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Interesting new aspects of atomic behavior in the presence of strong driving fields appear when
the driven atom resides not in free space, but in a region (such as an optical cavity) that displays a
frequency-dependent photon-mode density. Under such conditions, it is found that a strong driving
field can modify the spontaneous decay properties of an atom, and thereby give rise to interesting
new features in the spectrum of strong-field resonance fluorescence. It is also found that a high level
of dressed-state polarization can be maintained in a sample of resonantly or nonresonantly driven
atoms by appropriate tuning of an enclosing cavity. Furthermore, for appropriate laser and cavity
tunings, it is found that the atomic states become highly squeezed. In the course of analyzing these
effects, a set of modified Bloch equations is derived that explicitly accounts for the finite response
time associated with a frequency-dependent photon-mode density.

I. INTRODUCTION

In this paper we analyze the spectral and statistical
properties of atoms driven by a strong, single-mode, light
field and coupled to a reservoir of electromagnetic field
modes whose spectral density displays a strong frequency
dependence. One realization of this system consists of a
driven atom confined within an optical cavity. As a pre-
liminary, we discuss recent work in the area of cavity
quantum electrodynamics, and attempt to place the
present results in proper context with it.

In 1946, Purcell! predicted that the spontaneous-
emission rate of an atom located in a cavity tuned to the
atomic-transition frequency would be substantially larger
than in free space. The enhancement results from a
cavity-induced increase in photon-mode density at the
atomic-transition frequency. Following this idea,
Kleppner? predicted that the opposite effect, i.e., suppres-
sion of spontaneous emission, occurs if a cavity is em-
ployed to reduce the density of photon modes in the spec-
tral region of the atomic transition. In fact, Kleppner
predicted that spontaneous-emission could be eliminated
altogether by placing an atom in a wave guide below
cutoff. Kleppner’s paper stimulated a series of experi-
mental works on this subject® in both the microwave and
optical regimes. In most of the experiments, the dimen-
sion of the cavity was comparable to the wavelength.
Quite recently, however, Heinzen et al.* showed that
analogous effects can be observed in confocal cavities of
large dimensions.

We have recently shown that modifications of
spontaneous-emission rates may be effected not only with
the essentially passive means described above, but also
through a dynamical means,’ i.e., by imposing a strong
driving field on the atoms. In order for such a dynamical
effect to occur, the atoms must reside in a region of space
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in which the density of photon modes varies appreciably
on a frequency scale set by the Rabi frequency of the
driving field. Cavities provide a natural setting for
finding such frequency-dependent mode densities, but
they may also arise in diverse environments, including
those involving the solid state. One purpose of this paper
is to present a detailed treatment of the effect of strong
driving fields on spontaneous-emission rates in the partic-
ular situation where the irradiated atom is within a cavi-
ty. We analyze resonance-fluorescence spectra for
features indicative of dynamical modifications of spon-
taneous emission. As we will see below, the spectra also
reveal other novel effects such as the polarization of the
atom-field dressed-state populations.

A second area of cavity quantum electrodynamics of
recent interest deals with the spectral and statistical as-
pects of collective® and single-atom behavior. Studies’ in-
volving the role of quantum fluctuations in optical bista-
bility have led to the prediction of small photon anti-
bunching® and squeezing® effects. These effects are, in
fact, related to the photon antibunching and squeezing
found in the study of resonance fluorescence of a single
two-level atom in free space.®!° This relation has been
established by Carmichael'! and extended to multi-atom
systems by Lugiato.!? New insight into the statistical
properties of the quantum electromagnetic field in cavi-
ties has been achieved with the discovery of the vacuum
Rabi splitting,'3 which can be alternatively considered as
another type of modification of the spontaneous-emission
process. In the regime, when the cavity width T" becomes
comparable or smaller than the atomic spontaneous-
emission rate, the resonance-fluorescence spectrum con-
sists of two separate peaks. The splitting reflects the
splitting of the lowest excited energy levels in the Jaynes-
Cummings'* model. Recently, Raizen et al.'® studied
the light transmitted through an atom-containing cavity
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and observed substantial relative squeezing.

We have investigated a number of quantum-statistical
aspects of strongly driven atoms in cavities, i.e., strongly
driven atoms coupled to frequency-dependent photon-
mode reservoirs. Under the conditions of strong or
moderate driving-field strengths and nonvanishing detun-
ings between the atomic, laser, and cavity frequencies,
large atomic-squeezing effects have been found.'® The
atomic squeezing exhibits itself as a squeezing of the
scattered-light field. Although the squeezing of the scat-
tered light is not as large in relative terms as the squeez-
ing of the atoms, the optical squeezing arises in a regime
quite unexpected on the basis of free-space results.'® The
present paper contains a detailed analysis of these effects.

While not of direct relevance to the present paper, we
note that the study of Rydberg atoms in ultrahigh Q cavi-
ties!” has recently received a great deal of attention. In
this regime, a Jaynes-Cummings'* model provides a good
starting point for the theory. Numerous novel effects
have been discussed and observed in this framework,
such as atomic collapse!® and revivals,'>?° single-atom
masers,’! etc.

The remaining sections of the present paper are organ-
ized as follows. Section II provides a simple qualitative
explanation of dynamical modifications of spontaneous
emission and related effects. In Sec. III we describe in de-
tail our model and discuss the method we use to solve the
appropriate equations of motion. The main result here is
to obtain modified Bloch equations describing the evolu-
tion of the mean atomic inversion and polarization in a
region of space, e.g., a cavity, exhibiting a strongly
frequency-dependent spectral density of photon modes.
These equations are obtained for arbitrary mode-density
functions, provided that the mode density is essentially
constant over the radiative width of the atom, and for
driving-field Rabi frequencies larger than atomic radia-
tive width. Section IV is devoted to the discussion of
fluorescence power spectra. We present there the method
of calculating the spectra and present closed-form ap-
proximate formulas for heights, widths, and positions of
the peaks in a modified Mollow?* spectrum. We also
present there some new numerical results, concerning the
case of nonvanishing detunings as well as non-Lorentzian
mode-density functions. In Sec. V we discuss quantum-
statistical properties, such as squeezing, of strongly
driven atoms in the presence of a frequency-dependent
photon-mode density. Finally, in the Appendix, we
present the full set of equations for single-time, atom-field
correlations which can be used for a systematic extension
of our results into broader parameter regions than al-
lowed for under the approximations employed in the
present paper. Throughout, we assume that optical or
microwave cavities provide a convenient means of achiev-
ing the frequency-dependent photon-mode density central
to our analysis.

