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Large-bandwidth laser light pulses with pure frequency fluctuations have been generated.
Chaotic-light pulses from a cavityless dye laser are temporally smoothed by passing them through

strongly saturated amplifiers. Since the amplification process does not change the phase of the

amplified light, the output radiation has the well-defined phase fluctuations of chaotic light, yet

essentially no amplitude Auctuations.

I. INTRODUCTION

All processes in nonlinear optics are sensitive to the na-
ture of statistical fluctuations in laser light. Theoretical
description and quantitative understanding of finite-
bandwidth effects can be greatly simplified if the statisti-
cal properties of the fluctuating radiation field can be de-
scribed by a simple model. So far, three such models
have been used with considerable success. The phase-
diffusion (PD) model assumes that the amplitude of the
field is constant and its phase undergoes stochastic fluc-
tuations, which can be described by the Brownian-motion
diffusion equation. The output of an ideal single-mode
cw laser operating far above threshold can be considered
as phase-diffusion radiation. However, in real lasers,
other effects such as mechanical vibrations dominate and
cause the light statistics to be far from that predicted by
the PD model. The practical realization of radiation
with properties close to those of the PD model was re-
ported by Elliot et al, who used acousto- and electro-
optic modulators outside the cavity of a well-stabilized
single-mode dye laser to impose frequency and phase flue-
tuations on the laser light. By controlling the statistical
properties of the electrical signal driving the rnodulators,
they were able to produce radiation which could be de-
scribed by the PD model up to the fourth-order correla-
tion function of the field. Accurate measurements of
two-photon absorption and optical double resonance
were made with this system and good agreement was ob-
tained with predictions of the PD model. Many other
optical processes have been treated theoretically using
the PD model, including resonance fluorescence, rnulti-
photon absorption, four-wave mixing, and stimulated
Raman scattering.

Another model of laser light that has been used suc-
cessfully to describe experiments is the multirnode model,
in which the field is taken to be composed of a sum of
discrete frequency components, each with constant or
slowly varying amplitude and random phase. For exam-
ple, studies of stimulated Raman scattering that have
been successfully described by the multimode model are
reported in Ref. 7.

A third model that has proved to be useful is the
chaotic-light (CL) model. ' It assumes that the complex
field amplitude undergoes fluctuations with statistics of a

random Gaussian process. Conventional thermal light
sources like discharge lamps, etc. , produce chaotic light.
Also, it has been sho~n that for some applications a laser
operating on many independent (uncoupled) modes can
be considered, to some degree of approximation, as a
chaotic-light source. However, due to the finite number
of discrete frequencies emitted by a multimode laser, the
statistica1 properties of its radiation depart from that of
the CL model, especially at low frequencies comparable
with the mode spacing. It is also known that in high-gain
lasers or amplifiers mode coupling effects lead to com-
pletely different radiation statistics. '

In this paper we describe a laser system that emits
strong nanosecond light pulses with almost pure frequen-
cy fluctuations of well-defined statistics. A cavityless dye
laser is used to produce broadband pulses of amplified
spontaneous emission, which are believed to be well de-
scribed by the chaotic-light model. These pulses are
passed through saturated dye amplifiers, resulting in al-
most complete elimination of amplitude fluctuations. '

Since the phase of the amplified light is preserved in the
amplification process, the resulting radiation has the
same phase fluctuations as chaotic light, yet essentially
no amplitude fluctuations. To describe this new type of
radiation, we use the phrase "amplitude-stabilized cha-
otic light. "

The recent demonstration of the x-ray laser' has again
raised previously studied questions concerning the tem-
poral and spatial coherence properties of amplified spon-
taneous emission (ASE). The present study treats the
highly saturated regime of ASH and makes new observa-
tions about the temporal behavior of the amplitude and
phase of ASE under these conditions.

The paper is organized as follows. In Sec. II we de-
scribe the design and performance of a cavityless dye
laser. Sections III and IV are devoted to the smoothing
process and properties of amplitude-stabilized chaotic
light. Section V summarizes the results.

II. CAVITYLESS DYE LASER

It is known that spontaneous emission of a large nurn-
ber of molecules produces chaotic, or thermal, light. '

This property is used to build a chaotic-light laser source.
The design we applied has been used before (see, for ex-
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ample, Ref. 17), although no systematic studies concern-
ing the properties of the resulting radiation have been re-
ported.

