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Pump-probe interactions underlie the physics of four-wave and other wave-mixing e8'ects. We

present analytic formulas for probe response in a special category of pump-probe experiments. We

consider a two-level system excited by two distinct fields, the stronger field with fixed frequency and

the weaker with a tunable frequency. %'e focus attention on the spectral regions near the Rabi side-

bands of the strong field and its various subharmonics. We consider times sueiciently short that re-

laxation elects can be ignored, but sufBcient}y long to encompass many cycles of population oscilla-

tion between the ground and excited states. Because there is no damping, both fields are in this

sense strong, and we report here the time average of the response. Our results are obtained by mak-

ing a suitable second-order rotating wave approximation and are shown to involve the initial phase

relation between the two fields as well as the initial angles of orientation of the two-level system s

Bloch vector. Depending on these initial phase and orientation angles, the absorption line shape

may be either positive or negative and either symmetric or antisymmetric.

I. INTRODUCTION

The many applications of wave mixing in nonlinear
and quantum optics make the underlying two-field in-
teraction of widespread interest. In a more general sense
all nonlinear wave-mixing interactions illustrate the rich-
ness and complexity of pump-probe physics. We study a
particular set of pump-probe phenomena in this paper.
%'e consider the situation shown in Fig. 1, in which a
two-level quantum system is irradiated by two radiation
fields simultaneously, but generally not at the same fre-
quency. To facilitate the writing we will refer to the sys-
tern as an atom and the two 6elds as if they came from
two separate lasers. Other similar situations to which the
model is applicable are obvious and need not be detailed.

Much work has been devoted in the recent quantum
optical literature to two- and three-level atoms excited in
a pump-probe con6guration, and we cannot hope to cite
all significant papers. A few that we have encountered or
that have been recommended to us are listed in Ref. 1.
Our attention-here will be directed to a situation not
covered in these citations, but a situation that is probably
accessible to experimental study. %"e refer to the case in
which observations are made in a time rather short com-
pared with relevant relaxation times but still long com-
pared with the periods of various population oscillations.

Our specific domain of interest is easily described by
analogy with a one-laser line-shape formula. Consider
Fig. 1 again but remove the probe laser. The probability
of occupying the excited state of the atom, in the absence
of relaxation, is well known to be given by

Pz(t) =
2 2

sin (0/2)t . (1.1)+2+r2

Here 6 is the detuning of the strong laser, r is our symbol
for the Rabi frequency on resonance, and 0 is the de-
tuned Rabi frequency

b, =toi, —coL, r =(2dEL/A), Q=[(r +b, )]', (l.2)

~here we have taken the laser 6eld to be

(1.4)

and one can say that (1.4) exhibits the resonant response
of the atom to the field and that the linewidth is due sole-
ly to power broadening. This is, of course, not the same
as the steady-state response formula, which involves the
atoms' relevant relaxation parameters in the mell-known
way:

r Ti/2T2
P2( ao )=

+(1/T2) +.r Ti/T2
(1.5)

In this paper we will obtain the formulas correspond-
ing to (1.4) when the probe laser shown in Fig. 1 is in-
cluded. The relevant line-shape variable will be the de-
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FIG. 1. Two-level quantum system irradiated by two near-
resonant fields simultaneously.

E =EI e +C.C.

and d is the transition's dipole matrix element.
Over many cycles of Rabi oscillation the steady-state

average excitation probability is clearly given by
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tuning of the probe laser, not the strong pump laser. Al-

though these formulas are not di%cult to obtain, they do
not seem to appear in the literature.

0=Ho —dE, b, ,

H =Hq —dEL —dE

(2. la)

(2.1b)

II. MAYHEM''ICAL FORMULATION

The absence of relaxation means that density matrix
methods are unnecessary, and we will concentrate on the
time dependence of the state vector amplitudes associated
with the upper and lower levels of the atom. The Hamil-
tonian can be rewritten several ways:

where H„is the usual bare atomic Hamiltonian and Ho
is the "large" part of the total Hamiltonian, containing
both the bare atom and the interaction dEL with the
pump laser.

%e adopt the usual rotating wave approximation
(RWA) and drop the "counter-rotating" parts of the
Hamiltonian at the outset, in which case the Hamiltonian
can be written

(Ho+Hp)RwA=
E2) /2

p
—El ) /2

(2.2)

Here Ez, is the bare atomic transition energy, and we have located the zero of energy half way between the two bare en-

ergy levels. We have indicated explicitly the phases of the two laser fields at t=0, and we have dropped from rL the
subscript I. for convenience. In the usual rotating frame, determined by the pump-laser frequency, the two-level atom's
Schrodinger equation can now be written

C2
E

CI r
2 2 .