II. DYNAMICAL MODIFICATIONS
OF SPONTANEOUS EMISSION

The effects of interest here are all of a fundamentally
quantum nature. Nevertheless, considerable intuitive in-
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sight and understanding can be gained by the discussion
of these effects within the framework of the semiclassical
Bloch picture. The Bloch equations in the absence of de-
tuning, damping, and in the rotating frame have the
form?3

do

29 o 1
it Xo , (1)

where o0 =(0,,0,,03) is the Bloch vector and €, whose
magnitude is equal to the Rabi frequency (2, is the
pseudofield vector. For convenience, €} is assumed
throughout to point along the x direction, i.e,
0 =(0,0,0). The solutions of Eq. (1) describe the preces-
sion of a spin vector o around the ) axis. In particular,
the o, component of the Bloch vector, which is parallel
to the driving field Q@ (or, in other words, which is in
phase with the driving field) remains constant. If we
prepare the system in a state such that o is initially paral-
lel to €2, the Bloch vector will, in the absence of damping,
stay in this position forever. This phenomenon is some-
times referred to as spin locking.>* We now consider the
effect of damping.

In the case of an isolated two-level atom, the most im-
portant damping mechanism is spontaneous radiative de-
cay, and this mechanism is associated with the coupling
of the atom to the zero-point electromagnetic fields. We
may, therefore, try to model the effects of these fluctua-
tions, within the framework of the semiclassical picture,
by introducing a driving field with small classical fluctua-
tions,

Q1)=0+06Q(¢) . ()

These fluctuations are expected to trigger the decay of
the Bloch vector from the semiclassical trajectory to its
stationary state. One can easily perform a linear stability
analysis of the Bloch vector precession with respect to
field fluctuations 8€2(¢), and one makes two basic obser-
vations.

(a) Fluctuations induce a change of the in-phase com-
ponent of the polarization ¢, which is proportional to
the time average of 8Q;(t)o,(t)—08%Q,(t)o(¢t). Since o,
and o5 (in the lowest order) undergo Rabi oscillations,
the fluctuation-induced variation of o, is significant if
and only if the field fluctuation 8€(¢) contains Fourier
components at the frequencies = (or vyt in the non-
rotating frame, where w is the atomic transition frequen-
cy). In particular, if 52(¢) only contains spectral com-
ponents whose frequencies are much smaller than (Q, the
o, component will adiabatically follow the motion of
Q(t) and remain largely constant.

(b) The 0, and 0; components of the Bloch vector are
sensitive not only to Fourier components of () at the fre-
quencies £ but also to those at zero frequency. This
means that fluctuation-induced variations of ¢, and o,
will be non-negligible even if §Q(7) only contains frequen-
cies close to zero.

On the basis of these observations, one can conclude
that the Rabi frequency provides a means of controlling
which reservoir spectral components contribute to
Bloch-vector damping. If the reservoir exhibits spectral
structure, it follows that variations in Rabi frequency may
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lead to changes in the Bloch-vector damping rate. In free
space both in the optical and microwave regime, the
spectrum of the vacuum fluctuations, or, alternatively,
the density of photon modes, is practically constant, and
one would not expect a dynamical modification of spon-
taneous decay rates. The situation may be dramatically
different in appropriately designed cavities. There, as we
mentioned, the photon-mode density may be strongly fre-
quency dependent, and exhibit maxima and minima. In
passive experiments, the frequency dependence of the
cavity photon-mode density leads to enhancement or in-
hibition of spontaneous-emission rates above or below
their free-space values.

Consider then a driven atom in a cavity. We assume
that the atomic frequency w,, laser frequency w,;, and
cavity frequency o, are all equal. Suppose that we
prepare*>2% an atom in one of the dressed states (so that
initially the Bloch vector is parallel to Q). If the Rabi
frequency () is much smaller than the cavity width I" (so
that the frequencies =) lie close to the maximum in the
photon-mode density), the Bloch vector will be driven
away from the locked position and tend toward the sta-
tionary state. On the other hand, if the Rabi frequency (
is much larger than the cavity width (so that the frequen-
cies =} lie in a spectral region of low-photon-mode den-
sity), there will be practically no vacuum fluctuations in
the cavity to trigger the decay. The o, component of the
Bloch vector (which corresponds to the population inver-
sion of the dressed states?>2%) will remain constant for a
very long time.

Note that the two other components of the Bloch vec-
tor will, in fact, attain their stationary values relatively
rapidly even for Q >>T". This is due to the fact that their
decay may be triggered by vacuum fluctuations at zero
frequency (corresponding to modes at the center of the
cavity resonance where the mode density is high) as well
as by fluctuations at frequencies £). We should, howev-
er, expect that for >>T, the damping of 0, and o},
(which correspond to the dressed-state coherence) may be
reduced.

All the effects discussed above should be reflected in
the power spectrum of resonance fluorescence. For
Q <<T" we should not expect any departures from the
standard Mollow?? result (expect that the high mode den-
sity in the cavity will lead to a broadening of the Mollow
peaks). However, for (1 >>T', we should expect a dramat-
ic narrowing of the central peak, which corresponds to a
suppression of the decay rate of ;. Since the decay rates
of 0, and o can be reduced only a limited amount, the
narrowing of the sideband peaks should be less pro-
nounced. Of course the intuitive ideas presented above
must be carefully and quantitatively analyzed on the level
of modified Bloch equations. Independently, they should
be analyzed on the level of equations for two-time, atomic
correlation functions since the quantum regression
theorem does not hold.?” As we have show in abbreviat-
ed form® such analysis does indeed confirm the intuitive
conclusions outlined above.

An intuitive analysis may also be presented in the case
of nonvanishing laser-atom detuning A =w; —w, and/or
laser-cavity detuning A,=w;—w.. In such cases, the
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semiclassical Bloch motion is sensitive to fluctuations of
the characteristic frequencies 0, =(Q24A})!"2. Since the
cavity supports only the vacuum fluctuations of the
characteristic frequency A, (viewed as usual from the
frame rotating at the laser frequency), we may again by
appropriate choice of parameters modify (i.e., enhance or
suppress) the damping rates of the dressed-state inversion
and coherence. The detailed discussion of these effects
and their relation to squeezing accompanies the presenta-
tion of the numerical results in Sec. IV of this paper and
in Ref. 16.

It should be stressed that the driving-field-induced
modification of radiative damping predicted here follows
from the same essential physics that gives rise to the
field-dependent damping analyzed in other contexts.
These other contexts include solid- and gas-phase relaxa-
tion,2® atoms exposed to strong incoherent fields,” laser
phase fluctuations and their effect,®*! and autoionization
spectra.’>3* As mentioned previously, dynamical narrow-
ing or broadening of spectral lines, can be expected in any
case where one considers the interaction of an atom with
a reservoir that exhibits a suitably structured spectrum.
In the present example, the only requirement on the spec-
tral structure turns out to be one of scale (relative to the
Rabi frequency). The situation may be more complicated
in other physical systems.’**~32 In a cavity, the reservoir
spectral structure is simple, consisting of periodic peaks
superimposed on a more or less constant background.
The background arises from the open sides of the optical
cavity.