The laser is shown schematically in Fig. 1. It consists
of a transversely pumped dye cell, telescope, and
difTraction grating in Littrow arrangement. It lacks an
output coupler of any kind; on the contrary, special care
was taken to avoid any mechanisms leading to formation
of cavity modes. Spontaneous emission from dye mole-
cules is amplified on a single pass through the active
medium, spectrally narrowed by the telescope and
difTraction grating system and amplified further on the
second pass through the dye cell. The output radiation of
such a laser is expected to be chaotic as long as any
mechanisms that lead to the coupling between difTerent
frequencies (equivalent to laser modes in a conventional
laser) are avoided. In particular, gain saturation can
lower ihe fiuctuations in the output intensity and lead to
nonchaotic statistics. Special care was taken to avoid
etalon efTects in the cavity which could produce undesir-
able structure in the laser spectrum. This was achieved
by tilting the dye cell and placing the telescope far away
(44 cm) from the dye cell. The distance from the dye cell
to the diffracting grating (70 cm) was chosen such that
the round-trip time was almost equal to the duration of
the pump pulse (6 nsec). This prevents formation of cavi-
ty modes as a result of spurious backscatter from the
dye-cell wall. Rhodamine 6G dye in methanol (6&(10
mol/liter) was used as an active medium. The pump
pulses ( —1 mJ) were provided by a frequency-doubled,
Q-switched Nd; YAG laser (where YAG is yttrium alumi-
num garnet) operating in a single longitudinal mode and
thus producing temporally smooth pulses. The cavityless
dye-laser linewidth was about 7 6Hz and the output en-
ergy was about 10 pJ.

Single-shot spectra of the dye-laser pulses were record-
ed with a Fizeau interferometer and photodiode array, '

and an example of the results is shown in Fig. 2(a). No
periodic structure could be noticed in the single-shot
spectra; instead they displayed a continuous, random
structure within the line envelope. Similar spectra were
previously observed for a broadband color-center laser, '

although their interpretation was somewhat difTerent due
to the presence of unresolved cavity-mode structure.

The interpretation of the observed spectra is based on
the assumption that the laser emits chaotic light, whose
complex field can be written in the form

6(t)=p(t)E(t)e (2. 1)

where E(t) is a complex Gaussian random process, p(t)
is a smooth pulse envelope, and ~o is the center frequen-
cy. The field spectrum

g(v)= I@(t)e ' 'dt (2.2)

is also a complex Gaussian process. Observed in the ex-
periment was the frequency distribution of energy for a
single shot, which is given by

S(v) =
i

@(v)
i

(2.3)
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and which displays large random fiuctuations with
characteristic frequency scale equal to 1/T, where T is
the pulse duration. The ensemble averaged spectrum
($(v) ) of the laser light is shown in Fig. 2(b). The aver-
age spectrum does not show any periodic structure, ten-
tatively indicating the lack of any cavity modes. Howev-
er, it is important to realize that such a structure can be
washed out in this type of measurement by small frequen-
cy jitter in either the dye laser or Fabry-Perot interferom-
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FIG. 1. Schematic diagram of cavityless dye laser: 6, 3000
lines/mm holographic di8'raction grating; T, 12& telescope;
DC, dye cell.

I
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FIG. 2. (a) Single-shot spectrum of the cavityless dye laser
light. (b) Average spectrum of 400 pulses from the cavityless
dye laser. Zero on the frequency scale corresponds to the center
frequency mo of the light.
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P(vl (fS(v=')S(v'+vldv' (2.4)

where ( ) indicates an average over many laser pulses.
Since P(v) depends only on the frequency difference and
not on the absolute frequency, it is completely insensitive
to the frequency jitter. It should be emphasized that
P(v) depends both on amplitude and phase Iluctuations
of E(t). This is contrary to the intensity autocorrelation
«nction & 1«t)

I

'
I
«t +r)

I

'& which depends only on

eter. Therefore, additional measurements were per-
formed to better reveal the existence of any such mode
structure. Using a Fizeau interferometer and photodiode
array coupled to a computer we have measured many
single-shot spectra, and from them calculated the spec-
trum autocorrelation function P(v), defined as follows:

amplitude Auctuations. Since the knowledge of ampli-
tude and phase behavior is necessary for a full description
of the field, both intensity and spectru~ correlation func-
tions should be measured to provide such a description.
P(v) measured for a cavityless dye laser is shown in
Fig. 3. Weak features indicated by arrows in Fig. 3 are
due to residual scattering from the dye-cell walls, which
leads to slight enhancement in the correlation function
for frequencies separated by c/2L, where L is the optical
length of the dye cell. The central peak is directly con-
nected to the stochastic nature of the radiation.

