and o.
i does not contribute to elastic scattering,
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/

/
/

/
r'

%e normalize this spectrun1 to the value it has in the ab-
sence of both interaction and normal ordering,

X(co)= lim Re I &( t, „„'„(t+r)6'i+t,'„(t))e '"'dr .
taboo 0

(47)

0.4

FIG. 9. Close-up view of the three peaks in Fig. 7 for
Q =5.66I (i.e., 0' =52). The dashed, solid, and dashed-dotted
traces correspond to the center, left, and right peaks, respective-
ly. All three peaks are plotted on the same vertical and hor-
izontal scales. %"ith 0=5.66I, the lower Auorescent sideband
(solid trace) is resonant with the cavity and polarization of the
dressed-state population occurs. In this figure, the sidebands
have been displaced toward the center by the generalized Rabi
frequency.

about relative squeezing of the field at particular photon
frequencies co.

The spectrum of squeezing is defined as the Laplace
transform of the corresponding electric field component
normally and time-ordered autocorrelation function.
Defining

The spectrum so defined is greater than —1 and shows
relative squeezing if it becomes sn1aller than 0. In our
present model, the component of the scattered electric
field which is induced by the a, component of the atomic
dipole moment corresponds to P =m /2. We shall consid-
er only this case in the following and skip the index (I).

Also we discuss squeezing of the background and cavity
modes separately and denote the corresponding squeezing
spectra Qb(co) and Q, (co), respectively.

Both spectra can be derived from Eq. (46) after deriv-
ing and solving the equations for normally and time-
ordered correlation functions. For example, assuming a
Lorentzian cavity line shape, the Laplace transform of
the stationary correlation function

c(r)= lim (,
' +(t+ )r (,

' +( )r

fulfills

6y(t)=8' '(t)e'~+( '+'(t)e (45) (z+I —ib2)c(z)= & 6,'+' )„i —V, (z), (48)

we have

Qt(co)= lim Re f &:6't(t+r)( t(t):)e '"'dr .
f ~ oo 0

(46)

where Vi(z) is the first component of the vector V which
is comprised of Laplace transforms of correlation func-
tions

V(r)= lim [&o(t+r)(o,'+'(t)), &o. '(t+r)(,(+'(t)), &o,(t+r).(,(+'(t))] . (49)

Calculations similar to the ones discussed in Sec. III lead
to the result

0 0 0
M*= 0 0 1

G(z)V(z) =Y„+R(z)(",+,'+P(z),

where the vector P(z) is given by

& e(8,'+))'&„

P(z) =tW(z+r+G, iS, ) '&e'(@-(+))'&„

& e,(B',+')'&„

& g ( —)gg (+))

—(M*(z+r+G,*+i~, )-' & 8,(-)o "8,(+)
&„

&g( —)y g(+))

while the n1atrices M, M* are

0 0 1

M= 0 0 0
0 —2 0

and

(50)

(51)

—2 0 0

The matrix Go is defined by Eq. (20), R(z) by Eq. (31),
and Y(z) by Eq. (32a). For the evaluation of the single-
time stationary values such as & 6,' 'o 8,+')„see the
Appendix.

The results of our calculations may be summarized as
follows.

(a) The squeezing spectrum of the background field
does not show as much squeezing as one would expect
from the fact that the final atomic state is strongly
squeezed. The quantitative reason for this is that„ in the
limit of interest when yb &&y„only a fraction (roughly

yb/y, ) is scattered into the background modes. This re-
sults in suppression of the maximal squeezing.

(b) The squeezing spectrum of the cavity radiation
which is normalized with respect to the constant density
of outgoing modes shows maximal squeezing of the same
order as one would obtain in free-space resonance fluores-
cence (i.e., =16%). However, it should be stressed that
such squeezing is obtained in regimes that do not show
any squeezing in the free-space case. An example is
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FIG. 10. Spectrum of squeezing near the Rabi sideband of
atoms in a cavity (solid line) and in free space c,dashed line). As

indicated, the free-space result is obtained by letting I become

very large. Negative values of Q, (cu) indicate the presence of
squeezing. In this figure, 5, =5y„h, =50y„A=30y„and
y&

——0.01y, . This spectrum corresponds to light emitted into

cavity modes.

FIG. 11. Spectrum of squeezing near the Rabi sideband of
atoms in a cavity (solid line) and in free space {dashed line). Pa-
rameter values have been chosen by trial and error to maximize
the magnitude and bandwidth of the squeezing. In this figure,

5) ——10y„6)——30y„ 0 =20y„ and yt,
——0.01y, .

shown in Fig. 10. In free space, this corresponds to
strong-field, nearly resonant, excitation and no squeezing.
In the cavity, narrow-band squeezing eFects are observed
at the frequencies close to the Mollow sidebands. Anoth-
er example is presented in Fig. 11, which corresponds to
the choice of parameters maximizing relative atomic
squeezing and polarization of the dressed states. '

Summarizing, we have shown that by using carefully
designed cavities (such that yb &~y, ), squeezing effects
significantly di6'erent from those in free space may be
produced via strong-Geld excitation of cavity-contained
two-level atoms.

Employing

Xcg(&)= (A2)

we observe that 6,'+) fulfiils

(A3)

)where F'+'(t) is a quantum white noise. Denoting the
vector
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APPENDIX

1
&nm

2
&nm

3
&nm

((g ( —))n~(g (+))m)

((g ( —))ny t(j (+))m)

((g( —))n~ (g(+))m)

(A4)

In this appendix we shall discuss in detail the method
of obtaining higher-order results. %e shall construct the
hierarchy of equations for one-time normally ordered
correlation functions. For Lorentzian cavity line shape,
the easiest way to do it uses the quantum Langevin equa-
tion for the cavity field

@',+'(t)= fg(k)c„(t)

gkck Qe

p [((P(—))n(g(+))m)] (AS)

we may use Eq. (A3) together with the Heisenberg equa-
tions for the atomic operators to derive a hierarchy of
equations for the a's and p's.

In the Laplace-transformed form, they are

[z+G+(n+m)l +i(n —m)b, ]a„
iy, F'

(Mn a„, —M*m a„,)

iy, I"
+ (ne, pn )„—mug„) )

+iMa„+, iM'a„+, —2y—b n3P„ (A6a)
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[z+(n +m)I +i(n —m)b2jP„

=iy, I (na„, m—a„',), (A6b)

—i 0, /2

yb+I. AI ~O, /2

+iO 2y b

(A9)

0

eI = 0, e2 —— 1, ~3 —— 0 (A7)

In order to solve Eqs. (A6), one has to break the infinite
hierarchy. We used the method which simply decouples
the equations for ct„ from a„+i (a„+i ) employing

0

while the matrices

0 —{I—id, ){I—I')
&n+~m = —'Vc~

0

x ( [@,' '(t)]"&(t')o (t)[8, (t)] ) ,

0 0 1

m=0 0 0, M'=
0 —2 0

0 0 0
0 0 1

—2 0 0
(A8)

(A10)
etc. , and calculating the right-hand side of Eq. (A10) up
to the lowest order in y, /I. This method is a natural
generalization of the one we have used to obtain our
modified Bloch equations (24).
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