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In this first paper of a series on the quantum theory of nondegenerate multiwave mixing applic-
able to traveling-wave interaction geometries, we describe our problem formulation. We consider
the explicit dynamics of a subset of the field quantization modes interacting with a system of sta-

tionary two-level atoms contained in a volume much smaller than the field quantization volume.
Because we make the realistic assumption of leaving the remaining infinite set of field modes as a
common thermal-field reservoir, the resulting Langevin equations contain extra decay terms due to
collective spontaneous emission or super-radiance. We show that all but one of these super-
radiance terms are negligible in the following two limits: {a) when the number of atoms in a
di6'raction volume is small; (b) when the atoms are pumped far off resonance. There is, however, an
anomalous decay term which does not appear in a classical model of super-radiance based upon
coherently phased atomic dipoles. The magnitude of this anomalous term is neither dependent
upon the number of atoms nor on the pump-frequency detuning and may not be negligible at a low

pump intensity. Neglecting the super-radiance terms, we then present a general Fourier-expansion
solution technique for obtaining the atomic polarization in the presence of any number of field

modes. The expansion is shown to be convergent in a commonly occurring situation in which all

the strong pump modes are frequency degenerate and the remaining nondegenerate modes are all

weak compared to the atomic saturation intensity. In subsequent papers of this series, we will

present methods to treat, with some rigor, the spatial propagation of an interacting multimode

quantum field and apply these methods to traveling-wave squeezed-state generation experiments.

I. INTRQDUCTION

Squeezed light is a state of the electromagnetic field at
optical frequencies whose electric field measurement un-
certainty is phase dependent, with a minimum falling
below the level set by the coherent state of light. '

Squeezed light is, in fact, a macroscopic quantum state
which has no classical analog in the sense that it cannot
be produced by random superposition of coherent states.

Recently, several groups have demonstrated the gen-
eration of squeezed light employing difFerent systems,
each obtaining a difFerent degree of squeezing over a
difFerent bandwidth. Slusher et al. were the first to gen-
erate squeezed light demonstrating 17% squeezing in
light emitted by a cavity containing the probe and conju-
gate fields of a four-wave mixer undergoing nearly degen-
erate four-wave mixing in a sodium atomic beam. There-
after, Shelby et al. observed 12% squeezing via nearly
degenerate forward four-wave mixing in a single-mode
optical fiber. Kimble and collaborators ' are, by far, the
most successful ones, demonstrating squeezing in two
different systems. VAth their first system, they have set a

much higher benchmark for squeezing by observing over
50% squeezing in light emitted by a cavity containing the
signal and idler fields of a parametric amplifier undergo-
ing nearly degenerate optical parametric amplification in
a MgO:LiNb03 crystal. Their other system exploits the
large coupling strength of a small-volume high-finesse op-
tical cavity to an atomic beam of two-level atoms. Mae-
da et al. have also observed squeezing via nearly degen-
erate forward four-wave mixing in a sodium vapor cell,
demonstrating squeezing via interaction with a Doppler
broadened medium for the first time. And most recently,
Machida et al. have generated amplitude squeezed light
directly out of a constant-current driven semiconductor
laser.

Out of the six experiments which have generated
squeezed light, three have involved the basic resonant in-
teraction of the electromagnetic field with a system of
two-level atoms. The experiments of Slusher et al. and
Kimble and collaborators differ in one important aspect
from the Maeda et al. experiment in that they employed
optical cavities to enhance the atom-field interaction,
thus making electromagnetic field propagation issues ir-
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relevant. Such issues are, however, crucial to a proper
theoretical description of the Maeda et al. experiment,
which employed a traveling-wave configuration. With
these issues in mind, we have recently formulated a quan-
turn theory for nondegenerate multiwave mixing in an
atomic medium and applied it to traveling-wave
squeezed-state generation experiments via four-photon
mixing. A summary of this formulation and its applica-
tion was recently reported. In this and in a series of
forthcoming pubhcations, we present details of this
theory and its application to squeezed-state generation
experiments.

Our theory predicts squeezing in resonance fluores-
cence, degenerate four-wave mixing, ' ' and nondegen-
erate four-wave mixing' ' in a consistent manner. In
the squeezing calculations the effects of spontaneous
emission, propagation loss, atomic collisions, and phase
mismatch due to propagation are properly taken into ac-
count for the first time. A preliminary analysis of the
effect of super-radiance has also been carried out.

The experiments' following the first proposal of
squeezed-state generation via backward degenerate four-
wave mixing by Yuen and Shapiro' encountered
diSculties partly due to loss and mainly due to atomic
Auorescence. Because these experiments were performed
in a near resonantly-pumped atomic medium, single-
photon excitation resulted in population inversion, which
led to spontaneous emission at the squeezed-node fre-
quency. A phenomenological analysis by Kumar and
Shapiro" indicated that loss was less critical in a forward
four-wave mixing geometry. However, a proper account
of the spontaneous-emission noise, which required quant-
ization of the atomic medium along with the electromag-
netic field, was first given by Reid and %alls. ' They
showed that propagation loss and spontaneous emission
severely limit the amount of squeezing obtainable via de-
generate four-wave mixing in both forward and backward
configurations. On the other hand, a study of the spec-
trum of squeezing' in resonance fluorescence from a sin-
gle atom or a thin layer of atoms shows that most of the
squeezing occurs at nondegenerate frequencies near the
Rabi sidebands, ' implying that a nondegenerate
analysis of the four-wave mixing process is required. The
total amount of squeezing obtainable from a thin layer of
atoms is of course very small, therefore, we need to con-
sider a thick medium in which case a proper treatment of
multimode quantum field propagation and wave coupling
becomes absolutely essential.

Recently, Reid and %alls, ' Sargent and collabora-
tors, ' ' and Agarwal have also developed quantum
theories for nondegenerate four-photon mixing and ap-
plied them to the intracavity atomic-beam squeezed-state
generation experiment of Slusher et ah. Because these
theories consider electromagnetic fields inside optical
cavities, they are not directly applicable to the traveling-
wave experiment of Maeda et aI. The formulation of
Reid and %alls' is based on the quantum statistical
methods developed by Haken ' and later adapted for op-
tical bistability by Drummond and %alls. Our formu-
lation, although based on the same techniques, is much
more general. Not only does it give a more general ex-

pression for the atomic polarizability, it also differs from
theirs in an essential way in that we handle the slowly
varying amplitude approximation in the frequency
domain. This approach more rigorously justifies the adi-
abatic approximation for the elimination of atomic vari-
ables and leads to extra terms which are important for a
consistent treatment of spatial propagation. Instead of
adopting the heuristic r ~z/c transformation used in al-

most all the previous works, we have developed two
equivalent methods to treat, with some rigor, the spatial
propagation of the multimode traveling-wave quantum
field. The slowly varying envelope method places a much
better limit on the validity of the squeezed-noise calcula-
tions using the t —+zlc transformation, ' whereas the
quantum-mode method provides physical insight into
how the time evolution of the usual annihilation opera-
tors leads to spatial propagation of the wave.