The spectrum autocorrelation function P(v) can be
calculated for chaotic light. The frequency correlation
function (S(v')S(v'+v)) for CL was calculated by
Masalov using the moment theorem for Gaussian ran-
dom variables,

2
(S(v')S(v'+v)) =(S(v'))(S(v'+v)) 1+ J p(t)e

2fp(t)dt (2.5)

where p (t), the smooth pulse envelope, is assumed to be the same for each pulse. Assuming
2

T t
p (t)= —exp

&m.

one obtains

(S( ')S( '+ ))=(S( '))(S( '+ )) 1+ p r (2.7)

where I = I/(T&2m). In our case I is much smaller than the bandwidth of the laser and thus the factor
(S(v') ) (S(v'+ v) ) can be regarded as nearly constant in the range where the exponential factor in (2.7) is not vanish-
ing. Thus the frequency correlation function is peaked around v=O, with the ratio of its peak value to the plateau value
equal to 2. P(v) is analogous to the intensity autocorrelation function in the time domain and has basically the same
form.

When the experimental data are considered, the finite resolution of the device measuring the spectrum has to be ac-
counted for. This is done by introducing the instrumental function Ii (v —vo), which describes the spectral intensity
measured by the interferometer when the incident radiation is monochromatic with frequency vo. Then Eq. (2.4) is re-
placed by

P(v)=( Jdv fdx fdy S('v')h(v' —x)S(v'+v)h(v'+v —y)) . (2.8)

I

A general analytic expression for the instrumental func-
tion of a Fizeau interferometer is not known' and thus
an approximate expression will be used. We choose a
Gaussian profile

2

(2.9)

which makes the calculations easy to carry out. Here y
is the spectral resolution of the interferometer. Substitut-
ing Eq. (2.9) into Eq. (2.8) and using Eq. (2.7) gives

I VP(v)= 1+ exp
(2 2+ I 2) 1/2 2y2+ I 2

0.0—
I
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FIG. 3. Spectrum autocorrelation function for a cavityless
dye laser.

X 5 v' S v'+v dv'. (2.10)

If the averaged spectrum is wide compared to
(2y +I" )', then the expression (S(v'))(S(v'+v)) is
approximately constant in the range of v where the ex-
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ponential factor is not vanishing, and thus

IP(v)= 1+ z, zexp(2y2+I 2)1/2

5 v' dv'. (2.11)

2.0—1

As can be seen from Eq. (2.11), the shape of P(v)
strongly depends on the ratio yll. For y &&I, which
corresponds to the spectral resolution much better than
1/T the value P(0} is twice as large as P(v) in the pla-
teau region. For y comparable to I, the peak-to-plateau
ratio is [I+I'l(2y +I )'~ ]. For y &&I', P(v) is a Aat

function with no peak at v=o. The curve shown in Fig.
3 was measured with I =44 MHz and y=281 MHz, so
according to Eq. (2.11) the ratio of the peak to "plateau"
(normalized to unity in the figure) should be equal to
1.11. The experimental value of this ratio as measured
from Fig. 3 is equal to 1.11+0.02 and agrees well with
the theoretical one. The error in this measurement is due
to the fact that the wings of the experimental curve are
falling, which is caused by the finite bandwidth of the
laser. The theoretical value of this ratio is also an ap-
proximate one, due to the approximation used in Eq.
(2.9).

In addition to spectral measurements, the intensity au-
tocorrelation function J(l(t)I(t+r))dt, where I(t)
=

~

F. (t) ~, was measured using the standard frequency-
doubling technique. The result is shown in Fig. 4 (curve
1). The peak-to-plateau ratio is equal to 2 for stationary
chaotic light. ' %e have measured the value 1.9+0. 1 for
this ratio.