III. THE MODEL

An experiment in which the effect discussed above
should be observable consists of the following: An atom-
ic beam is injected into an optical cavity and is driven by
a laser beam. The laser light may be injected directly into
the cavity modes (which eventually flows away from the
cavity through the mirrors) or into the side modes.
Field-dependent effects are to be monitored through their
effect on the atomic-fluorescence spectrum.

The Hamiltonian for this system may be written
(c=#=1)

H=FH 4 +Frxg+HFr (3)
where the free atomic Hamiltonian is
Wo
7{,4 == 7 63 > (4)

w, is the atomic-transition frequency, and &'; the atomic
inversion operator. The free-field Hamiltonian consists
of two parts

He=[dkele, + [dkb b, . (5)

In Eq. (5) the reservoir has been divided into two parts,
one consisting of so-called cavity modes (¢) and the other
background modes (b). The density of cavity modes is
large only in the vicinity of the cavity resonance frequen-
cy w.. Geometrically, their spatial structure is close to
that of the cavity resonant mode. On the other hand,
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background modes contribute equally at all the frequen-
cies. Their density sets a lower limit for spontaneous de-
cay rates of atoms whose transition frequencies are far
from w,. Their spatial structure is quite different from
the cavity resonant mode. In the process of fluorescing
into the cavity mode, the cavity photons (described by
@4,C; ) are created. Fluorescence out the side of the cavi-
ty creates background photons.

The atom-field interaction Hamiltonian consists of
three terms,

%—me"‘”"w*e T 4 [ g (k6 2, + Hec. Jdk

+ [1g, (k)& b, +H.c.ldk . 6)

ﬂAFz

The first term describes the interaction with the coherent,
monochromatic laser wave of frequency w,. The strength
of this interaction is characterized by the Rabi frequency
Q, which is given by the product of the atomic-transition
dipole moment and driving-field amplitude. The second
and third terms describe the interaction with the two
reservoirs and are responsible for spontaneous as well as
stimulated emission. The functions g.(k) and g,(k)
characterize, respectively, the density of cavity and back-
ground modes in the cavity. We find it useful to
represent the g functions through reservoir response
functions. Since the background modes provide an
infinitely broad reservoir (with flat spectrum), their
response should be immediate. Therefore we postulate
for >0,

—ilk—w )T

fo‘” dk | g, (k)| 2 =y,8(7) . %)

The coefficient y, is a measure of the amount that the
background modes contribute to the atomic
spontaneous-emission rate. This contribution does not
depend on A,. On the other hand, as we have said, the
cavity modes describe a finite bandwidth reservoir, i.e.,

fowdk |8 (k)| %

The function K (7) should vanish for I'r>>1, where I is
the cavity resonance width. In the following, we shall
consider two particular examples of the cavity-mode
response function K (7).

For optical cavities, the function |g,(k)|? should be
of appreciable magnitude only in the frequency range
close to a cavity resonance, and we can model |g.(k)|?
as a simple Lorentzian that peaks at the cavity resonance
frequency w, and possesses a half width at half maximum
of ['.** In such a case,

K(7)=K (r)=y ,Te ", 9)

—ilk—w_ )7

=K(1). (8)

and, as expected, the reservoir response time is ! The
coefficient y. describes the contribution of the cavity
modes to the spontaneous-emission rate when wy=a,.
The total enhanced value of the spontaneous emission
rate for wg=w, is therefore

Yiwot=Vc +7/b . (10)
At this point it should be stressed that for the particular
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choice of K(7) given in Eq. (9), our model can be alterna-
tively described using the quantum Langevin equation®’
or master equation describing the interaction of an atom
with a single, damped, cavity mode. If that approach is
chosen, the system’s dynamics have the appealing proper-
ty of being Markovian. We prefer, however, to use the
approach based on the Hamiltonian description [see Eq.
(3)] for the following reasons.

(i) One of our aims will be to eliminate the reservoir’s
degrees of freedom completely in order to obtain reduced
atomic dynamics. Such dynamics will be non-Markovian
independently of the choice of K (), provided that the
reservoir response time I' ~! is finite.

(ii) The quantum Langevin approach cannot be used if
the function |g,(k)|? does not have a Lorentzian shape,
and, as discussed in the next paragraph, non-Lorentzian
shapes are not unknown.

For microwave cavities (wave guides), the appropriate
form of the function | g (k)| ?%is

Vik—w,)e .

2 .
(860 ?x Ok —w )=

for k —w, >> € this becomes
Ok —w,)
V'k —,

where O is a step function and the small constant €
smoothens the singularity in the density of modes.? In
this case, the function K(7) can be expressed in terms of
some special function; however, for our present purposes,
it is sufficient to write a formula for the Laplace trans-
form of the reservoir spectral function

|g.(k) | % , (11)

K@= ["e " K(r)dr . (12)
0
For microwave cavities we obtain
o v Ve
K(z)=Ky(2)=————=, (13)
z M Viz +iVie

with Im(V'iz )> 0 for Re(z) > 0. Note that if the atomic-
transition frequency is detuned from the cavity frequency
by an amount A;=wy—w, >0, then the cavity modes
contribute to the spontaneous-emission rate by an
amount

172

£ , (14)

RAT e
A,

A=
7/6( 3) A3+€

c

where the approximately equal to sign holds when
A;>>€. Note, however, that this contribution does not
diverge at A;—0, which is a consequence of the smooth-
ing introduced in Eq. (11). Equation (11) suggests that €
should be related to the cavity width. The effective cavi-
ty width is much larger, however, due to a very slow
asymptotic decrease of y.(A3) « (A;) ™!/ for A; large and
positive.

Having defined the basic features of the model system,
we turn our attention to the derivation of the modified
Bloch equations, i.e., equations for the mean values of
atomic observables. In doing that we shall use the stan-
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dard Heisenberg-equations approach. We allow for arbi-
trary values of the effective cavity width T", the Rabi fre-
quency € and the detunings A;=w,—w, and
A, =w;—wo,, except that T and Q are both assumed large
compared to ¥, and y,. In such a case we may eliminate
the photon degrees of freedom by solving Maxwell’s
equations and substituting the solutions into the Heisen-
berg equations for the atomic operators. At that point, a
Born approximation can be performed which corre-
sponds to a first-order term in a systematic expansion in
v,/Q,v./T, where v=c,b. In performing the Born ex-
pansion, one must not, however, perform the Markov ap-
proximation, as is usually done when dealing with
spontaneous-emission processes in free space.”’ The
reason for this lies in the fact that the cavity-mode reser-
voir has a finite bandwidth which may be comparable
with other typical frequency scales such as (2, A, or A,.

