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%'e obtain the time-ordered form of the evolution operator for Hamiltonian linear combinations
of the generators of the SU(I, I), SU(2), and h(4) groups. The relevance of the obtained results to
physics problems such as the generation of non-Poissonian statistics in laser-plasma scattering and
the pulse- propagation in free-electron lasers is also briefly discussed.

I. INTRODUCTIGN

Optics and quantum optics are research fields in rapid
evolution, and with mathematical tools are getting benefit
from algebraic methods, which also played an important
role in quantum field theory as well as in nuclear and
elementary-particle physics. Although these methods
have been successfully and widely exploited and are well
established, it may happen that the specific problem un-
der study creates new mathematical diSculties not previ-
ously considered. In particular, operator-ordering
theorems are getting more and more attention in connec-
tion with the growing interest for Lie-algebraic methods
in optics. ' Within this framework the necessity of
evaluating the evolution of quantum states ruled by
SU(2), SU(3), and SU(1,1) coherence-preserving Hamil-
tonians imposed the rediscovery, the suitable rehan-
dling, and the extension of operator-ordering techniques
of the Magnus-type and Wei-Norman-type (for an ex-
tended review see Refs. 7 and 8). Together with these
analytical techniques, symbolic computer codes have
been developed to deal with the sometimes awful algebra
implicit in, e.g., the Magnus or Zassenhaus expansions. '

Coherent states have been reintroduced' in optics by
Glauber more than 20 years ago" and the Heisenberg-
Weyl or h(4) group with generators (&,&,1) is instru-
mental to their analysis. More recently, mostly in con-
nection with the theory of reduced quantum Auctuations,
coherent states of SU(2)- and SU(1,1)-type have also been
extensively investigated.

In principle, a necessary but not suScient condition to
preserve h(4), SU(2), or SU(1,1) coherence under time
evo1ution is that the Hamiltonian operator, driving the
state, be a linear combination of the generators of the
relevant group. The problems associated to the evolution
of the h(4), SU(2), and SU(1, 1) states have been solved sat-
isfactorily; the probability amplitudes characterizing the
evolution have been studied in detail and have provided
important information.

Hamiltonian operators which underly a SU(1,1) eh(4)
or SU(2)@h(4) group structure have been recently con-
sidered in the analysis both of the generation of non-
Poissonian eFects in a laser-plasma scattering' ' and of

II. THE ORDERING METHO)D:
TIME-INDEPENDENT HAMILTONIANS

Let us consider the Hamiltonian operator

H =cvoko+Q, (k++k )+Q2(a+a ) „ (2. 1)

~here ~o and 0, 2 are time-independent c numbers,
ko, k+ are the generators of the SU(l, l) group realized
as"

ko= —,'(a a+a a ),
(2.2)

and it, it are harmonic-oscillator annihilation and
creation operators. The relations of commutation obeyed
by (2.2) are immediately inferred as

[k~,k ]=—2ko, [ko, k+]=+k+ . (2.3)

Some physical problems which the Hamiltonian (2.1) is
relevant to will be discussed in Sec. IV.

The group structure of (2.1), easily recognized as that
of the semidirect sum SU(1,1)@h(4), can be reduced to a

the pulse propagation in a free-electron laser. A Hamil-
tonian operator which is, e.g. , a linear combination of the
generators of both SU(1,1) and h(4) groups may not
preserve both Glauber and Perolemov' coherence. It is,
however, important to study the evolution of quantum
states driven by a SU(2),SU(1,1) eh(4) Hamiltonian to
clarify, e.g., how much the statistical properties of an ini-
tially Glauber state have been modi6ed by the interac-
tion.