In the frequency-degenerate limit, without considera-
tion of the pump-probe phase mismatch due to nonlinear
dispersion, our theory agrees with the earlier four-wave
mixing results of Reid and %alls, ' and in the thin-
medium approximation it correctly reproduces the results
of Heidmann and Reynaud. Our inclusion of the pump-
probe phase mismatch, collisions such as those between
the two-level atoms and those between the two-level
atoms and the atoms of any externally added bu6'er gas,
and super-radiance give nse to additional efects not con-
sidered elsewhere.

In this paper, we begin in Sec. II by setting up the
atom-field Hamiltonian for a system of N two-level atoms
interacting with the electromagnetic field quantized in a
box whose volume is much larger than that occupied by
the two-level atoms. %e follow the explicit dynamics of a
subset of the field quantization modes and leave the
remaining infinite set of modes as a common thermal-field
reservoir. In addition, to model the soft collisions be-
tween the atoms, each two-level atom is coupled to a
separate phase-damping reservoir.

In Sec. III we follow the master-equation techniques
described by Louisell to derive a reduced density opera-
tor equation of motion for the above system via the Mar-
kov approximation. The coef5cients of some of the terms
in this equation of motion are dependent upon the phase
coherence of the atomic dipoles. These super-radiance
terms arise because of cooperative atomic behavior due to
our usage of a common thermal-field reservoir for all
atoms. In the case of a thick medium, the condition for
the validity of the Markov approximation for the super-
radiance terms is shown to be much more stringent than
that for the usual spontaneous-decay terms.

In Sec. IV the reduced density operator equation of
motion is transformed to a c-number equation of motion
for the associated distribution function using the usual
technique of choosing an operator ordering. For applica-
tions such as squeezed-state generation, where correla-
tions of the field only up to the second order are needed,
this c-number equation reduces to a Fokker-Planck equa-
tion, from which a corresponding set of Langevin equa-
tions are obtained. Besides the usual spontaneous decay
and noise terms, the Langevin equations for the atomic
variables are shown to contain extra decay and noise
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terms due to super-radiance.
In Sec. V a preliminary analysis of the e6'ect of super-

radiance is carried out by assuming that the atomic di-

poles are coherently excited at some initial time. Our
analysis shows that in the zero mean-field limit, all but
one of the additional decay and fluctuation terms due to
super-radiance are negligible in the following two limits:
(a) when the number of atoms in a diffraction volume is
small and (b) when the atoms are pumped far from reso-
nance. Both of these limits are dependent upon the
length of the medium. There is, however, an anomalous
decay term which is not accounted for by a classical
coherently phased dipole model and whose magnitude is
neither dependent upon the number of atoms nor the
pump-frequency detuning. This anomalous decay term is
shown to be negligible at high pump intensity when the
total atomic state approaches an incoherent mixture of
atomic-number states. However, at pump intensities
below the saturation intensity for the two-level atoms,
this term is not negligible Thus. , contrary to popular be-

lief, our model shows that the super-radiance efFects may
not be negligible at low pump intensities even when the
number of atoms in a difFraction volume is small. To the
best of our knowledge this efFect has not been studied be-
fore.

In Sec. VI after neglecting the super-radiance terms,
we solve the set of Langevin equations by using a Fourier
expansion technique. The resulting equations in the fre-
quency domain, which are recursive in nature, are solved
iteratively under the commonly occurring condition that
the frequency-degenerate pump modes are a11 strong,
whereas the remaining nondegenerate modes are all weak
compared to the atomic saturation intensity. Using this
method, a general expression is obtained for the c-number
atomic polarization variable for any number of interact-
ing field modes.

We will continue this development in the forthcoming
papers of this series on the quantum theory of nondegen-
erate multiwave mixing, In the second paper, a frequen-
cy domain method will be formulated to treat the usual
adiabatic approximation. A slowly varying envelope
method will be developed to treat, with some rigor, the
spatial propagation of an interacting rnultimode quantum
field. This method will be applied in the third paper to
obtain the spectrum of squeezing for a single beam propa-
gating through the two-level medium. In the fourth pa-
per, we will present another method to treat the spatial
propagation, using a quantum-mode evolution technique.

(2.l)

(2.2)

(2.3)

hd; =—g &(; —|t, ,
l

(2.4)

(2.5)

where l C [x,y, z ), i labels the states and operators for the
ith atom, [ f'&; ) are the atomic down-transition operators,
[0'&, ) are the atomic up-transition operators, [ht;, hg; )

are the occupation operators for the respective atomic
states, and [8'd; ) are the population inversion operators.

We denote the annihilation operators of the elec-
tromagnetic field by a, , with j = 1,2, . . . , q representing
the q field modes of interest and j =q+1,q+2, . . . „00
representing the thermal-field reservoir modes having
wave vectors k . We use co to denote exclusively the
free-space angular frequencies coj =

~
ltj

~

c. The optical
resonance frequency of the atoms is denoted by co, .

Thus the Hamiltonian of this atom-field system is given

8=8,+H, +8„+8, ,

where the free part is

Ho ——g ficoj.& J.a, +(fuu, I2) g hd;,

(2.6)

(2.7)

leigh scattering, the atoms are assumed to be uniformly
distributed over a volume V~, which in general is much
smaller than V&. The soft collisions, such as those be-

tween the two-level atoms and the atoms of any addition-
al bu8'er gas, are modeled by coupling the atoms to
phase-damping reservoirs, thereby increasing their trans-
verse relaxation rate.

In order to derive correct expressions for the
spontaneous-decay and super-radiant decay rates, we fol-
low the vector field treatment as given by Ho, Kumar,
and Shapiro. We assume that each atom is character-
ized by four states: a ground state

~ g ) and three degen-
erate excited states

~

x ),
~ y ), and

~

z ) which couple to
the x, y, and z components, respectively, of the thermal-
field modes. The q field modes, however, are all assumed
x polarized so that they only couple to the state

~

x ).
Let us define the following atomic operators:

II. ATQM-FIELD MGDKI.

and the atom-field interaction part is

Ht ——g [iRC„i(r, )aj V„;+H..c.], (2.8)

In this theory we consider a system of X stationary
two-level atoms interacting with an infinite number of
plane-wave electromagnetic field modes quantized with
periodic boundary conditions in a box of volume V&. %'e
consider the explicit dynamics of q of these modes with
wave vectors k&, . . . , k and leave the remaining infinite
set of modes as a common thermal-field reservoir. The
reservoir modes are assumed to be in thermal equilibrium
with the environment at the initial time. To neglect Ray-

H~ ——8+ V,
with the former being

R = g Ac@,a,'a,

(2.9)

(2.10)

with H.c. denoting the Herrnitian conjugate. The
thermal-field reservoir term consists of a free part and an
interacting part
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and the latter being

f'= g [iAC(, (r;)a, P'&,. +H. c.] . (2.11)
=(iA) '[80+81,pr)+LF(pr )+Lc(pr ),

Br

(3.1)