Let us start by writing a complete set of Heisenberg
equations for our system in the rotating frame:

dé .. . . . . a
—(szzAla+z(Q/2>o3+zfgb(k)a3bkdk
+i [ g (k)& 2 dk (14a)
de' .. .|Q ot A
=g i | 6y—i [ g*(kye |6 dk
—i [g (k)b [6dk (14b)
dé; + . Rt A P
=i -5 )+2i [[gF(k)b 6 —g, (k)6 b, 1dk
+2i [[g*(k)e |6 —g (k)6 "o, Jdk (140)
e, . o eiA
—d~k~=~—t(k —A,)e, —igXlk)o , (14d)
d/él . AT . AT
a =ilk —A,)C |, +ig (k)G ", (14e)
db, ~
":i_t’“z——l(k _AZ)bk —lgb(k)a N (14ﬂ
dl;,t . ~Fo At
7 =ilk —A,)b | +ig, (k)& (14g)

The index k enumerating different photons has been
chosen so that k =0 corresponds to photons of the fre-
quency o, in the laboratory frame. The initial state of
our system can be assumed to be a tensor product of the
atomic ground state and the vacuum states of both pho-
ton reservoirs.

The linear Maxwell equations (14d)—(14g) can now be
solved and their solution may be inserted into Egs.
(14a)-(14c). Denoting the positive frequency parts of the

cavity and background electric fields as
&)= [ g, (k)b (1)dk (15a)

and
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&= [g (ke (n)dk (15b)
respectively, and using Egs. (7) and (8), we obtain
64 =8 e —iv,y8(0) (16a)

&)

Il

A t iA,(t—t")
6(+) _lf K(t»t')el 2 &([’)dt’,
0

c,free
(16b)

where the homogeneous parts é Chee (v=c,b) depend
only on ¢,(0) and 3,((0), respectively. Inserting the ex-
pressions (16a) and (16b) into Egs. (14a)-(14c), we may
perform the quantum-mechanical averaging, making use
of normal ordering in Eqgs. (14).

The resulting averaged equations contain, however,
contributions from two-time atomic correlation func-
tions. For example, the equation for (& )=0c takes the
form

‘ii—(:ziA]o(tH»i 5 |os=r,00)
+ fo'Ku—t')eiAZ"""<oA-3(z)a(z')>dt'. (17)

Since K (¢t —t') is of the first order in y, it is sufficient for
lowest-order results to calculate the correlation function
in zeroth order (i.e., neglecting both parts of the atom-
reservoir interaction). The usual way is then to express
two-time correlation functions as linear combinations of
one-time averages. If we denote the vector

x=(o,0",0;), (18)

the zeroth-order Bloch equations take the form
—_— — Gox 5 (19)

where the matrix G is

—iA, 0 —iQ/2
Go=1| 0 iA, iQ/2 |. (20)
—iQ i@ 0

Similarly denoting
X,(1,t")=({81)8(t"),(8 (18 (t)),(6E(t"))),
(21)

the zeroth-order equations for the correlation functions
are

dX,

T GyX, . (22)

The initial conditions for Egs. (22) are easily stated for
t=t'. We have then

X ((t=t",t")=(0,(o;4(t")+1)/2,—0(t")) . (23)
Quite similarly, one can express the correlation functions

X,(1,t")=({8 (18 (1)),(& T(t"8 (1)),(8 Tt)E,(1))
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through the single-time averages x(t').

The right-hand side of the Bloch equations will depend
then only on the single-time atomic averages, and the
dependence will be through typical convolution-type
memory integrals.” An elegant way to represent them is
to use a Laplace transform technique. After a tedious but
straightforward calculation, one obtains the Laplace-
transformed Bloch equations in the form

[z—iA,+7,(2)]F(2)—i[Q—6Q(2)]F5(2) /2

=0(0)—idQ(z)/2z , (24a)
[z+iA+742)]5 (2 +i[Q—80*(2)]5,(2) /2
=0'(0)+i8Q*(z)/2z , (24b)
[z+7,(2)]6;(2)—i[Q—80z2)]5(2)
+i[Q—80%(2)]5 (2)=04(0)—y(2)/z . (240)

The z-dependent (in general complex) coefficients v (z),
71(z), and y(z) have obvious interpretations as non-
Markovian damping rates and radiative (Lamb) shifts of
the bare atomic states. Correspondingly, the coefficient
8Q(z) may be interpreted as a non-Markovian radiative
shift of the dressed-state energies.

The analytic expressions for
coefficients read

the above-discussed

,K(z—idy)
ri2)=7, +A1—6,_{“—"
QK (z+iQ —id) +K(z—iQ' —iA,)
202 ’
(25a)
D=yt AR *(z+iA,)
le
QUK *(z+iQ +id)+K *(z —iQ' +iA,)]
+ Y ,
(25b)
Q- .
7y(2)=27, +36;2—[K(z —iAy)+K *(z +iA,)]
QYK (z +iQ —iA)+K *(z —iQ +iA,)]
* 2AQ A,
QK (z—iQV —iA)+K *(z +iQ' +iA,)]
2Q'+4))? '
(25¢)
A QK (z —iA,)
i50(z)=———6,—2——-—
Q? | QKz+iQ' —iA,)
207 Q' -4,
B QK(z—iQ —iA,) ’ 25d)
Q' +A,
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A QK *(z+iA,)
—idQ*(z)= 3
Ql
Q2 | QK*z—i+iA,)
- 207 Q' —A,
QK*(z+iQ'+A,) (250)
— Q1A , e
where

Q'=Q*+a}"?

denotes the dressed-state transition frequency in the ab-
sence of interaction with the reservoirs. The above equa-
tions may be simplified substantially for particular
choices of cavity response (or alternatively spectral func-
tions) and for particular choices of other parameters,
such as A; =0 or A,=0 (see Sec. IV).

We remind the reader of the two spectral functions dis-
cussed earlier. For optical cavities with Lorentzian line
shape, we have

(26a)

On the other hand, for microwave cavities (wave guides)
close to their fundamental frequency, we obtain

KM(z)=—_W—E_ with Im(V'iz )>0 for Re(z)>0
Viz +iVe = =
(26b)
K;;<z>=-TyiK€—: with Im(V'—iz ) <0
V—iz —iVe -
for Re(z)>0. (26c¢)

The modified Bloch equations (24) together with Egs.
(25) are the main results of this section. We shall end this
section making a few general comments on the form of
Egs. (24).

(i) These equations are valid only in the sense of the
Born expansion in ¥, and y,. Strictly speaking, they are
reliable only up to terms of the order (y,/Q)* or
(y,/T)?, where v=b,c. Higher-order correction may be,
however, calculated in the course of a systematic expan-
sion. The explicit calculation of the single-time mean
values is described in the Appendix. Higher-order
corrections are included simply by breaking down the
hierarchy of the equations for one single-time correlation
function at a sufficiently high level.