In conclusion, the results of spectral and intensity au-
tocorrelation measurements for a cavityless dye laser are
in good agreement with the theoretical predictions for
chaotic light. Although full characterization of statisti-
cal properties of given light requires measuring infinite

number of moments, we conclude tliat up through fourth
order in the field the radiation of the cavityless dye laser
can be modeled with good accuracy by the chaotic light
model. It should be pointed out that unlike the laser with
longitudinal modes, the cavityless laser produces light
with a continuous spectrum and thus is a better approxi-
mation of a CL source.

It should also be mentioned that we were unable to ob-
tain good results using the design for a cavityless dye
laser given in Ref. 21. This is because with a short dis-
tance between dye cell and grating, light spuriously
scatters from various surfaces, leading to multiple round
trips and the formation of mode structure. This structure
was not evident in the average spectrum (S(v) } but was
clearly evident in the spectral autocorrelation function
P(v}.

III. PULSE-SMOOTHING AMPLIFIER

The principle of pulse smoothing has been described in
a recent paper. ' The method discussed in this reference
is based on passing broadband, and thus intensity-
fluctuating laser pulses through a saturated amplifier to
which a nonsaturable absorber has been added and which
is pumped by smooth laser pulses. It has been shown
both theoretically and experimentally that such an
amplifier produces smooth pulses that follow the pump
pulse shape, regardless of intensity fluctuations in the in-
put pulse. As an amplifying-absorbing medium, a solu-
tion of malachite green and rhodamine 6G dyes in
methanol was used. We have observed that this solution
is not chemically stable and deteriorates in time, which
manifested itself as a decrease of the absorption at the
laser wavelength. On the other hand, it was also demon-
strated experimentally that significant but less efkctive
smoothing can be achieved when no nonsaturable ab-
sorber was added. In the present paper we describe a
design of a smoothing amplifier that avoids the chemical
stability problems yet provides good smoothing of inten-
sity fluctuations. It consists of two high-gain saturated
amplifiers in series, with no nonsaturable absorber added.
First a simple theoretical model will be presented, fol-
lowed by the experimental data.

A. Theoretical analysis

A single-stage dye ampli6er can be described in terms
of rate equations, "
"dI(t, z) = [o N2(t, z) a]I (t,z), —

Bz
(3.1)

0.0-
I

0.0 0.2

FIG. 4. Intensity autocorrelation functions of light from the
cavityless dye laser before (curve 1) and after (curve 2) passing
through the smoothing ampli6er.

(3.2)

where I(t,z) is the photon Aux of light being amplified,
N2(t, z) is the population of the upper level of laser transi-
tion, rJ I (t, z) is the pump rate, A is the spontaneous de-
cay rate of upper level, X is the concentration of dye mol-
ecules, and o. is the stimulated emission cross section.

Equations (3.1) and (3.2) have been written in a coordi-
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nate system that moves with the amplified light pulse.
The position z and time r are related to the laboratory po-
sition and time coordinates by z =z„.b, t =i„b—z„b/U,
where U is the velocity of light in the amplifying medium.

The coefficient o, describes the residua) nonsaturable
loss in the amplifier due to excited singlet absorption of
the dye molecule and diffraction of the beam traveling

through a pumped region of small transverse dimensions
( —100X 100 pm) in a long (2 cm) dye cell. However, es-
timation shows that a realistic value of a is of the order
of 1 cm ', thus the assumption aL &&1 (L is the
amplifier cell length) is not valid and the analysis present-
ed in Ref. 15 cannot be applied.

We assume that dispersion can be neglected in the rela-
tively narrow range of frequencies covered by the laser
line. We estimated that the maximum phase difference
for different frequencies in a 10-GHz bandwidth due to
dispersion of the active medium is smaller than 2m/10 in
the case of our dye laser amplifier, which justifies the as-
sumption of dispersionless medium. We also estimated
self-phase modulation effects and found them to be small.