The phase-damping term due to collisions is given by

(2.12)

where {f'~;j are the operators of the phase-damping
reservoirs. Under the summation signs of the above
equations, j denotes the sum over the q field modes:

jE {1,2, . . . , q j; s denotes the sum over the thermal-field
reservoir modes: s G {q + l, q +2, . . . , ao j; 1 denotes the
sum over the atomic excited states: 1C {x,y, z j; and i
denotes the sum over the number of atoms:
i E {1,2, . . . , N j. The coefficients are given by

and LF(p) is the field damping term given by

LF(p)= gL;;(p),

I, l' k, k'
{[fj (k) P (k')P] IV+kk'

+ [~P (k') V (k)] lV
—k'k

j

where Lc(p) is the collisional damping term given by

L ()( ) = —X {[&d; &d, 1"]+ [s"&d &d;]j1',h (3.2}

(3.3)

Ci, (r;)=g, p, (, exp(ik, .r;),
gJ

= ( co, /2(rieoco V& )
' i

(2.13)

(2.14)
~8( (k) (k')

) (3.4)

p(, =—&1 ler, Ig&, .e, . (2.15)

For later reference in treating propagation, we note
that the interaction term of Eq. (2.8) has been obtained
under dipole and rotating-wave approximations from the
exact nonrelativistic interaction energy

HI —g [e Ai(r„) Ai(r„)—2ep„.Ai(r„)]/2m, ,

where r; is the position of the ith atom and p&~ is a com-
ponent of the atomic dipole, (1

~
er;

~ g ); coupled to the
jth 6eld mode with e being the electron charge. %e as-
sume that;(1

~
er, ~g); has the same value for each

atom. If the polarization vector of the jth 6eld mode is

e~, then

In the above summations, (1,1')G {x,y, z j,
(k, k')K{0,1j, and (i,i')K{1,2, . . . , Nj. The collision-
induced phase-damping rate is denoted by y h and the
P's, co's, and W's are defined by

(3.5)

(3.6)

(3.7)

(3.8)

exp —lcd 'T F I; 0 I & g &, 3.9

(2.16)
P ((0)(r)= g ic,', (r, )a,"(~), (3.10)

where m, and P„are the mass and generalized momen-
tum„respectively, of the interacting electron in the ith
atom, and Ai(r„) is the transverse vector potential at po-
sition r„. of thc electron. The A P form of Hz is used in-
stead of the E r form because in the Coulomb gauge it
corresponds to the usual Hilbert space for quantization of
the electromagnetic 6eld. This form of Hz also leads to
the factor coz/coJ instead of coj in the coefficient g, of Eq.
(2.14). The A A term has been neglected while obtain-
ing Eq. (2.8).

HI. REDUCED DENSITY OPERATOR
EQUATION OF MOTION

Using the Markov approximation we employ the
master-equation technique described by I.ouiscll to
derive the equation of motion for the reduced density
operator pz of the atom-Seld system comprised of X
atoms and q Geld modes. p~ is obtained from the density
operator p& of the entire system by tracing over the
thermal-6eld and collisional phase-damping reservoirs.
The equation of motion in the Schrodinger picture is
given by

I'
&;

'(r}=—giC&, (r; )it, (r), (3.11)

where 8, (~) is given by the free motion of the reservoir
6eld mode

a, (r) =t, (0) exp( iso, r) . — (3.12)

%e see that the 8"s are given by the two-time correla-
tion functions of the thermal-field (P~; (~)P'i;'(0))a
=E;;, which depend upon phase factors of the form
exp[iik, .(r; —r,')]. As shown later, the spontaneous de-
cay of the atoms is governed by the terms E;; which are
independent of r; and represent the temporal correlation
of the thermal 6eld at a fixed point in space. Let v,h be
the characteristic time of this correlation. Then the Mar-
kov approximation a11ows us to extend the upper limit
of the integrals in Eqs. (3.8) and (3.9) to oo, subject to the
restriction that we look at a coarse-grained time
At ~~~,h. This restriction is generally not too stringent
because the relatively broad thermal spectrum usually
makes v,h much smaller .than the characteristic decay
time of the atomic variables.

We shall see later that super-radiance occurs when the
atoms are coherently pumped near resonance so that
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~l('i' ~l'I" y(I'(R'(')(n th + 1 ) (3.13)

+01 —01m~ll' ' —~l'I' —1 II'(R")nth (3.14)

y„,(R.„,)= I" exp(ik R,, )y(I.(k)dk/(2~)-', (3.15)

f; V; has a spatial phase factor exp[ikF (r; —r; }],where

~

k
~

c=a(, . As noted above, K;; also has a similar
mode-dependent spatial phase factor. Therefore, when
the sum over i and i' is carried out in Eq. (3.3), only a
finite nuinber of thermal-field modes in F I,

. (r) contrib-
ute; those having wave vectors in the vicinity of k, say
k +6k. This finite number of thermal-field modes have a

P
spectral width AcosR —

~

hk
~

c or a characteristic correla-
tloil tliile rsR 1 /EcosR . It will be showii that rsR is

determined by the length of the medium I.~ to be

rsR LM—/—c, giving a much more stringent condition for
the assumption of a coarse-grained time in the case of a
thick medium.

The detailed derivation of the W's is given in Appendix
A. It is shown that under Markov approximation, when
small frequency shifts due to the imaginary parts of the
8 s are neglected, we get

LFSR(p}= —2 2 g I[Vi; Vi;Pl(nth+1}l Ii'(R")
l, l' I'+I I

+[~i ~I 'Pl" thy»'(R '}I+&c.

(3.20)

As mentioned in Appendix 8, y,(,(R,, ) is in general not 6
correlated in I and I'.

IV. e-NUMBER FOKKKR-PLANCK
AND I.ANGEVIN EQUATIONS

The equation of motion for the reduced density opera-
tor pT, Eq. (3.1), can be transformed into an equivalent
c-number equation for the associated distribution func-
tion p, by using the standard technique described by
I ouisell. This c-number transformation is not unique in
that it depends upon the choice of ordering of the atom
and field operators. Moreover, in order to derive a set of
Langevin equations linear in the c-number variables, we
have to define a e-number variable for each of the follow-
ing operators:

y»(k)= ,'k, y5(a(—,/c —
i
k

i
)

V (, , v(, , 6(, , 6, , V'(, V'(,' (i &i '
),a, a( . (4.1)

x y [e, e.(k)][e,"e.(k)],
a =1,2

(3.16)

F(P)= X X [[V((~ V((P]("th+1}3II'(R(i'}

+[~i ~ I 'P"l" thy(I («'}I+H c.

(3.17)

In Appendix 8 we show that y„(0)=y5(I, where 6», is
the Kronecker 5 function, which allows us to write Eq.
(3.17) as a sum of two terms: a spontaneous-decay term
LFS (p ) and a super-radiant decay term LFSR (p ),

LF(p) =LFs(p)+LFsR (p)

LFS(p)= —g g I[~~I; ~i; p]y(nth+1}

(3.18)

+[V„,PI', p]yn, „I+Hc.(3.19)

where n,„ is the average number of thermal photons at
(t(„R,,'=r, —r;, 1,, =2rrc/tt(„e (k) for a =1,2 are the
two orthogonal field-polarization vectors for the mode
with wave vector k, y=2ai,

~ pd ~

/3(4n. eo)tric is the
usual spontaneous-decay rate with p„=(x

~

ex
~ g ) being

the dipole matrix element, and eo is the free-space permi-
tivity.