C2

+c, rp —i t 5 f + tt I——e
2

~p i(h t+tlj)
P

2 C2

(2.3)

where we have defined Ap to be the frequency ofFset of
the probe from the pump, and g to be the relative phase

ia+ (t) =(0/2)a+ (t)+ V++ (t)a+ (t)+ V+ (t)a (t),
(2.8)

b~ =~oL —co~, P=QL gp . — (2.4) ia (t) = —(0/2)a (t)+ V + (t)a+ (t)+ V (t)a (t)

5/2 —(r /2)
r /2 —b,/2— (2.5)

The large part of the Hamiltonian is now time indepen-
dent,

where the Vs are given by (with p= b,~t +1()

V++ (r /2)sin——28 cosP,

V+ —— (r /2)(c—os28cosp+i sinp),

V =(V )*,

(2.9a)

(2.9b)

(2.9c)
and its eigenstates provide a convenient basis, as could be
expected. These are designated by

~
+ ) and

~

—), and
their corresponding amplitudes by a+(t) and a (t),
which are related to c2(t) and c, (t) by a rotation matrix
R (8):
T

cp

V = —V++ . (2.9d)

The explicit equations for the a's are therefore given by

0 "p
ia = —+—sin28cosp a+ 2 2 +

=R (8)c) a

cosO sinO a+
—sinO cosO a

(2.6)

Tp——(cos28cosp+i sinp)a
2

la = — — sill28 cosP a
0 rp

2 2

(2.10a)

where the angle O is defined in a standard way:

1"/Q = sln2O, 6/0 =cos2O, I'2.7)

fp

2
——(cos28 cosP i sinP)a-+ (2.10b)

and the detuned Rabi frequency 0, has already been
defined in (1.2).

In the dressed basis the probe part of the total Hamil-
tonian has four nonzero matrix elements, and the equa-
tions obeyed by the a's are

%'ell-known methods are available for dealing with such
equations. In Sec. III we will restrict our attention to
the most important case, in which the pump field fre-
quency is fixed at the bare atomic transition frequency.
In this case 6=0 and so cos2O=O„ thus simplifying Eqs.
(2.10) slightly.
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III. SOI.UTION OF AMPI. ITUDE EQUATIONS
FGR RESONANT PUMP

When the pump is resonant, Eqs. {2.10) take the form

r fp
ia = —+ c—os(bt +((tt) a —i—sin(ht+f)a+ 2 2 + 2

(3.la)

r rp
ia = — — cos(kt +f) a +t sin(kt +Q)a+

2 2 2
(3.1b)

The diagonal time dependences in Eqs. (3.1) can be in-

tegrated. This is the same as shifting the phases of the
amplitudes so we introduce new variables b+ and 6 as
follows:

ki (r i25)sin(ht +((t)
b+(t =a+ t e

%e have further simplified the notation now that there is
no pump detuning by using 5 without a suSx to mean
the probe detuning. It will be the interesting spectro-
scopic parameter in this paper. The equations for the b's

are

ib+ (t) =(r/2)b+(t) i si —n(b, t + if')(r~/2)b (t)e
—i (r /h)sin(ht +p)

ib (t)= (r/2—)b (t)+i sin(bt+f)(rp/2)b+e

(3.3a)

(3.3b)

i(r ltt)sin(ttt +(() +;„(&t+ e)e (3.4)

and write the sine functions as exponentials as well. Then
the equations become

ib+(t) = b+(t)—
2 +

rt
( ie( thatt+/) Ie —i (i) t +tlt)

}

It is now useful to introduce the Bessel function expan-
sion

b g e+i (At + ttj)/2+= +e (3.7)

In this form the b equations are exactly like the starting
equations for the c's of Sec. II. In efFect we have made a
second rotating wave approximation, and the remaining
physics is not just slowly varying but Uery slowly varying
whenever 5 is approximately equal to r, i.e., whenever
the probe frequency is in the neighborhood of the princi-
pal Rabi sideband.