(ii) Equations (24) contain the usual (Markovian) con-
tribution from the background modes.

(iii) Terms associated with the cavity modes have
characteristic convolution-type memory integrals in the
time domain (z dependence in the Laplace-transformed
picture). The memory extends over the cavity response
time I'~! for the Lorentzian cavity line shapes, Eq. (9).
The memory has a long-time algebraic tail for the non-
symmetric nonanalytical cavity line shapes such as de-
scribed in Eq. (11).

(iv) In the limit I' >>Q,y, and for Lorentzian cavity
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response, Eqgs. (24) reduce to the usual Bloch equations
with ¥, =v, +7, [see Eq. (10)].

(v) For the wave-guide case [Eq. (11)], the usual Bloch
limit can be also found, but it requires a more complicat-
ed set of conditions. Namely, € must be large and A,
must be of the same order. Also it is necessary that
Q,A, <<€. The latter conditions follow from the fact that
the density of photon modes [see Eq. (11)] has a max-
imum at kK —w, ~€, which is close to zero for small € but
shifts towards the violet when € grows. This limit, how-
ever, does not interest us, since in fact the main motiva-
tion for introducing Eq. (11) is to study the drastic depar-
tures from the usual Bloch-type behavior.

IV. POWER SPECTRA OF FLUORESCENCE

The power spectrum of the fluorescent light is given by
the well-known formula

S (w)= lim Ref e (& Nt 476 )

t—cc

1)dr, (27

where v=b or ¢, depending on which of the fields is
detected. Equation (27) relates the spectrum to the La-
place transform of the stationary field-autocorrelation
function and can be evaluated in terms of atomic-
autocorrelation functions. However, since the reduced
atomic dynamics are non-Markovian and the quantum
regression theorem does not hold, the equations for the
atomic-autocorrelation functions have a form different
from the Bloch equations [Eq. (24)] and must be derived
separately. This additional exercise can be avoided if one
makes use of the identity®’

S, (k)= lim —i——(f"’ (k,T)é F(k,T)) , (28)
where
&k, T)= f eHKIE e

By direct inspection, one can then show that, in fact,

sc<k)—Tlgnw ZT(CHA(T)@HAZ(T)) , (29a)
|
3 o3+ 1)
S.(k)=Re | |g.(k+4A,)|2S G \ik) —~32-‘—
i=1
Yo
Sylk)=———""— 5, (k) .
’ |go(k+Ay) 2"

Here the subscript st denotes stationary values of the
atomic moments obtained from Eq. (31), i.e.,

lim x(¢)=

-

Xy = an[G“‘(z)mz)z] . (36)

Equations (34) and (35) exhibit two important properties.
(1) The cavity-mode spectrum contains the density-of-
modes factor |g.(k+A) |2 This factor accounts for the
direct effect of the photon-mode density on the spectrum.
For example, in the case of a Lorentzian cavity line shape
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Sy (k)= lim (29b)

Jim (bk+A2( Dby 4o ,(T))

Equation (29) expresses the power spectrum in terms of a
single-time mean value. Using the Maxwell equations
(14d)-(14g), we immediately find the “optical theorem”

Sc(k):—Im[lir%zgc(k+A2)(&T’c\HA’)], (30a)
S 2

sb(k>=_Im[lir%ng<k+A2)<a*B,(Mz)]. (30b)
Denoting

x(1)=(a(1),0'(1),04(1)) ,

the modified Bloch equations (24) can be written in the
Laplace-transformed matrix form

G(2)X(z)=x(0)+R(z), (31)

where R is a vector giving rise to the inhomogeneous
terms on the right-hand side of Egs. (24). A calculation
similar to the one discussed in Sec. III allows us to derive
the equations fulfilled by the vectors

Y ()=({828,(1)),{8 2,(1)),{(6:0,(1))), (32a)
mz):(( t>>,<a*3k<t>>,<635k(:>>). (32b)
In Laplace-transformed form, the equations read
Glz+ilk—A)]1Y,(2)
_ Rz +i(k—A,)]5(2)
= —ig¥ (k) |T(z)+ 211k —a,) ,  (32¢)
where the vector T(z) is given by
0
T(z)= |[3;5(2)+1/2]/2 ] . (33)
—0o(z)

A direct calculation of the z—0 limit in Eq. (30) leads to
the final expressions for the spectra. They are

—8;304+R;(ik)o } , (34)

f

and with the laser, atom, and cavity all resonant, this fac-
tor leads (for () >>T') to a suppression of the amplitude of
the spectral sidebands. Such suppression has a “passive”
character and can be easily predicted. It is much more
difficult to predict the dynamical narrowing or broaden-
ing of the peaks in the spectrum.

(ii) The spectrum of the background modes does not
contain the factor |g.(k+A)|% This feature follows
from the fact that the density of the background modes is
constant in the frequency range of interest.
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For the next few paragraphs we will concentrate on the
situation in which the cavity profile is Lorentzian [Eq.
(8)] and the atomic and laser frequencies coincide
(A;=0). In this case the equations are simple enough to
discuss analytically, at least for large . Let us first look
at the Bloch equations (24). In the limit of strong excita-
tion (Q>>7,,7.), the dressed-state description®® is par-
ticularly convenient. In the case A,;=0, the population
inversion of the dressed states is equal to the o, com-
ponent of the Bloch vector.?>?® In the lowest order in
y,/Qand v,/T’, o(t) behaves as

o(t)=e "V (0)+0, (Q)e?M—1)]. (37
The decay constant is given by the formula
y1(0)+v1(0)
y(Q)= LGNS Shas
2
T2 | M2 4(0-4,)" D444, |
(38)
whereas the stationary value of o is
o __ i[60(0)—-8Q%(0)]
st 2y(Q)
_Ye r’ _ r’
27(Q) | TP24+(Q—4,?% T24(Q+4,)? |
(39)

Equations (38) and (39) have a very simple physical inter-
pretation. The decay constant y({) is bounded from
below by the contribution from the background modes
|
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¥, (which may in principle be very small, much smaller
than the spontaneous-emission rate in free space). The
damping constant is substantially affected by the cavity
modes contribution if and only if the Rabi frequency
shifts the frequency of the sidebands close to the center of
the cavity line. In mathematical terms, |Q+A4,| or
| Q—A,| have to be smaller than the cavity width T
Obviously, by changing Q, we may dynamically suppress
or enhance the rate y(Q). For A,=0, y(Q) will decrease
from the value 7, +7, (for @ <<T') to y, (for @>>T).°
Similarly, for A,>>T, we may encounter a situation in
which y(Q) will grow from the value y, (for Q <<T') to
Yy +7vc./2 (for | Q2—A,| <<T'), and then decrease to the
value y,, for Q— .