After summing over k, k' in Eq. (3.4), we can write
LF(p) as

However, in our preliminary investigation of the effect of
super-radiance, we will not define c-number variables for
f'(; VI; (i&i'). The c-number variables for the other
operators will be denoted by the same symbols without
the carets, and with pluses in lieu of the daggers. The
operator ordering we use is

I ~I; I tni; I l@„II VI; I Ia, I ta, I .

We note that the operators for different i and different j
commute with each other and the operators for the atoms
commute with those for the field at all times.

The equation of motion for p, contains derivatives of
infinite order in the In(; I and In; J variables. We ap-
proximate it by keeping only the first- and second-order
derivatives. This approximation is usually justified with
the use of collective atomic variables summed over a mi-
croscopic volume element with linear dimensions smaller
than a wavelength and by assuming Gaussian fluctuations
for them in the limit when the number of atoms in the
microscopic volume element is large. ' ' The assump-
tion of a large number of atoms in the microscopic
volume element may be overly restrictive. However,
since we are ultimately concerned only with the two-time
correlations of the atomic variables, the third- and
higher-order derivatives in the generalized Fokker-
Planck equation do not matter, just as the second-order
derivatives are irrelevant when only the mean values of
single atomic variables are of interest.

Further discarding the n, h-proportional terms in Eqs.
(3.18}—(3.20), which amounts to neglecting the thermal-
noise-induced atomic decay effects, we obtain the follow-
ing equation of motion for p, :
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~Pc . 8
gaia/, a,. + g giti/, V/;+ g gC,', (r;) — V„;+ „(n, n—„,)a. — a+- V„,.

$2

Bn; /3n„,. Bn;Bn„;

+ g QyPh + n/i+ gV //

1 i BVi,- Bvi; li

Bng,

a
Bpl(;

I 8 8 (}
Plr + 2 + 2

—2
2 Qn, . Qn/, Bn; Bn/;

n/;+ V/;

+X X Xy//«')—
I, I' i'~i i

8

/fungi

1 cl 8 8
VI+; VI; —— + —2

2 Qn, Qn/, . Bn; Bt/;
V(; VI;

+

a a'
+ (n, n„)—V/, — V„V, ; +c.c. p, ,av„" ' '

gy,~
(4.2)

where c.c. denotes complex conjugation of the numerical coefBcients plus the mutual interchange of VI+; with VI; and a,+

with a, respectively.
Essentially by reading ofF the coeScients in the Fokker-Planck equation, as described by Louisell, we get the

equivalent following set of Langevin equations:

Ba
i'/, a +—g C„'(r;)V„;,

Bt
(4.3)

BV„;
ia/, V„—, —Q C„(r;)a,(n; n„;)—(—y+y h)V„;—g g y, /(R;; )(ng, —n„;)V/; +fv

j 1' i' (7'-i)

(4 4)

V+, —y C„J(r;)a+(n; — „;)—(y+y h}V„+;—y y y„/(R;; )( y
—„,)V/; +f„

Bt
(4.5)

~& xi = —g [C~J(r;)aj' V;+C„J(r;)ajVx'] 2yn g g 1 x/(R;; }(VxiV/'i + V/'i'Vxi')+fn„. i

J I' i' (~i)

flgi +fl+t = 1

(4.6)

(4.7)

where fv, f +, and f„denote the various Langevin forces with the following correlations:
X

(f + (t)f/, (t') ) =2y „n„,5;; 5(t t'), — (4.8}

(fv (t)fv „(t'))= QC„,(r, )a/V„; —g g y//(R;;)V„;V/; 5,; 5(t t'), —
j I' i' (wi)

(f,.(t)f,, (t') ) = y C„', ( , ) ,' V„+, —y y„ y„,(R... ) V,+, V,+, 5,,„5(t —t ),
Xt Xt It / (~ ')

(4.9)

(4.10)

(f„(t)f„(t'))= —g [C„*.(r,. }a+V„,+C„(r, )a V+~]+2yn„; gg y„—(R,; )[V+V/, '+ V/+'V„, ] 5,,-5(t —t')
J I' i' (~i)

=(f„(t)f„,(t')) =(f„(t)f„(t')) . (4.11}

%'e note that the Fokker-Planck equation is obtained
by commuting f'/; and P'/, . through the chosen ordering
until they meet to become R'&; or 6'g; (see, e.g. , LouiseH,
p. 381). This is the origin of the 2yn„; terms in Eqs. (4.6)
and (4.11). Instead, if we commute V„and f'„ to their
own positions in the chosen ordering, we would obtain a
term —2y V„;V„; in place of 2yn„, in Eq.—(4.6) and a

term —2yV+V„, in place of 2yn„,. in Eq. (4.11). This
makes both Eqs. (4.6) and (4.11) look symmetric with
respect to terms with i '+i and terms with i '=i. Also the
sign of the 2y n„; term in Eq. (4.11) is opposite to those of
the i'&i terms due exactly to this reason. From Eqs.
(4.8)—(4.11) we see that the correlations of the noise forces
for difFerent atoms, such as (f/, (t)fv (t')) for i'&i, are

Xt Xt



37 QUANTUM THEORY OF NONDEGENERATE MULTIWAVE MIXING: 2023

all zero. This is due to our assumption of a zero-
temperature thermal-6eld reservoir and is not true if
terms proportional to n, h are included in Eq. (4.2).

V. EFFECT GF SUPER-RADIANCE (5.2)

were pumped initially by a coherent wave with wave vec-
tor kD traveling in the z direction. Taking expectation
values on both sides of Eq. (4.6), we get

B&n„, &

2—y(n. , ) T,—',

( 0'i (t)P(; (t)) =Ca (t) exp( ikD —R...}, (5.1)

where kD=kDe„and the amplitudes [CI, (t)I are in-

dependent of i and i' but can, in general, be time depen-
dent. This would be the case, for example, if the atoms

Our intent in this section is not to study super-radiance
in detail but to obtain a qualitative understanding of the
super-radiance terms in Eqs. {4.4)—(4.6), viz. , those in-
volving the sums QI. g, ~~;~. To study the free decay of
the atomic variables in the absence of any mean field, let
us consider the case in which all the q field modes are ini-
tially in the vacuum state, whereas the atomic polariza-
tion variables [ V„;) are uniformly excited in the form of
a traveling wave propagating in the z direction.