To this aim, an obliged step is the search for a proper
ordered form of the evolution operator for the above-
quoted Hamiltonians. For the sake of completeness we
present two diFerent techniques. The 6rst, which only
applies to time-independent Hamiltonians, uses a com-
bination of the %ei-Norman algebraic procedure and the
more conventional operator identities derived in Refs. 17
and 18. The second exploits the %'ei-Norman method
and holds even for time-dependent Hamiltonians.
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SU(1,1) structure by rescaling the creation and annihila-
tion operators as

H =Q, [k++k ]+cuoko —Q2x, (2.5)

where k+, ko are defined in the b basis according to (2.2}.
Using now the we11-established methods to write the evo-
lution operator, we get, in the b basis,

U(t)= U, (t)~,(t),

Uo(t) =exp[ i (—aioko —Qix )t]1, (2.6

0't(t) =exp[2h (t)ko]exp[g (t)k+ ]exp[ f (t)k —]1,
where the functions (h, g,f) are specified by the following
system of di8'erential equations:

h (t)= —i Q, (t)g (t)e

g(t) = i Q i
—(t)e '"'"—g (t)h (t),

f(t)=iQ, (t)e "'", h(0)=f(0)=g(0)=0

[Q,(t)=Q, exp( —iaiot)] .

(2.7)

202
6 =8 +x, x= I .

201+coO

Therefore we can recast the Hamiltonian (2.1) in the form

sin( gt /4)
g4(t) =Qi

401 2QtX 1 — (too —2Q, )sin
2

'1j2

g exp —itg

1/2
coo+ 201

mo —201
cot g'

g, (t) =g4 (t),
1 sin( Qt /4)

g6t = ——Q2

X 1 —4 (a~ —2Q, )sin
Qi . , gt

1 4

02 Qt+i 2 (coo —2Q, ) t —2/g sin
Q2 2

rt(t) =arctan[(coo/Q)tan(gt /2)], Q =(coo 4Q—)i'~

h (t)= —In[1+a (t)]—i'(t), a(t) =Q, sin(Q/2)t
i g/2

g(t)= i—a(t)[1+a (t)]' exp[ill(t)],

f (t) =ia(t)[1+a (t)] ' exp[ i—rt(t)],

(2.11)

The final disentanglernent is, however, required to ex-
press 0(t) in the 8 basis.

The exponential operators containing k+ are straight-
forwardly disentangled because problems of noncommu-
tativity do not arise. On the other hand, the operator

exp[2h (t)ko] =exp( [h {t)/2](2x + 1) ]

III. THK ORDERING METHOD:
THK TIME-DKPKNDKNT CASK

In this section we consider the time-dependent coun-
terpart of (2.1), i.e., the Hamiltonian operator

XexpIh(t)[a a+x(a t+a)jj,
with 2h (t) =2h i coot, ca—n be expressed as'

exp[2h(t)ko]=exp[x (1—e "'")]exp[2h(t)ko]

(2.8} ~;(t)
a;a;+Q; (t)a;+H. c.

t =1

+r(t)k +r'(t)k, , (3.1)

Xexp[ —x (1—e"'")a ]

Xexp[x (1—e "'")d ] (2.9)

where co;(t) and Q(t), r(t) are nonsingular functions of
the time real and complex, respectively.

The subscripts 1,2 label independent harmonic oscilla-
tors and the SU(1,1) generators are realized as

by exploiting the Sack' and Sack-%eyl' identities.
Finally, from (2.6) and (2.9) after a simple rearrange-

ment of the various terms, we end up with the following
ordered form for 0(t):

U(t) =exp[g6(t)1]exp[2h (t)ko]exp[g (t)k+ ]

Xexp[ —f (t)k ]exp[g~(t)a ]exp[ —g~(t)a],

which solves the problem of the time evolution under a
SU(1,1)eh(4) Hamiltonian. The functions (h, g, f) and

(g~, g5,g6 ) are explicitly given by

k+ ——a 1a2, k =a a2,
ko= —,'(a,a, +a2a z) .

(3.2)

It is convenient, in this case, to implement the use of the
interaction Hamiltonian which reads

2

Ht= g (Q, a;+H. c. )+1 k +I"*0+, (3.3)

[the unperturbed Hamiltonian is Bo= g;, co;(t)a;a,
and the corresponding evolution operator reads
Uo= g~, exp( i jocu, (t')dt'a —

J aj )] with Q and . r
defined by
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0, =0;exp i—f oi, (t')dt'
L

r=r exp i—f [a),(t')+cui(t')]dt'
(3.4)

H' (H=e ")
F (P fe —h) (3.11)