The dressed-state population inversion is obviously
zero for A,=0. However, as soon as A,50, the densities
of the photon states corresponding to sideband frequen-
cies w;+ are different. For positive A,, the density of
the cavity modes is larger at w; — ). That means that the
transition from lower to upper dressed states should be
more efficient than the transition from the upper to the
lower dressed state (at w;+ (). In effect, in the station-
ary limit, the lower dressed state should be less populated
(0,>0). As we see from Eq. (39), it is indeed the case.
The inversion of the dressed-state population is, in fact,
proportional to the difference of photon-mode densities at
w;—Q and w; + . This result implies that a high Q cavi-
ty can be employed to maintain a large steady-state inver-
sion of the dressed-state levels even in the case of zero
atom-laser detuning.

Similar analysis shows that the dressed-state polariza-
tion

0+_:(02+i03)/2

behaves as

o, n(t)-——e —[y(Q)+iQ'(Q)]t [U+ _(O)+o,+H)st(e[y'(ﬂ)+iﬂ'(ﬂ)]t_ 1 )] , (40)

where y'()) and Q'({) are defined as the real and imagi-
nary parts of

vi2)+yiz)  y(2)
A =
(Q) 2 3
*
+ilo— 50(z)+80*(z) ’ 41)
2 z=—iQ
respectively. Explicit calculation gives
3 I I?
y'(Q)= o }; 2 2 g 2
2 “+A; 4[I'"'+(Q2—A,)]
v .I?
+ 5 I (42)
4[4+ (Q+A4,)]
AQ—A,) AQ2+4,)
(Q)=0+ 7/2 : nt 7’2 . 27 °
4[T*+(Q—A4,)] 4[T"+(Q+A,)°]
(43)

[

Note that y’(Q}) is the width of the sidebands in the
fluorescence power spectrum. As we see from Eq. (42), it
too gets dynamically suppressed or enhanced, depending
on the value of ). Equation (43) indicates that the posi-
tion of the sidebands is shifted and that the shift changes
sign for O~ | A, |.

The above analysis indicates that the fluorescence into
the background modes should have a spectrum consisting
of three Lorentzian peaks. The central peak has a width
as given by Eq. (38) and height ~(1—o01 )/y(Q). If the
stationary value of the dressed-state inversion is close to
+1, the central peak height becomes small. This is a
rather striking and novel effect. The conventional
dressed-state theory applied to strong-field-induced reso-
nance scattering predicts that the height of the central
peak is equal to the sum of the populations of the dressed
states divided by the decay rate of the o, component of
the Bloch vector. This statement is true, however, only
in free space, when the stationary value of o equals
zero and o, does not contribute to elastic scattering,
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which, in fact, is negligibly weak for large Q. If o, does
not equal zero, o, contributes to an elastic component of
the spectrum by an amount o3 (8(k —w,). The addition-
al suppression of the central peak height in the present
inelastic spectrum stems the fact that a significant part of
the photons will be scattered elastically. Similarly, the
sidebands will have a width given by Eq. (42) and will be
shifted by Q'(Q)—Q [see Eq. (43)]. The heights of the
sidebands can be roughly estimated to be proportional to
the stationary values of the dressed-state populations,

hleftg(l—al,st)/z'y’(a) ,
(44)
hright:(1+al,st)/27/l(ﬂ) .

The results of our discussion of Lorentzian cavity line
shape and zero atom-laser detuning are illustrated in
Figs. 1-3. We present there the Q dependence of the
background-mode spectrum for the case of A,=5I". Fig-
ures 2(a)-2(c) show the detailed behavior of the central
and sideband peaks shown in Fig. 1. Note the radiative
frequency shifts of the sidebands. Finally, Fig. 3 com-
pares the peak widths and heights for Q=A,.

We comment briefly on the requirements that must be
satisfied before one would expect to experimentally ob-
serve the features predicted in Figs. 1-3. First of all, our
calculations are valid only in regimes in which y /T << 1
and y,/Q << 1, where v=b,c. Additionally, the most in-
teresting effects occur when Q> I'. Finally, in order for
the effects to be significant, we must have y at least com-
parable to y,. The latter condition can be satisfied in
confocal optical resonators* constructed with spherical

|
-10

(w-wy)/T

FIG. 1. Spectrum of resonance fluorescence emitted by
atoms confined in a detuned cavity and resonantly driven as a
function of driving-field Rabi frequency. These spectra corre-
spond to light emitted into background modes (i.e., out the sides
of the cavity). Horizontal, frequency (increasing to the right);
vertical, relative fluorescence intensity. Successive traces corre-
spond to increasing Rabi frequency. In this figure, and Figs. 2
and 3, v, /'=0.03, y. /T =0.2, the laser-atom detuning A, =0,
and the laser-cavity detuning A,=5I". Note that when Q~A,,
the lower-frequency sideband becomes resonant with the cavity.
This resonance results in a polarization of the dressed-state pop-
ulation and a concomitant drop in the intensity of the fluores-
cence emitted on the lower sideband into the background
modes. Note that the central peak simultaneously exhibits a
strong attenuation. See the text for a discussion of this novel
effect.
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mirrors having radii on the order of millimeters, provided
that a finesse on the order of 100 can be achieved.

Obviously, the analytical treatment discussed above is
valid only if Q,I' >>vy,,v,. We should stress that Eq.
(34) contains much more information. The spectrum
even for Lorentzian cavity line shapes does not consist
strictly speaking of Lorentzian peaks, due to a non-
Markovian z dependence in Eq. (34).

We now consider spectra under more general condi-
tions, beginning with a discussion of spectra in the pres-
ence of non-Lorentzian cavity line shapes but still assum-
ing that the atom-laser detuning is zero. The non-
Markovian effects referred to in the previous paragraph
are especially visible in such cases. For wave-guide-like
mode densities [see Eq. (11)], the approximate formulas
(37) or (40) will be valid only in certain frequency regions.
Decay processes may be nonexponential, especially if any

(a)

-0.3 0o 0.3

| [ i

-0.3 0 0.3
[w-twy+2))/T

FIG. 2. Detailed behavior of the peaks shown in the preced-
ing figure. (a)-(c) show the center peak, left-hand (low-
frequency) sideband, and right-hand (high-frequency) sideband,
respectively. Note that there is a pronounced broadening of all
three peaks when the cavity and lower sideband are resonant.
The peaks are normalized to the same maximum height in each
part of the figure so that relative heights must be ascertained
from Fig. 1.
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w/T

FIG. 3. Close-up view of the three peaks in Fig. 1 for
Q=5I=A,. The dashed, solid, and dashed-dotted traces corre-
spond to the center, left, and right peaks, respectively. All three
peaks are plotted on the same vertical and horizontal scales.
With Q=A,, the lower fluorescent sideband (solid trace) is reso-
nant with the cavity. The selective dressed-state depletion that
results polarizes the dressed-state populations, thereby modify-
ing the relative heights of the fluorescence peaks—even though
the peaks shown correspond to emission into the background
modes (See Fig. 1). In this figure, the sidebands have been dis-
placed toward the central peak by the Rabi frequency.

of the characteristic frequencies w;, w,=Q are close to
the threshold frequency .. Spectra obtained using Eq.
(11) are related to those studied in the context of near-
threshold ionization.” Figures 46 illustrate this point
by showing an overall view of the spectrum, detailed pic-
tures of the peaks () dependence, and shape of the peaks
for =~ A,, respectively. The threshold effects lead to the
strong modifications of the peak shapes.