Thus we assume that the expectation values of
}( ~;(t) P&;.(t) for i~i' are of the form

where

T '=y y„y (R )(&V'V '&+&V; V &)
1' i' (&i)

(5.3)

is a collective spontaneous-decay rate. Note that Eq.
(5.2) describes free decay of the ith atom without the
pump field. Therefore, the steady state is reached when

(n„; ) decays to zero, at which time the atomic polariza-
tions [(V„;)I are also zero causing T;

' to vanish.
%e assume that the atoms are uniformly distributed

with N /VM atoms per unit volume and that the medium
is infinite in the x and y directions but finite in the z direc-
tion from z = LM/2 —to z =LM/2. Then, as shown in

Appendix C, under the approximation that

~
ai, /c —kD

~
&&co, /c, which is also the condition for

rotating-wave approximation, we obtain the following ex-
pression for T, ':

T, '=(XIV~)(C „„/2~)(3k,yL~/2) exp[i(ta, Ic —kD )z, ]

exp[i (co, /c —kD )L~ /2] —exp[ i (co,—/c —kD )L /2]
X

i (co, /c —kD)LM
—2yC„, (5.4)

where z; is the z coordinate of the ith atom. On reso-
nance, kD ——to, /c prevails, and the above equation
reduces to

T, '=[(XIV~){3/8n )A,,L~ —1]2yC„„. (5.5)

T,
—'=T~ ' 2yC„„. — (5.6)

%e note that the extra decay rate accompanies extra
noise because T; '-like terms [cf. Eq. (5.3)] also appear in
the correlations (f„(t)f„(t')), (f„(t)f„(t')), and

(f„(t)f„(t')) as given by Eq. (4.11). The double

sum gl, g; &~;, terms m (fv (t)fi, (t')) and

(fv+(t)fv+ (t')) of Eqs. (4.9) and (4.10), respectively,
Xt Xl

turn out to be negligible with our assumptions because
they are proportional to V; VI,' and V+ VI+., respectively,
instead of V+;VI;.

From Eqs. (5.4) and (5.6), we see that Tz ' is negligible
either when the atoms are pumped far from resonance so
that

~
co, /c —kd

~
&&XDIL~, or when ND is small. In

%hen the number of atoms ND in a difFraction volume
A,,LM is large, i.e., XD =El,,Lit/Vit yy 1, the first term
of Eq. (5.5) dominates the collective decay rate T; '. A
classical reason for the enhancement of the decay rate is
reviewed in Appendix D. In fact, in the above limit, T,
agrees with Tti

' of Eq. (05) if we identify C,„=
~

V
Therefore, we rewrite Eq. (5.5) as

the former case C„„ is expected to be negligible, implying
that T, '=0, whereas in the latter case T, '= —2yC„„,
giving an anomalous gain correction to the decay rate of
(n„;). This anomalous gain term is negligible compared
with the spontaneous-decay term if C„„«(n„),which
is expected to be so only when the pump intensity is
larger than the saturation intensity of the atoms.

In order to obtain further insight into the validity of
the above treatment and to compare with other treat-
ments of super-radiance, let us examine from an
operator-equation perspective how the Markov approxi-
mation leads to the various decay terms in the Langevin
equations.

Using the Heisenberg equation of motion, we can
derive the following set of operator equations for the
atom-field system governed by the system Hamiltonian of
Eqs. (2.6)—(2.1 2):

Ba~
ice a+ g—C„*-(r.;)V;,

i3t

(5.8)

= —g [C„'(r, )a, P„+C„,(r;')a JV„;],Bt

where g denotes the sum over all the field modes, i.e.,

BV;
i co, V„;—g—C„J( r, )a,.( &~; n„; ), —

Bt
J
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j& {1,2, . . . , ce I. In quantum statistical treatments of
atom-field interactions, there are several equivalent ap-
proaches, e.g. , the density matrix method and the
Langevin noise operator method. In all of these ap-
proaches, one starts by solving for the time evolution of
the reservoir modes {a,I, s E {q+1,q+2, . . . , oo I, in
terms of the atomic operators and the initial conditions
of the reservoir modes. Then by assuming that the reser-
voir modes are initially in thermal equilibrium with the
environment, one traces away the reservoir modes. For
example, in the Langevin noise operator method, 0, is ob-
tained first by formally integrating Eq. (5.7), then, after
substituting the solution into Eqs. (5.8) and (5.9), it is sub-
sequently traced away. In the end, with the Markov or
the %igner-%eisskopf approximations, this method then
converts the j sum in Eqs. (5.8) and (5.9) into decay and
noise terms. In principle, this conversion is correct only
if all the electromagnetic field modes are taken to be
reservoir modes, i.e., s E-{1,2, . . . , oo I leaving no field
terms in Eqs. (5.8) and (5.9). However, if we want to
study the time evolution of some q field modes explicitly
or if the q 6eld modes are strongly excited initially in-
stead of being in thermal equilibrium, then we must
separate them out from the tracing procedure. For the
ordinary spontaneous-decay and noise terms, the separa-
tion of a small subset of modes has little e6'ect on the
value of the decay constant y. For super-radiant decay,
however, the situation is completely diferent. From the
above treatment and the justification of Markov approxi-
mation given in Sec. III we see that only a small finite
subset of the field modes with k =k +hk, where

{
bk.

{ =2m/LM, is involved in determining the super-
radiant decay and noise terms. In fact, for the case in
which the quantization volume V& is equal to the medi-
um volume V~, there is only one mode contributing to
these terms. Thus, we cannot blindly separate the q field
modes without proper justi6cation.

Our treatment here is justifiable only if V~ g& V&, so
that a large number of modes are involved and only an
insignificant fraction is separated out. Even so, as dis-
cussed in Sec. III, the validity of the Markov approxima-
tion then requires that we only look at a coarse-grained
time with b t ~~LM /c

Our treatment of super-radiance can be compared with
that of a super-radiant laser given by Bonifacio et al. '

using the laser master-equation approach. In their treat-
ment, V~ ——V& and the super-radiance term is, in fact,
due only to one mode. Their equation can be obtained
from our Eqs. (4.3)—(4.7) by setting VM = Vtt and drop-
ping the super-radiance decay terms, since the single
mode which is responsible for them is explicitly solved
for. Ho~ever, the condition V~= V& is equivalent to as-
suming an infinite medium because of the periodic bound-
ary condition. Hence, in their analysis, they had to as-
sume that this single mode decayed in time of order
LM /c in order to correctly model the radiation out from
the medium of finite length. They did so by adding an ex-
tra decay term to the field equation, our Eq. (4.3). The
inclusion of a rapid field-decay time then allowed them to
assume that the field correlation had no memory over the
coarse-grained time ht ««L~/c, thus justifying the Mar-

kov approximation. In addition, it also allo~ed them to
solve adiabatically for the field in terms of the atomic
variables.

%"e are, however, more interested in the V& ««VM case
where the radiation from the finite length of the medium
is properly taken care of by spatial propagation through
the medium using a multimode treatment. There is thus
no need to assume rapidly decaying field modes. The
coarse-grained time (b, t y~LM /c) requirement now arises
from the finite number of modes contributing to super-
radiant decay.