Therefore the operator 0'„can be easily specialized as

respectively.
Consequently Os obeys the equation of motion

i 6', =(r—'k, +rk )0,
at

(3.8)

whose solution is immediately written down in the form

~s =exp[2h (t)~o]exp[g (t)~+ ]exp[ —f (t)k —] (3.9)

h, f, and g being defined by the system (2.7) with Q~(t) re-
placed by I (t) ~

Correspondingly the Schrodinger equation for Ox
reads

According to the %ei-Norman suggestion we factorize
I as

0,=0,6'„. (3.5)

The operators 0 and Oa are relevant to the unperturbed
SU(1,1) part of t and to the "Hamiltonian"

(3.6)

with

2

8z —g,. (Q,.&, +H. c. ),

2

Uz ——g exp iIm f y*p dt' exp( ——,
'

l p, l
)

j=1

X exp( i p—;a; )exp( i p—at )

p, = f y,, (t')dt', (3.12)

thus yielding the solution to the problem.
The SU(2)eh(4) case will be analyzed in the Appendix.

IV. CONCLUSIONS

+O oon

C, (t)
l

n +1),&n!,%(t)= g exp
n =0

(4.1)

Hamiltomans of the type (2. 1) play an important role
in the generation of squeezed states via the laser-plasma
scattering. ' %ithin this framework it could be interest-
ing to investigate the variations induced in the statistical
properties of an initially Glauber coherent state undergo-
ing an interaction governed by (2.1) (see also Ref. 15).

The evolution of states ruled by a Hamiltonian of the
type (2.1) occurs according to

laol�'
2

i—~~ =[xi(t@i+r2(t@2+H.c )~aat

0, (0)=I,
where y, and y2 are given by

C,(t)=(n+1
l
0(t)

l
n ) (4.2)

explicitly read

where
l ao l

is the initial average number of photon, and
the time-dependent probability amplitudes C, (t) ex-
pressed by the matrix elements

(3.10)

C, (t) =exp g6(t)+ [1+2(n +1)] &n!(n +1)!g4(t)
h(t) '""' ( —1P f(t)g(t)

2 ,=o q

2g24(t)

(t)m = —jE/2]

1 L, [g4(t)g5(t))

(q —m)! (n +1 —2q +2m)!
(4.3)

The symbol [a] denotes the largest integer less or equal to a and L„'(x) are the generalized Laguerre polynomials.
The state q' possesses the features of a Glauber and a SU(1,1) coherent state, but it is neither. It can be proven indeed

that by setting 0,=0, (4.3) reduces to

Ci(t)
I n, =o=

n!
(n +1)!

1/2
cuoI;

[a(t))'exp —i (1+2n) exp + f l
a(t')

l

'dt' e ~
'"

~
~ L„'

l
a(t)

l

'
o

sin(a)ot /4)
a(t) = i Q2—0

o ~4
(4 4)

which yields a Glauber coherent state at any time t. On the other hand, with Q2 ——0, (4.3) becomes
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Ci(t }
I n, =o = g(t)

2
exp+[1+2(n +i)]h(t) I

&n!(n +i)!H„'fg (t)f (t)]

[n/2] ( 1 )m(x /2)m

o 2 m!(n —2m)!(I/2+m)

which for an initially vacuum field yields SU(1, 1)
coherent states according to the results of Ref. 20.

A further important problem which can be treated
within the framework of the present formalism is the evo-
lution of the optical field in a free-electron laser (FEL).
In a FEL a bunch of ultrarelativistic electrons is injected
into a N-period magnetic undulator, where it undergoes
transverse oscillations and emits radiation at fixed wave-
length k. Such radiation, stored in an optical cavity,
copropagates into the magnet with a new bunch and be-
comes amplified by the mechanism of stimulated brems-
strahlung. ' The electron beam, if furnished by a radio-
frequency accelerator, consists of a series of bunches with
a time distance 6xed by the period of the radio frequency
and with a longitudinal length 0, fixed by the phase
stable angle. In this configuration a mode-locked laser
field naturally develops, and if the electron-bunch longi-
tudinal length is much longer than the slippage distance
XA, , the evolution of the laser electric field 4 is governed
by an equation of the type

H =i [M+0(&—a )+coko+Qi(k++k )] (4.6)

4(y, r)= g C„(r)u„(y),
n=0

u„(y) = 1

n '"2"n t

' 1/2

e H„(y),

(4.7)

where H„are the Hermite polynomials, and skipping the
details of the computation involving only algebraic trou-
bles we get for C„(r) [C„(ro)=5„o]the expression

C„(r)=e 'R ' I[Z(r}]" H[ X(~)],2""&n!