Finally, Figs. 7-9 illustrate the case of the Lorentzian
cavity line shape, but with a nonzero value of the atom-
cavity detuning. The physics here is essentially the same
though technically more difficult to describe analytically.

\L J 0
W L A
]N P A
L 4 A
Yy
— 5 &
}& N
I | |
-10 (o] 10

(w-w,)/e

FIG. 4. Spectrum of resonance fluorescence emitted by reso-
nantly driven atoms in a cavity having a photon-mode density
described by Eq. (11). The spectra are associated with emission
out the sides of the cavity. Axes are as described in Fig. 1. In
this figure and Figs. 5 and 6 the laser-atom detuning, A, =0, the
cavity-atom detuning A,=w,—wy=—75¢, ¥,=0.03¢, and
Y.=0.2e. With A,= —5¢, the atom-cavity coupling turns on
abruptly when Q= | A, | as the upper sideband moves into the
spectral region of high cavity-mode density. For Q< | A, |, an
essentially normal Mollow spectrum is observed. For
Q> | A, |, the dressed-state populations are polarized and the
spectrum becomes asymmetric.
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V. SQUEEZING SPECTRUM
OF THE FLUORESCENT LIGHT

As we have mentioned in the Introduction, cavity
atoms may experience significant squeezing under the
influence of the strong driving field.!® These squeezing
effects are intrinsically connected to the polarization of
the dressed-state population which was discussed in Sec.
IV. According to Eq. (39), by tuning the cavity appropri-
ately (close to @;£(), we may induce a nonvanishing in-
version of the dressed states (0,5£0). This statement
remains true even if A;5£0. At the same time, especially
for A,#0, the bare-state inversion o; may remain
different from zero. These are optimal conditions for
atomic squeezing.

Unfortunately, as we shall show here, quite large
atomic-squeezing effects do not lead to large squeezing of
the fluorescent light. It is a purpose of this part of the
present paper to examine the squeezing properties of the

| | !
-0.2 [o] 0.2

(w-wy)/e

[w-w,+ a)]ve

FIG. 5. Detailed behavior of the peaks shown in Fig. 4.
(a)-(c) show the center peak, left-hand (low-frequency), and
right-hand (high-frequency) sidebands, respectively. Note the
abrupt change in character of the peaks as the upper sideband
moves into the region of high cavity-mode density.
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-0.15 0 0.15
w/e

FIG. 6. Close-up view of the peaks in Fig. 4 for the special
case of Q= | A,|. The dashed, solid, and dashed-dotted traces
correspond to the center, left, and right peaks, respectively. All
three peaks are plotted on the same vertical and horizontal
scales. With Q= |A,|, the sharp edge of the cavity-mode-
density function coincides with the upper sideband, giving the
fluorescent peaks a strong non-Lorentzian character. At this
particular Rabi frequency, the central peak displays an interest-
ing narrow dip at its center. The dip results because of the
abrupt change in cavity-mode density coincident with one of the
characteristic fluorescence frequencies. The details of the dip
are model dependent, but it should occur quite generally when a
discontinuity in the reservoir mode density coincides with a
characteristic emission frequency.

scattered radiation. Because of the Markovian nature of
the background photon modes, radiation scattered into
them is directly related to the instantaneous atomic di-
pole moment. However, under the assumption y, <<v,,
only a small fraction of the photons are scattered into the
background modes. The field scattered into the cavity
modes at time ¢ is, on the other hand, related to the sum
of atomic contributions coming from different times be-
tween (¢, —I"~!). Different terms in such a sum may in-
terfere destructively, destroying squeezing properties.

> R JR——-5 &
A I\ Q

A A o
'

|
-10 (o] 10
(w-wy/T

FIG. 7. Spectrum of resonance fluorescence emitted by
atoms confined within a detuned cavity and exposed to a de-
tuned driving field as a function of driving-field Rabi frequency.
See Fig. 1 for a description of the axes. Spectra shown corre-
spond to emission into the background modes of the cavity. In
this figure, as well as in Figs. 8 and 9, the laser-atom detuning
A=2I" and the laser-cavity detuning A,=6I". Also,
v»/T'=0.03 and y. /I =0.2. As seen in Fig. 1, when the cavity
is resonant with the lower sideband, both the lower sideband
and the center peak are suppressed. The principle effect on the
spectra of introducing a nonzero atom-laser detuning appears to
be the suppression of the fluorescence peaks for < A,.
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In order to study this question we have calculated the
quantities that characterize the squeezing of the scattered
field. One possibility is to calculate the relative variance
of the total field. Such a variance would be normalized
with respect to the value it attains in the absence of in-
teraction in the usual vacuum or coherent state. The nor-
malization constant is infinite in free space since the pho-
tons of all frequencies contribute equally to it. The
total-field variance is, by definition, unity in free space
but may drop below 1 for finite bandwidth fields like
those found in optical cavities. It generally remains quite
close to unit, however, and in our case the dip below uni-
ty amounts to 1% or 2% squeezing. Much more detailed
information can be obtained by studying the spectrum of
squeezing®® rather than the total-field variance. This
quantity is directly measurable in schemes involving
homodyne or heterodyne detection and gives information

(w-wp)/T

[w-twy+ Q] /T

FIG. 8. Detailed behavior of the peaks shown in Fig. 7.
(a)—(c) show the center peak, left-hand (low-frequency) side-
band, and right-hand (high-frequency) sideband, respectively.
Interesting broadening and shifts of the peaks can be seen when
the lower sideband is resonant with the cavity. The peaks are
normalized to the same maximum height in each part of this
figure so the relative heights of the various peaks must be ascer-
tained from Fig. 7.
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FIG. 9. Close-up view of the three peaks in Fig. 7 for
0=5.66T (i.e., Q'=A,). The dashed, solid, and dashed-dotted
traces correspond to the center, left, and right peaks, respective-
ly. All three peaks are plotted on the same vertical and hor-
izontal scales. With Q=5.66T, the lower fluorescent sideband
(solid trace) is resonant with the cavity and polarization of the
dressed-state population occurs. In this figure, the sidebands
have been displaced toward the center by the generalized Rabi
frequency.

about relative squeezing of the field at particular photon
frequencies w.