VI. SOLUTION FOR THE ATOMIC POLARIZATION

In this section we solve for the atomic polarization
V; ( t ) after neglecting the super-radiance terms in Eqs.
(4.3)—(4.11). As pointed out in Sec. V, when the intensity
of at least one of the field modes (usually the pump mode)
with wave vector k is larger than the saturation intensi-

ty of the atomic medium, the super-radiance terms can be
shown to be negligible in either of the following two lim-
its: (a) when the number of atoms in a ditfraction volume
&D=&pLM&IVM (&I, wh««p=&~/ {lrp {

and LM is
the length of the medium; and (b) when the atoms are
pumped far from resonance, i.e., { ( {

It
{
—ai, /c) { LM

««ND. %'ith this approximation, the Langevin equations
(4.3)—(4.6) reduce to

BaJ.

ice a—+ g C*(r;)V;,
Bt

(6.1)

i a), V,——a ( r;, t )( ns, n, ) —y i V, +f i,—,
t

(6.2)

av+
=ice, V+ —a+(r;, t)(ns, n; ) —yiv—++f, (6.3)

8t

= —[a+(r;, t) V, +a (r;, t)V,+]—y~~n;+ f„ (6.4)

a(r, , t)= QC, (r, )a, (t), (6.5)

a+(r, , t)= g C~*(r, )a, (t) . (6.6)

The nonzero correlations of the Langevin forces become

& fy, (t)fi (t')) =2yphn;&(t —t'),

&f (t)f (t'))=a(r, , t)V, b(t —t'),

&f,.(t)f, (t')) =a'(r, , t)V+6(t —t'),
I t

&f„(t)f„(t')) = {—[a+(r, , t) V, +a (r„t)V;+]

(6.8)

(6.9)

+y, ~n, I6(t t'), —(6.10)

where n, +n, = I, we have omitted the subscript x from
all the variables, yj:—@+y„„is the transverse relaxation
rate, y~~=2y is the longitudinal relaxation rate, and the
multimode field variables a (r;, t) and a+(r;, t) are given
by
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t f„(t)f„(t')& = & f„(t)f„(t')&

=(f„(t)f„(t')& . (6.11)

defined a parameter Fby

(6.20)

From here on in this section, we drop the subscript E

from all the atomic variables to simplify the notation. To
solve the Langevin equations {6.1)—(6.4) we express the
temporal variations of a (r, t) and ct+(r, t) in terms of a
pair of Fourier series:

X+1,~t~ +„—=X(co+vk+v(+v +v„), (6.21)

so that y~z
——y~(1 F—) for 0(F(1. In the absence of

collisions when y„z ——0, I' =1. %e introduce the follow-

ing shorthand notation:

a (r, t) = gA—(r) exp( i v —t), (6.12)

Xo—=X(co), (6.22)

ct +(r, t) = gA—~+(r) exp(iv t), (6.13)

where XC j V, V+, n, f„,f +,f„,5], and k, l, n are dum-

my indices just like m. Using Einstein s summation con-
vention, Eqs. (6.17)—(6.19) can be rewritten as

where m E [1,2, . . . , co I denotes the sum over an infinite
number of Fourier coeScients A and A+, respectively,
and v =2@m/T with period T which can be chosen ar-
bitrarily long so that it does not cause any undesirable
periodicity within the observation time. These series ex-
pansions are made only for calculational convenience and
should be distinguished from the expansion of a (r, t) in
terms of the q modes [ai(t)l as in Eqs. (6.5) and (6.6).
The relation between these two expansions will become
clear in the following paper of this series.

The atomic polarization variable V;(t) can be solved in

terms of [ A I using Eqs. (6.2}—(6.4) by the Fourier trans-
form technique because we are only interested in the
steady-state response. %e define the Fourier transform
of any variable X(t) by

i co—Vo ———A (5 2n— ) —(ye+i co, ) VQ+f v

(6.23)

i co—VO+ ———A+(5 2n )——(yq i co—, ) Vo+ +fy+,

(6.24)

icon&————A+ V~ —A~ V+ 2y1nQ—+f„ (6.25)

i cono ———[At+ A~ (5t —2nt )]/Dt

+[At A+(5 &+ 2n t+—)]/D+t 2Fy jno—

A straightforward algebraic manipulation which elimi-
nates the V and V+ variables from the above equations
leads to the following recursion formula for n (co):

X(co)—:I (dt/2m)X(t) exp(icot), (6.14) +f„—At+fv, /DI —At f„ /D (6.26)

ct(co)= g A 5(co —v ), (6.15)

a+(co)= g A+5(co+v ) . (6.16)

where the transformed variable is denoted by the same
symbol with u as the argument. Then we have, e.g. ,

where

D gi =D*(co+v(),—

D+(co)=— i (co+—co, )+y, ,

D (co):— i (co ——co, )+y~,

(6.27)

(6.28)

(6.29)

The Langevin equations (6.2}—(6.4) are then
transformed to

ico V(co) = ——g A [5(co—v )—2n (co —v )]

and the repeated triple indices in Eq. (6.26} are to be
summed over also.

In order to bring all the no terms in Eq. (6.26) to the
left-hand side, we rewrite the double sum over l and m in
the first two terms, for example, as

—(yg+ico, )V(co)+fv(co), (6.17)
g At+ A nt /Dt ——g Ak+ Akno/Dk
l, m k

icoV~(co)= ——g A+[5(co+v ) —2n {co+v )]
At+ A nt /DI

I m (~l)

(6.30)
(y„—i co.—) V+(co)+f„(co), (6.18)

icon (co)= ——g [A+ V(co+v )+ A V+(co —v )]

where we have separated the I =m terms. Using the
short form

2Fy~n (co)+f„(co}—, (6.19)
A(+ A nt /Dt = At+ AI-nl t-/Dt

I m (~1)
(6.31)

where we have used n =1 n to ehmi—nate nr(co), and
for the double sum, where the double prime denotes sum
over l" with l "&l, Eq. (6.26) can be written as
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~k+ ~k&O

m(co )

A 1 A 1«61+-
m.(co)

231 Al-nl+

n(co)
1

Dl D
+

n~„:n—(co+vt, } . (6.35}

Equation (6.32) can then be iterated to yield a power-
series solution for no provided its convergence can be es-
tabhshed. For example, the 6rst iteration which neglects
the third term in Eq. (6.32) gives the following solution
for no up to second order in the Fourier amplitudes

I AkI:

Ai+fv,

n (co )Di

Aif ~ f
+

n(~)D+, ~(~)
(6.32)

VTQ

A+A 6
+

1TQ

1 1-+ +D D+

m(ri))= ice~—2Fyi ~2Ai, Aq
1 1

Dk D —k

Ai'f v„

~DDi
(6.36)

(6.33)

mo =—m(ro), (6.34)

As in Eqs. (6.21) and (6.22), in the following we abbrevi-
ate:

From the above equation we obtain nl 1, which can be
inserted back into Eq. (6.32) to give the fourth-order solu-
tion. Similarly, after one more iteration and some alge-
braic simpli6cation we obtain the following solution for
no up to sixth order in the Fourier amplitudes t A& I:

no=
3k+ Ak

7TQ

Ai+ Ai„
+ &0+

1 1-+ +Dl D 1« ~l —1«

2A,+ A, -

KQ

2~,+ ~,-
+

ITQ

1 1

Dl D —1«

1 1

D — D+

A+A

~1 —1"

2Am+ 3
Dl —1«+m

1«~m

+
1 —1«+m —m«

A+3„-
+ +

I —1 +m —m

1 —I«~m —m"

Dl —1"~m —m" ~n

+ +
Tl+

1 —1«~m —m«~n —n«

i —I" m —m" n —n"
I —i"~m —m" +n —n" + no

(6.37)

where

kill"kmkm "Xnan" =X(ukvi Vi * (6.38)

X (co):2Fy z i ro,— —

and the noise term is given by

(6.39)

Ai+f v„

~ODk

A„f , f
+

~OD k

231+ Al ~

KQ

1 1

Dl D+ 1«
+

k V/ if/ /

~l —1«D1 —1« ~ k

Akf; f„
+ '.