~here we have defined

(4.8)

I

where 6, 0, ~, and 0, , are complex numbers and the
operators a, &

' and f+, ko are expressed as linear and
nonlinear combinations, respectively, of the dimension-
less longitudinal coordinate y and of the derivative with
respect to it. The non-Herrniiian nature of the "Hamil-
tonian" (4.6} is due to the gain or loss mechanism intrin-
sic to the FEL process [for a more detailed discussion on
the role played by the various parameters in (4.6) see
Refs. 22 and 23]. Expanding '0 in terms of harmonic-
oscillator eigenfunctions

Z(r)= 6
R

X(r)=
' 1/2

p2
R (r) =cosh[Q/2(r —ro)] —co/Qsinh[Q/2(r —ro)],

1
sinh [Q/2(r —ro)]

[Q/2(r —ro)]

02

(to+20i) (r—ro)2 2 1 2sinh [Q/4(r —ro)]2Q' [Q/4(r —ro)]

20 1(to+ 2fl i )(r—ro) sinh[Q/2(r —~o)]Q/2(r —ro)

0 2QI(r)=exp 2 (to+20, )(r—ro) — Qi(to+2Qi)(r ro) ——
Q2 Q2

P(r) = —Q(r —ro)
1

sinh[ Q /2( r —ro )]+Q/2(r —ro)

fLP+ 2Qi 1Q(r ro) — sin [Q/4(r —ro)]
4 [Q/4(~ —ro)]

G(r)=Q, (r—ro) sinh'[Q/2(r —ro)], Q= (to' 4Q—f)'~2—, —sinh(x)=
[Q/2(r ~o)]2 x x

Finally, using (4.7), (4.8},and the sum rules of the Hermite functions we can recast (4.7) in the closed form:

X Z
+(y, r)=e 'I [4(~}]' exp 2 exp1+Z

1+Z 2XZ
2(1 —Z'} 1+Z'3'—

(4.10)
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The above expression yields the space-time evolution of
the FEL optical fl[eld in the long-bunch approximation
and displays also some features which have been previ-
ously analyzed only numerically. For instance it predicts
that the position of the maximum of the wave packet is a
function of the time given by

Qz
——Q exp —i I ro (t')dt'

0

I =I exp —L 6)z t —coj t dt
0

yo(r) = =&2Q — lnP
2XZ — d

d~
(4.11)

The SU(2)eh(4) structure of (A2) can be easily recog-
nized, recalling that the operators

J+ ——8, & z, J =&2&,, Jo= —,'(8 P, —8&82) (A4)
According to (4.11) the packet moves back at a speed

obey the angular momentum commutation rules

jo(r) =&2Q lnP
dT

'dz
(lnP},

df'
(4.12) [J+,J j=2Jo, [Jo,J~ j=+J+ .

According to the recipe of Sec. IV we get
thus taking into account the so-called lethargic effect
which plays a crucial role in the design of an FEL. For
a more detailed discussion of these problems the reader is
referred to Ref. 24.

APPENDIX

where

Os ——exp(2hJo)exp(gJ+ )exp( fJ )—
(A6)

(A7)

In this appendix we complete the analysis of the disen-
tanglement theorems by discussing the case of an
SU(2}eh(4) Hamiltonian, namely,

r

~i) (t}
a tg +Qj(t)a +H. c. .

J =1

j= —i I 'e —hg,
f=iI e ", f(0)=h(0)=g(0)=0.

(A8)

and the functions (h, g,f ) obey the set of differential equa-
tions

h =l I ge

+I a ~az+K'Q'za&, (Al)
Finally, Ott is in the same form as in (3.12), with the

only difference that the y functions are now given by

We proceed as in Sec. IV, introducing the interaction
Hamiltonian

y j
——O)H +QzF',

(A9)

Hl =Q&a & +Qzaz+ I aza &+8 c (A2) yz
——AzH —Q)F .
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