Efrects of amplified spontaneous emission from the
amplifier are neglected, thus Eqs. (3.1) and (3.2) do not
apply to an amplifier in which the intensity of ASK is
comparable to the intensity of amplified light. We as-
sume that the pump pulses are provided by a single-mode
laser and are temporally smooth. We also assume that
the pump rate o I (r, z) is much larger than the band-
width of the input pulse, which means that the upper-
level relaxation rate is much larger than the rate of tem-
poral change of I(t,z). This is an adiabatic approxima-
tion in which the amplifying medium at each point in

space responds immediately to the changes of I(t,z) as
well as I (t,z), which is much slower. This point is dis-
cussed in more detail in Ref. 1S. With this assumption,
Eq. (3.2) can be integrated to give approximately

No pI~(t, z)
X,(i,z)=

o pIp(t, z)+o I (t,z )
(3.3)

where a spontaneous emission term has been neglected
since it is small compared to o I (t,z)+oI(t, z). Equa-
tion (3.3) is then substituted into Eq. (3.1), yielding

BI(t,z) —a I tz
Bz 1+I(r,z)/I„,(r, z)

(3.4)

where g =0.% is the unsaturated gain coefBcient andI,(t,z) =(o~/o )I~(t,z) is the saturation intensity. Note
that since the molecular system has no memory,
dI(t, z)lr)z) depends only on local, current values of I and
I . For a transversely pumped amplifier with uniform

pumping, I (and thus I„,) depends only on the 1aborato-
ry time t&,b and not the moving time variable
t = t„b—z/u. But in our case the amplifier path length is
short (-2 cm) so that the transit time L/u(-60 ps) is
much shorter than the time over which the pump pulse
changes (duration -6 nsec). So to good approximation
we can replace I (t~,b) by I (r). This leaves Eq. (3.4) in
the form of an ordinal dil'erential equation with the in-
dependent t variable acting simply as a parameter

(3.5)

with initial condition I(t, 0)=I(t„b L—/u, O). This is a
quasi-steady-state approximation in which I(t,z) instan-
taneously adjusts to the current value ofI„,. A saturated
amplifier described by an equation similar to Eq. (3.5) was
studied in detail by Curry et al. under the assumption of
a weak pump. In this regime I„,is time independent
and determined by molecular constants. They have
found good energy stabilization for transform-limited,
nanosecond pulses. However, no changes in the pulse
shape were reported.

Equation (3.5) has been integrated numerically for
fixed-medium length L and different values of g and a,
considering I, as a parameter. An example of the re-
sults for output intensity I(t,L)=I,„,ve—rsus input inten-

sity I(t,O):I;„is—shown in Fig. 5(a) on a log-log scale.
%'e are interested in reduction of relative intensity Auc-

tuations; therefore, the quantity of interest is the "stabili-
zation factor, "defined as

d logio(I;„)
d log, u(I,„,)

(3.6)

which is the inverse of the slope of the curves in Fig. 5(a).
As could be expected for very low and very high input in-
tensities (unsaturated and totally bleached amplifier),
S =1. However, in the region of input intensities compa-
rable to the saturation intensity, S is larger than 1, which
means that relative intensity fluctuations are decreased by
the amplifier. The smoothing properties of the amplifier
depend strongly on the values of gL and rxL. The higher
the value of gL the higher is the value of S calculated at
I;„=I„,and the larger is the range of input intensities
over which S is large. However, in practice the gL prod-
uct has to be limited in order to avoid saturation of the
amplifier by its own amplified spontaneous emission,
which is not included in our model. Note that in our
analysis, the value ofI„,depends on the pump rate and is
much higher than in a weakly pumped amplifier whereI, is determined solely by the molecular constants. As
can be seen in Fig. 5(a), considerable improvement in the
performance of the smoothing amplifier can be achieved
by increasing the loss coeScient cz, which was predicted
by Curry et al. and is also consistent with our previous
result, ' This can be explained as follows: In an amplifier
with little or no loss and high gain, the intensity of
amplified light increases rapidly as it travels through the
amplifier and exceeds the range of intensities where the
smoothing factor S ~ 1. However, if the loss experienced
by the amplified beam is comparable to the unsaturated
gain, the overall gain is positive for low intensities and
negative for high intensities, which automatically leads to
the reduction of Auctuations. In particular it has been
shown that for a= —,'g, gain is positive for I ~I„,and