The spectrum of squeezing is defined as the Laplace
transform of the corresponding electric field component
normally and time-ordered autocorrelation function.
Defining

(t)— E (e + & (1)e = (45)
we have

Q4(w)= lim Re f (B4t +1)84(1):)e ~“dT . (46)

—

Vir)= lim [{6(t+7)E . (), (6 Tt +1)é

t— 0

Calculations similar to the ones discussed in Sec. III lead
to the result

G(2)V(2)=Y+R(2)6.}/+P(z2) , (50)

where the vector P(z) is given by
(8(&"),
P(2)=iM(z +T+Gy—iA,) ' |(& (& (+)?),

(646 )2,

—iM*(z4+T+G§ +iA,)7!

(51)
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We normalize this spectrum to the value it has in the ab-
sence of both interaction and normal ordering,

A

N(w)= lim Ref (8 helt +7)8

t—

Tree(t)Ye T 1Td T

(47)

The spectrum so defined is greater than —1 and shows
relative squeezing if it becomes smaller than 0. In our
present model, the component of the scattered electric
field which is induced by the o, component of the atomic
dipole moment corresponds to ¢ = /2. We shall consid-
er only this case in the following and skip the index ¢.
Also we discuss squeezing of the background and cavity
modes separately and denote the corresponding squeezing
spectra Q,(w) and Q. (w), respectively.

Both spectra can be derived from Eq. (46) after deriv-
ing and solving the equations for normally and time-
ordered correlation functions. For example, assuming a
Lorentzian cavity line shape, the Laplace transform of
the stationary correlation function

c(r)= lim 6.7t 476 1 (7)

—

fulfills

CF =
72 7.z), @8

where V,(z) is the first component of the vector V which
is comprised of Laplace transforms of correlation func-
tions

(z4+T—iA)E(z)=( ) —i

(1)), (65t +1)8 1)) ] . 49)

The matrix G, is defined by Eq. (20), R(z) by Eq. (31),
and Y(z) by Eq. (32a). For the evaluation of the single-
time stationary values such as (& (=66 (*), see the
Appendix.

The results of our calgulations may be summarized as
follows.

(a) The squeezing spectrum of the background field
does not show as much squeezing as one would expect
from the fact that the final atomic state is strongly
squeezed. The quantitative reason for this is that, in the
limit of interest when y, <<y, only a fraction (roughly
Y5 /7. ) is scattered into the background modes. This re-
sults in suppression of the maximal squeezing.

(b) The squeezing spectrum of the cavity radiation
which is normalized with respect to the constant density
of outgoing modes shows maximal squeezing of the same
order as one would obtain in free-space resonance fluores-
cence (i.e., ~16%). However, it should be stressed that
such squeezing is obtained in regimes that do not show
any squeezing in the free-space case. An example is
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FIG. 10. Spectrum of squeezing near the Rabi sideband of
atoms in a cavity (solid line) and in free space (dashed line). As
indicated, the free-space result is obtained by letting I' become
very large. Negative values of Q.(w) indicate the presence of
squeezing. In this figure, A;=5y,, A,=50y,, Q=30y., and
¥»=0.01y,.. This spectrum corresponds to light emitted into
cavity modes.

shown in Fig. 10. In free space, this corresponds to
strong-field, nearly resonant, excitation and no squeezing.
In the cavity, narrow-band squeezing effects are observed
at the frequencies close to the Mollow sidebands. Anoth-
er example is presented in Fig. 11, which corresponds to
the choice of parameters maximizing relative atomic
squeezing and polarization of the dressed states.'®

Summarizing, we have shown that by using carefully
designed cavities (such that y, <<v,.), squeezing effects
significantly different from those in free space may be
produced via strong-field excitation of cavity-contained
two-level atoms.
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APPENDIX

In this appendix we shall discuss in detail the method
of obtaining higher-order results. We shall construct the
hierarchy of equations for one-time normally ordered
correlation functions. For Lorentzian cavity line shape,
the easiest way to do it uses the quantum Langevin equa-
tion for the cavity field?’

&= [glki, (1)

—i(k—A,)t

= [g(k)e (Qe
172

ﬁ r f’eﬂ‘(k_AZ)(‘WI')G(t’)dt’ ‘
0

T

—1i

(A1)
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FIG. 11. Spectrum of squeezing near the Rabi sideband of
atoms in a cavity (solid line) and in free space (dashed line). Pa-
rameter values have been chosen by trial and error to maximize
the magnitude and bandwidth of the squeezing. In this figure,
A =10y, A,=30y., =20y, and v, =0.01y..

Employing
172
Ve

T

r
r—ik

g(k)= : (A2)

we observe that & (' fulfills

d& ) . . _
T=—(F—iAz)é“f,*’(t)+F{+)(t)—z7/cF6(t) ,
(A3)
where F*'(1) is a quantum white noise. Denoting the
vector
A
Ay = |
o
(& re(é ) |
= [«(Ere @ | (A4)
(&84 )m) |
and
Bom =[((& (6 )], (A5)

we may use Eq. (A3) together with the Heisenberg equa-
tions for the atomic operators to derive a hierarchy of
equations for the a’s and B’s.

In the Laplace-transformed form, they are

[z+G+(n +m)T +i(n —m)A]a,,

iy, .l
= V; (Mna, _,,,—M*ma,,, )
iy.l
+ . (ne]Bn—lm—meZBnm—l)

+iManm+1—iM*an+lm—27[763Bnm ’ (A6a)
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[z+(n +m)C+i(n —m)A, )16,

=iy L(na_,,—mal, ), (A6b)
where
1 0 0
e = 0 y €= l y €3= 0 > (A7)
0 0 1
while the matrices
0 0 1 0 00
M=1|0 0 0|, M*=| 0 0 1], (A8)
0 -2 0 -2 00
and
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Ve—il 0 —iQ/2
G= 0 Ye+iAy iQ/2 (A9)
—iQ) +iQ 27,

In order to solve Eqs. (A6), one has to break the infinite
hierarchy. We used the method which simply decouples
the equations for a,,, from a,, , |, (a,,, , ) employing

al}l+lm = —[7/(‘[‘ j‘ole“([‘“YIIAZ)“‘J”l
X {[E (D)8 (t8 (D6, (]™)

(A10)
etc., and calculating the right-hand side of Eq. (A10) up
to the lowest order in y./I'. This method is a natural
generalization of the one we have used to obtain our
modified Bloch equations (24).
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