%e now write the equations appropriate to the second
rotating frame, which is evidently moving at the frequen-
cy h. %e introduce the very slowly varying amplitudes
8+ and 8 by the definitions

X g e'"' '+@'J„(r~/&)b (t),

ib (t)= ——b (t)
2

r
+ i (et'(i) t +g) —i (i), +e)t)

X g ( —1)"e'"' '+e'J (r /&)b (t)

We also introduce the abbreviations

fpp= )(r —6),

and find the equations (see Fig. 2)

iB+ (t) =pB+ +~B

iB (t)= i28 +aB+ .—

(3.8)

(3.9a)

(3.9b)

(3.5b)

Equations (3.5) imply the existence of an infinite se-
quence of resonances at well-de6ned probe frequencies as-
sociated with the pump's Rabi sidebands and their
subharmonics. %e will concentrate here on the nature of
the phase dependence of the pump-probe process and
deal explicitly only with the principal sideband reso-
nance. In this case, as we show below, it is appropriate to
assume that only Jo roakes an appreciable contribution to
the sums because rz/5 ~&1. Of course Jo ——1 in the limit
of small argument, so no evidence of the Bessel functions
remains under our (much more severe than necessary) as-
sumption. The b equations reduce to

What we have really done in proceeding from Eqs. (3.5)
to Eqs. (3.9) has been to isolate the harmonic components
of b+ and b that have very slow amplitudes in the
neighborhood of 6= r and ignore the other components
because they are relatively much faster and so average
quickly to zero. For other detuning values, notably at the
Rabi subharmonics 6= r /n, other harmonic com-
ponents of the 6's are more important. In any event, we
can now see that in the neighborhood of h=r our as-
sumptions are justified.

Equations {3.9) are easily solved. As in Sec. II the
equations can be diagonalized by a simple rotation:

8, (t) 8+(0)
8 ( )

——R(a),P, R (a) 8 (0). , (3.10)

tb (t)= b(t)+ 'e "-"+e)b (—t), -+ 2 + (3.6a)
where p and —p, are the eigenvalues of the second R%'A
Hamiltonian

ib (t)= — b(t)+ —e' '—+e'b (t) . (3.6b)
p (p2+ ~2)) i2 (3.11)
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If desired, both the lower state population
I ci I

and
the inversion

I
c2

I

—
I ci I

are easily computed from
(4.4) by using probability conservation

I c,
I

+
I cz

I

=1. The inversion m is perhaps more. interesting since it
is also one of the components of the two-level atom's
Bloch vector. %e record the result

w =
I
c2 I

—
I
c,

I

=2(r /b)Re(8+8 ) . (4.5)

Now we compute the time average of this expression.
We easily find from (3.10) the result

w =(r Ib )sin2a[cos2a(
I
8 o I

—
I
8 o I

~)

+sin2a(2 ReB +oB o ) ] . (4.6)

FIG. 2. Trajectory of the Bloch vector in the usual rotating
frame (rotating about the vertical axis of the figure at the fre-

quency of the pump laser). In this frame the motion is still al-

most entirely a rotation, although about a perpendicular axis, so
it is clear that a second rotating transformation is appropriate.

The appropriate rotation angle a and rotation matrix
R (a) are now given by

8 +o ——( r)*cose—g'sin8) e

8 o=(gsin8+gcos8)e

where we have defined

(4.7a)

(4.7b)

(4.&)

Again we consider only pump resonance (8=a/4) and so
find

The initial values of the 8 s have to be related to the ini-
tial values of the c's. This is easily done through (2.6),
(3.2), and (3.7). One finds

R (a)=
cosa s1na
—sina cosa

p /p =cos2a, K/p =S1n2Q (3.12)

(3.13)

2 Re(8+oB o ) =uosin2@o+ wocos24o,

I 8+o I

' —
I
8 o I

'= —uo

(4.9a)

(4.9b)

where we have introduced the usual notation for the
components of the initial Bloch vector

IV. AVERAGE INVERSION

The solutions found for the B*s allow the solutions for
the original c's to be found via (2.6), (3.2), and (3.7). We
will regard either the inversion or the upper-state popula-
tion as observable, and so compute

I
c2(r)

I
. We easily

find first

cz(t)=cosHB+(t)e ' '"+sin88 (t)e' (4.1)

where the 8's are obtained from (3.10) and 4(t) is the
phase factor obtained from (3.2}and (3.7) together,

4( t) =p+ ( r Ib, )sinp,

where p= b, t + 1(t, as before. Obviously we can obtain

I
cz(t)

I
=cos 8

I

8
I

+sin 0
I
8

+2sin8cosORe(8+8 e '
) .

(4.2)

(4.3)

I c2 I
= ,'+(r~/b, )Re(8+8 ), —

where the factor r /5 comes from the leading contribu-
tion of the harmonic amplitude J, (r~/6).

(4.4)

Some simplifications can be efFected immediately. %e
will continue to assume that the probe is tuned near the
pump's Rabi sideband, so that the 8's are very slow vari-
ables. Thus we can discard all of the harmonic frequen-
cies nh for n&0 in the factor e ' since they are much
more rapidly varying. Under the same pump resonance
condition adopted earlier we have 8=m/4. Thus (4.3)
reduces to

uo ——2 Re(g'i) ),
uo =2 Im(g" r)),

wo= I el' —lb I'.