1 1"Dl 1«k 1 —1"

2 Al Al«

1TQ

22+ A
+ +„Dl —I«~m Dl —1« —m«

k e/ Vl lie

1 —1"~ m —m «1—1«+- m —m
« ~ k

Akf;
l —1"+-m —m" —0

+
1 —1«~m —m" 1 —1'*~m —m" —k

ffl l —l"~m —m"

~1 —1"+m —m"
(6.40)

From no we can obtain n, which when substituted into Eq. (6.23) yields the following solution for Vo:
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2A AI AI-
+

Do m'
m

1 1-+
Dl — D —I"—m

I —I"—m

I —I"—rn
~I —I"—m

2A AI+ AI-

Do

1 1+
DI —m D —I"—m

3+A„-
D I —I"+ n —m

+
I —I"—n" —m

~I —I"+ n —n" —I 5t, +„„- + I v(~), (6.41)

where

2A
I'v(co) = — ~

—
™

0

2A tf v+, 2A
+

Do ~—ma —I —m Do

f. . fv,
+

&-m Do
(6.42)

and we have truncated the deterministic part after the fifth-order terms and the noise part after the second-order terms
in the Fourier amplitudes [ A& j.

Finally, the following solution for V (t) is obtained by inverse Fourier transforming Vo ——V(co):

(2Fy, ) A exp( iv—t) (2Fy, )2A exp[i (v, —v, —v~ )t]A,+ A, ~

V(t)=- +
D (v )m(0) D-( v, +v, —, +v )~(0)~( v, +v, —)

1 1+
D (vI. ) D+( —vi)

(2Fy, )2A~ exp[i(v, —v, . +v„—v„.—v )t]A+ A, ~

D ( —v, +vt —v„+v„+v Hr(0)m. ( —vt+vt )

2A+A„-1

D —
(vt„) D+( vt) m( —v„+v„vI+vt")—

+ +(vn" vI+vt") D { vn v)+vi")
+I v(t) (6.43)

V (t) = VD„(t)+ I"v{t), (6.44)

where

I v(t)= I™1~ I"v(co) exp( idiot) —. (6.45)

A complete series solution for V(t), expanded to all or-
ders, can easily be derived using the above procedure and
is given in Appendix E.

Now a few words about the convergence of the above
series solutions are in order. The expansion for no in Eq.
(6.37) does not appear to converge when the magnitudes
of all [ Ak j are large. For example, the numerator of the
third term in Eq. (6.37) has a double sum

(2y,F)A exp( i v t)—
VD„(t)=-

D (v )II (v, t)
(6.48)

where Il {co„t)is defined recursively as

11 (co,t):2y ~F i (co —v—)—

deterministic part of V(t), in a closed form. For exam-
ple, the following expression for VD„(t) gives a correct
expansion up to fifth order [Eq. {6.43)] in the Fourier am-
plitudes [ A„j:

g A+A
m" [~m) m Dl —I"+m

+ +
Dl

(6.46)
2At A„exp[i(vt —v„)t]II (co, t)D (co)

+
D ( —vi +v + co )II ( —v I +v„+co, t )

while the denominator has a single sum

1I-- +2AI, Ak
k DI —I"+ k

+ D+
I —I"—k

making the former greater. Therefore, the higher-order
terms could be progressively larger. If the magnitudes of
m Fourier amplitudes are large, then the nth-order term
in the series is (m —1) times greater than the (n —1)th-
order term for n ~ 2. The divergence in the higher-order
terms seems to remain even after mutual cancellation of
some of the terms in Eq. (6.37). However, it is clear that
the series converges for the case when m = 1 or when
only one of the Fourier amplitudes is arbitrarily large.

We note that it may be possible to put VD„(t), the

D (v„+co—v )

1+
D ( —v +co —v )

(6.49)

This closed-form solution involving unrestricted sums
over [ A„j will be useful for justifying the slowly varying
amplitude approximation in the following paper of this
series. It will be interesting if a closed-form solution can
be obtained which gives a correct expansion for VD„(t)
up to all orders. Then analytic continuation implies that
this solution will be valid for arbitrarily large values of
the Fourier amplitudes I Ak j and the convergence of the
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solutions will always be guaranteed.
In conclusion, we have presented a quantum theory of

nondegenerate multiwave mixing applicable to traveling-
wave interaction geometries. %'e have also carried out a
preliminary analysis of the effect of super-radiance and
identified regions where such e8'ects are negligible.
Neglecting the super-radiance terms, we have presented a
general Fourier expansion method to solve for the atomic
polarization and fluctuation in the presence of any num-
ber of field modes. In subsequent papers of this series, we
will develop a frequency domain technique for adiabatic
elimination of the atomic variables and then present
methods to treat, with some rigor, the spatial propaga-
tion of an interacting multimode field for application to
traveling-eave squeezed-state generation experiments.
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APPENDIX A

where

}Mi.(e~) =;(l
I
er;

I g )

(Al 1)

(A12)

pa =exp( —R /kii T)/Tr„[exp( —k/ka T)], (A 1)

where Trz denotes trace over the reservoir operators and
kz is the Boltzmann constant. , The reservoir averages in
Eqs. (3.8) and (3.9) involve terms like

(a, (r)ct, (0))„= pe(xi rco) 'n5„,

(ct, (r)a, (0) ) a ——[exp( i co, r)](n—,'"+ l )5„

where

(A3)

n,'"=TrR [jii [a,(0)&,(0)]I

In this appendix we find an expression for W&&";;" in
terms of a Fourier coeScient. Let the density operator of
the thermal-field reservoir be pz, which at temperature T
is given by

g =co, /2fieoV& .

By symmetry of the x, y, and z directions, we have

, (l ~
er, ~g), =, (x

~

ex
~ g), e, ,

(A13)

(A14)

X [e,"e (k))

=-,')(,', y5(co, /c —
~
k

~
) g [e&.e (k)][e&"e (k)],

where e„l& [x,y, z ] are the coordinate umt vectors.
This allows us to write y«(R, , ) in terms of an inverse
Fourier transform

(k)= f" dRexp( —ik.R)y„,(R)

=~kg ~lc, ~'y5(~. —
~

k
~
c)[e, e.(k)]

= [exp(fico, /kii T) 1]—
Thus, for example,

Wii;; ——g ( 'n+ 1 lC (ri; )Ci, (r;)

(A4)
(A15)

where we have assumed all atoms to be identical so that
lc„=;(x ~ex ~g);, A,, =2mc/co„and y=co,' ~)Lcd ~'/
6neofic There. fore.

X f exp[i (co~ —co~ )7 ]d1

where the Markov approximation has been made by let-
ting r„= 00 in Eq. (3.8). Using the identity

f oo

exp(+i Qr)dr=n5(Q)+i P
0,

and discarding the imaginary part, which amounts to
neglecting a small Lamb shift in frequency, we get after
integration over ~,

+10
W« - =(na +1)y««; } ~

y„(R,,')= f exp(ik. R,, )y«(k)dk/(2m)' .