negative for I ~I„,and the intensity stabilizes at I=I„„
where the smoothing effect is the strongest. On the other
hand, if losses are small, then dividing the amplifier into
several stages can give good smoothing, provided that the
beam is attenuated after each stage so its intensity does
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to decrease the light intensity below saturation intensity
at the input of the second amplifier. It also provided spa-
tial 6ltering of the amph6ed beam. Because of the poor
spatial quality of the pump beam the precise value of sat-
uration intensity I~, =(cr /cr)I cannot be calculated;
coarse estimation showed it to be approximately 10
W/cm . Also, the loss coefficient a is rather difficult to
calculate. Therefore the curves presented in Figs. 5 and 6
should be treated as an illustration rather than precise
characteristics of the actual smoothing ampli6er used in
the experiment. The output energy of the two-stage
amplifier was about 5 mJ.

The intensity Auctuations of the input and output
pulses were recorded in two ways. For convenience a
streak camera was used to observe time-resolved intensity
during the alignment of the system. The time resolution
of the streak camera (30 ps) was good enough to record
a11 the intensity Auctuations of the 10-6Hz-bandwidth
radiation. An example of recorded traces is shown in
Figs. 7(a) and 7(b) for the input and output pulses, respec-
tively. The reduction of intensity fluctuations is clear. In
the input pulse the fluctuations are comparable to the
average intensity as should be expected for chaotic light,
while in the output pulse the intensity fluctuations are
much smaller than the average intensity. The residual
fluctuations on the output trace are partially caused by
noise in the streak camera.

In addition, the intensity autocorrelation function

f &I,„,(t)I „,(t +~))dr of the output radiation was mea-

sured using the same technique as described in Sec. II
and the result is shown in Fig. 4 (curve 2). Intensity fluc-

tuations would show up as a peak at ~=0. Taking into
account noise present in the measurement, we can say
that no peak higher than 5% of the plateau value exists.
The results of both streak camera and intensity auto-
correlation measurements show that a considerable
reduction in intensity fluctuations can be achieved in the
described amplifier, leading to an almost purely phase
Auctuating field.

IV. EVOLUTION OF SPECTRUM AND PHASE
OF SMOOTHED LIGHT

Additional measurements were performed to establish
if the smoothing ampli6er changes the phase of the
ampli6ed radiation. The experimental setup is shown in
Fig. 8(a). A part of the input beam was combined with
the attenuated output beam on a beam splitter BS2. In
this way a Mach-Zehnder interferometer was formed
which included the amplifier in one of its arms. %e
searched for a fringe pattern in the observation p1ane 0.
As should be expected, no fringes could be detected if the
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FIG. 7. Streak camera traces of laser pulses, 15 ps/channel:
(a) cavityless dye laser output, (b) smoothing amplifier output.

FIG. 8. (a) Experimental setup used to determine the change
of phase in the smoothing amplifier. BS1,BS2, beam splitters;
DC, dye cell; NDF, neutral density filter; 0, observation plane.
(b) Photograph of the fringe pattern from the Mach-Zehnder in-
terferometer.
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path difkrence in the two arms of the interferometer was
larger than the coherence length of the laser hght ( —5

cm}. However, if this path difference was chosen to be
near zero, a clear fringe pattern was observed as shown in
Fig. 8(b). Formation of such a fringe pattern is possible
only if the phases of light in both beams are nearly the
same. Therefore we conclude that the smoothing
amplifiers did not significantly change the phase of the
amplified light. This is consistent with the neglect of
dispersion in our theoretical model described earlier.

This allows us to deduce the probability distribution of
phase for the smoothed light. To do that, we assume, for
simplicity, that the smoothing process is perfect, i.e., the
output pulses have constant field amplitude except for a
slowly varying envelope. %e also assume that the phase
of the amplified light does not change in the amplification
process. This cannot be deduced from our rate-equation
model, however, an experimental proof was presented
above. The amplitude of input chaotic field [see Eq. (2.1)]
can be written in the form

(4.1)

where Eii(t) is a real valued fiuctuating amplitude of
chaotic light, %'(t) is its phase, and the slowly varying en-
velope p(t) was omitted. The output field is then given
by

(t) EO &%(t) (4.2}

with a constant real amplitude Ez. The output 6eld is

purely frequency fiuctuating and its phase fiuctuations
are those of chaotic light. Elementary concepts of statis-
tics' can be used to show that the probability distribu-

tion function P(%) for the phase of chaotic light is uni-

form,

P(%)= (4.3)
2m

'

Since, as has been mentioned before, the amplifier does
not change the phase of amplified light, the phase distri-
bution for the output light from the amplifier is also
given by Eq. (4.3}.