(4.10a)

(4.10b)

(4.10c)

3 i =cos2a

A 2 ———sin2$ sin2a,

A 3
——cos2$ sln2cx .

Then (4.11) can be written

(4.12a)

(4.12b)

(4.12c)

u =(r /A)sin2aSO. A,
where So is the initial Bloch vector So=(uo, uo, wo}.

(4.13)

Thus we finally have a compact expression for the time-
averaged inversion,

w =(r /b )sin2a[uocos2a+( —uosin2$

+wocos2$)sin2a] . (4.11)

We have used (4.2) at t=0 for 4o and have retained only
the lowest-order contribution 4o =f, consistent with our
earlier expansion of J, (r~ /6).

The final result shows that the time-average inversion
is very small, which was to be expected since the strong
resonant pump tends to distribute population equally be-
tween the two levels. In addition, we see that the inver-
sion can be written as a vector projection. %e define a
unit vector A as follows:
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IU(x)=(r /b, ) 2+1
(5.1)

where x, the new detuning variable, is centered on the
first sideband resonance:

V. LINK SHAPE

Expressions (4.11) and (4.13) depend on probe detun-

ing, and either one can serve as our primary line-shape
formula. To see the dependence of (4.11) on probe detun-
ing we must recall (3.8) and (3.12). Then it is obvious
that (4.11) can be rewritten in the form

the probe is absorbed, as expected. However, if coherent
excitation from the ground state with a resonant pump
laser prepares ~o ——+1, then we predict m & 1, indicating
that the prepumped atom is able to amplify the probe.

The role of a nonzero value of the relative pump-probe
phase is less obvious. Consider the case where the atom
begins in its ground state, but g=tr!4. In this case we
predict m=O, completely independent of the probe tun-
ing. In other words there are cases with no hne shape aI,

a/I. Recall that this does not mean that there is no in-
teraction; there is simply no time-independent interac-
tion.

x =@la=(b,. r)l(—rp I2) (5.2) VI. SUMMARY

and the coeScients are

K = —Upsln2$+ Iopcos2trj,

- =&o

(5.3a)

(5.3b)

To remain consistent with earlier assumptions we have
to restrict application of (5.1) to values of b, in the neigh-
borhood of r. This is just what is wanted, however, since
now it is shown explicitly that 5= r is the center of a nar-
row resonance line.

The shape of the line is exactly Lorentzian, with half-
width equal to re/2, unless L is nonzero. In this case
there is a component of dispersion shape mixed into the
"normal" absorption profile. It is even possible for the
line shape to be completely "dispersive" if E=O. This
occurs when Up = IUp =0, in other words when

~ up ~

= l.
We can identify the two different pure dispersive or ab-

sorptive line shapes easily in terms of the initial states.
For example, E=O corresponds to an initial condition in
which the atom is prepared in one of its dressed states at
the outset, precisely the dressed state that cannot be
reached by resonant pump excitation. It leads to a pure
dispersive line shape. Conversely, if the initial state is
prepared by resonant pumping from the ground state,
then only the U and m components of the Bloch vector
can be involved and necessarily I. =uo=O. Then the
shape is purely absorptive.

The sign of the inversion is also predicted reasonably.
Suppose that the initial state is prepared in the "most
natural" way, i.e., by allowing the atom to relax over
many lifetimes to its ground state. In this case mo ———1

and ttp= Up =0. If Itt=0, we predict N (0, lndlcatlng that

%e have solved the Schrodinger equation for a two-
level atom driven by pump and probe fields simultaneous-
ly. Our solution (3.10) is nonperturbative, and thus al-
lows the derivation of the time-average loss-free line-
shape formula (5.1). Our result is not exact, of course,
but depends on the validity of a second rotating frame
transformation. There are infinitely many ways to choose
the second frame, and we have dealt explicitly only with
the frame identified with the "primary" pump-probe res-
onance which occurs when the probe is tuned away from
the atomic resonance by one unit of pump Rabi frequen-
cy.

We have shown that the probe line shape (5.1) depends
on the initial phase di6'erence between the pump and

probe lasers and on the orientation of the initial Bloch
vector. Depending on these parameters, the line shape
can be absorptive or dispersive or can be absent altogeth-
er. %e have interpreted some of these results in a physi-
cal way.
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The 8 amplitude equations are equivalent to Bloch equations
in a doubly rotating frame. The behavior of the Bloch vector
under the inhuence of both pump and probe beams, comput-
ed numerical1y in the usual rotating frame, is shown in Fig. 2.
%e will discuss pump-probe dynamics of two-level systems in
more detail elsewhere, using the Bloch vector approach.