Similarly, W(); ——n, h y «.( R,,'),~—01 ~+01e
l'li 'i ll'ii '

(A16)

+10+8'i l
——8'll ", and

APPENMX 8

In this appendix we calculate special cases of y«(R).
When i&1', y«(R) is in general not zero. However, we
show that or l &i', y„(R)=0 if R~~e„, e„,or e, . Consid-
er, for example, R=

~

R
~
e, so that exp(ik. R)

=exp(ik,
~

R
~
}. If ei ——e, and e&, —e„, then in Eq. (Al 1},
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p/' (e), )p/ (ek)~(e, .e )(e„.e ) .

Converting I" dk in Eq. (Al 1) to polar coordinates

k d k sinOd61 d

we see that a change of variable P~P+m leaves
exp(ik,

~

R
~

) unchanged while (e, .e )(e„e ) changes
sign, implying that y,„(R)=0. Similarly, for e, =e„and
eI.——e, a change of variable P ~P+ rr /2 implies

y,~(R)=0. Using the same argument we can also show
that y„.(0)=0 for i~i'.

To calculate yII (0), we note that
(e, e ) =(e& e, ) +(e, ez}' is just the square of the

projection of ei onto the plane de6ned by e~ and e2 so
that

g (e, .e ) =sin [81(ez)],

where 81(ez) is the angle between the unit vector along k
denoted by ek and e&. Using Eq. (A16), we then get

yII (0)= f —,
'

A,,y sin [8I(ek) ]5(co, jc —
~

k
~

}dk/(2~)

where the integration can be carried out trivially in polar
coordinates with 8I as the polar angle.

A.PPENDIX C

In this appendix we evaluate T,
' as de6ned in Eq.

(5.3). Adding and subtracting the i =i term in the right

side of Eq. (5.3), we get

T; '= g g y„I (R;; )[C„&.exp( —ikD. R;; )

+ C ( ~ exp(l kD 'R;; )]—y C ~~

where the last term is obtained by using y„& (0)=y5„&, as
derived in Appendix B. The sum over i' can now be con-
verted into an integral over the volume V~ to give

T, "= y f dR. y„, (r, —R)
M

y [C„( exp[ ik—D (r; —R)]

+C, „exp[ikD (r, —R)]) —yC„, .

(C2)

The validity of this conversion requires that the number
of atoms in volume A,, be large. Otherwise, a discrete
Fourier transform can be used with the assumption that
the atoms are randomly located in space, which is usually
the case in a gaseous medium, to neglect the aliasing
effect.

Using Eq. (A16) for y„i (r; —R) and assuming that the
medium is infinite in the x and y directions, we can carry
out the integrals over X, F, k, and k in the above equa-
tion to obtain

dk,
T = g f „dz f '

y„, (k, e, ){C„Iexp[i(k, kD)(z—, Z)]+—C, „exp[i(k, +kD)(z, —Z)]I —2yC„.

Using arguments similar to those used in Appendix 8 we can show that the i &x terms in Eq. (C3) vanish when the in-
tegral over k, is performed. The i =x term can be evaluated using a method similar to that used in deriving Eq. (82) to
give

T,
' = (X/ VM )( C,„/2m )(3A,,yLM /2)

exp[i (co, Ic —kD )L~ /2] —exp[ i (co, Ic——kD )LM l2]
X

i (co, /c —kn )LM

exp[i (co, Ic + kD )L~ l2] —exp[ i (co, Ic—+ kD )LM l2]
i (co, /c +kD )LM

exp[i (co, /c —kD )z; ]

exp[i(co, Ic+kD)z, ] —2yC„„.

The second term within the large square brackets in the
above equation can, in general, be neglected compared
with the first if

~
co, /c —k~

~
&&co, /c, which is usually

the ease.

APPENDIX D

In this appendix we review the collective decay of
coherently phased classical dipoles. Consider an x-
polarized array of X dipoles enclosed in a volume

I

VM ——AL,M of length L~, whose macroscopic polariza-
tion density P"(z, t) is in the form of a plane wave travel-
ing in the z direction. Such a traveling wave, which can
be created with approximate initial conditions on I"and
0/BtJ'„", can be written as

P„"(z,r )= Re [P„"(z,r ) exp [ i (~, r —k, z ) ]I—,
where P„"=(XIV~)2pd

~

V'
~

and cu, =ck is the reso-
nance frequency of the dipoles. If VM is infinite in the x
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and y directions, then the total radiated electric field will

also be a plane wave propagating in the z direction.
In terms of the slowly varying amplitudes A'„'(z, t) and

P„"(z,t) for the electric field and polarization, respective-

ly, the wave equation in steady state reduces to

BA„'(z) ik, ~ (z)
Bz 26O

I

D (v )exp i g(v —v „)r
p Ill

p=0
I

g ( —v +v „)+v
p PT

This equation can be integrated trivially from z =0 to I.M
to give

23+ A
Pl I

7T( —v +v )
I

D (v „) D+( —v )

ik,
26o

(D3)

ani~ I'„ for 0 & n g / is given by

(E3)

The power radiated in an area 3 at z =I.M is

~R =(cA &0~2)
I
@„"(II ) I, which can be written as

Ps fun, N /T—R—,

23+ A

I

g ( —v +v, )

p=n p PI

L

TR

I

D g ( —v +v „)+v
P =Pl

m

Then by energy conservation, we expect (n„) to decay
like

(D6)

I

( —v~ +v ii) —v
p Pl Pl

P =P

(E4)

Similar to the comment made after Eq. (5.3), the above
equation describes free decay of the coherently phased
classical dipoles in the absence of the pump field which
created the traveling-wave polarization density of Eq.
(Dl). Therefore, the steady state is reached when V„"=0,
causing Tz ' and (n„) to be zero as well.

In the above equations Im, m": p =O, l, . . . , l I are
dummy indices like k, I, m, and n in Sec. IV. Repeated
indices are to be summed over from 1 to oo and a double
prime implies that the term m "=m should be ignored.

The noise part I i (t) is obtained from its Fourier trans-
form I i (co) using Eq. (6.45), which when expanded to all
orders can be written as follows:

2A fv,I„—m

The expression for V(t), expanded to all orders, is
given as follows:

2FyiA exp( iv r)—
V(t)=

Akf + f
+

D+k m' —Pl

+I v(t), (El)
(E6)
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Here A+A „
mO mO'

~k fv,
0(m —m )+k —m

p p

0(m —m }—m g 0(m —m }+k—m

~kf V+
I II

im —m ) —g —mP=0 P p

+
gt —&}mt —m }—m g 0(m m—} k ——m

and T„ for 0 & n & I is given by

23+ A
J'—m n

n —1 II
O(m —m }—mP= P P

x
D tt

0{m —m )+m
P P

I tl
0(m —m ) —mP= P P

1T j
&}m —m }—m

tt
p

+ +
1

D+
n —1

0
tt

0(m —m ) —m —mp=0 p p n
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