The single-shot spectrum of the smoothed light was
measured using the same method as that applied for
measuring the spectrum of cavityless laser light. Ran-
dom structure similar to that in Fig. 2(a} was observed.
Thus, the intensity smoothing process does not also
smooth the spectrum. In addition, the average spectrum
of the smoothed light was measured. %'e found that the
average spectra of chaotic light and smoothed light are
the same within the accuracy of our measurement. %e
found this result somewhat surprising so a theoretical
model was developed to explain it.

To model the spectrum of the smoothed light a numer-
ical simulation was performed. A series of pulses of
chaotic light with field E(t) was generated numerically
by integrating the Langevin's equation

BE(t)
Bt

yE (t)+F(t), —

where y
' is the coherence time and E(t) is a complex,

5-correlated, Gaussian random variable. E,„,(t) was then
calculated using Eq. (4.2), with %(t) given by the phase of

I I I I I I

0.0—
I

0
T,g

FIG. 9. Numerically simulated autocorrelation functions
(E(t)E(t+r)} (solid curve) and (E,„,{t)E,„,(t+r)) (dashed-
dotted curve) for chaotic light and amplitude-stabilized chaotic
light, respectively.

the input chaotic light generated by integrating Eq. (4.4).
Then the autocorrelation functions (E'(t)E(t+r)) and
( E,'„,( t )E,„,( t +r ) ) were calculated, giving the results
shown in Fig. 9. The autocorrelation function for the
simulated chaotic field E(t) was found to be in good
agreement with the theoretical negative-exponential for-
mula exp( —y ~

v
~

). As can be seen from Fig. 9, the au-
tocorrelation function for the smoothed light decays fas-
ter than that for the chaotic light, but the curves are al-
most identical for times longer than y

Average optical spectra for both input and output
fields were calculated by computing the Fourier trans-
form of corresponding autocorrelation functions and
averaging over 20 realizations. The results are shown in
Fig. 10. Except for noise caused by the rather small

I I I I I I I I I I I I I

0.0—
I I I I I I I I I I I I I

-6 -4 -2 0 2 4 6
2n(v- vo)/y

FIG. 10. Numerically simulated, average optical spectra of
chaotic light (curve 1) and amplitude-stabilized light (curve 2};
vo is the center frequency of the laser line.
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number of Geld realizations used in the calculations, the
chaotic-light spectrum can be well fitted with a Lorentzi-
an curve. As can be seen in Fig. 10, the two spectra are
similar in the range of frequencies v close the center fre-
quency vo (

~

v —vo
~

Sy/2' ). This is consistent with the
fact that corresponding autocorrelation functions are al-
most the same for times longer than y '. The only
difkrenee between the two spectra is in the wings of the
two curves (

~

v —vo
~

& y/2m), where the smoothed-light
spectral intensity is slightly higher than that for chaotic
light. This is due to the faster decay of the autocorrela-
tion function for smoothed light in the range of times
shorter than y

The calculations are consistent with the results of mea-
surements in the sense that no appreciable increase of the
full width at half maximum occurred. Due to the noise
in the experiment we were not able to observe the pre-
dicted increase of the wings in the spectrum of smoothed
light.

V. SUMMARY

A cavityless dye laser was carefully characterized via
measurements of spectral and intensity autocorrelation

functions and was found to emit light described by the
chaotic model, at least up to fourth order in the field. A
two-stage saturated dye amp1ifier pumped by a single-

mode Nd: YAG laser was used to reduce amplitude Auc-

tuations of chaotic light from the cavityless dye laser.
The intensity of the output pulses from the amplifier is

smooth, while the phase is rapidly Auctuating. It was

demonstrated that the dye amplifier does not change the
phase of the light. Therefore the output field has the
same stochastic phase fluctuations as chaotic light, which

has a uniform phase distribution. The average spectrum
of the amplitude-stabihzed chaotic light is found to be
nearly the same as that of chaotic light, at least within
the central part of the line.
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