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Charles N. Vittitoe
Sandia Xationar Laboratories, I'.O. Box 5800, A/buquerque, Xeu Mexico 8?785-5800

Mario Rabinowitz
Electric Power Research 1nstitttte, P.O. Box M412, Palo Alto, California 94303

(Received 14 September 1987)

A high-altitude nuclear electromagnetic pulse (EMP) with a peak Beld intensity of 5&10 V/m

carries momentum that results in a retarding force on the average Compton electron (radiating

coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible

for the coherent radiation. The retarding force results from a self'-field e6'ect. The Compton elec-

tron interaction with the self-generated magnetic field due to the other electrons accounts for the

momentum density in the propagating wave; interaction with the self-generated electric field ac-

counts for the energy-Aux density in the propagating wave. Coherent addition of radiation is also

quantitatively modeled.

INTRODUCTION

Electrons propagating in air can radiate an associated
electromagnetic pulse (EMP). ' Over two decades ago,
Conrad Longmire at Los Alamos and William Karzas
and Richard Latter at RAND Corporation developed a
model for the EMP generated by a high-altitude nuclear
explosion. The basic mechanism for this pulse generation
is coherent radiation from the Compton electrons gyrat-
ing about the Earth's geomagnetic field. The pulse is pro-
duced in the gamma-ray absorption region of the atmo-
sphere at an a1titude of 20 to 40 km and radiates to large
distances within line of sight of the gamma-ray source.
In 1975 Sherman et al. , Bell Laboratories, represented
the radiating electric field as a double exponential pulse
with a peak intensity of 50 kV/m, a rise time near 10 ns,
and a fall to one-half the peak value requiring over 100
ns. We examine the forces acting on the Compton elec-
trons and find that the peak field results in a significant
retarding force. %'e inquire if this retarding force is a
significant, neglected force that reduces expected peak
field values because it is not obvious that this force is ac-
counted for when current densities are modeled. Further
motivation results because the relativistic form of the ra-
diation reaction force is not readily calculable and be-
cause this reaction force has not been included in the
models. A significant reduction in peak field strength
below 50 kV/m ~ould reduce the EMP threat and would
save considerable taxpayer dollars spent hardening sys-
tems to the EMP environment.

Consider an EMP source region that is —10 km in
depth along a line of sight vertically downward at the
equator. The coherent addition of radiation propagating
downward along the line of sight results in energy and
momentum being taken from the Compton electrons. A

much ~eaker signal is radiated backward along the line
of sight, and so a net force in the upward direction acts
upon the ensemble of coherent electrons. The force is
taken as the net time rate of change in the momentum
carried by the radiation.

Let the downward propagating wave have a peak elec-
tric field of 50 kV/m. The associated energy Aux density
is given by the Poynting vector

~

EXH
~

=6.6X10
W/m . At the peak energy (lux density, the correspond-
ing momentum Aux density (in a plane-wave approxima-
tion) is given by (6.6X10 W/m )/c =2.2X10 N/m,
or approximately 3&10 psi exerted upon a perfectly
absorbing screen. This momentum Aux density is equal
and opposite to the rate of change in momentum per unit
area of the ensemble of electrons producing the radiation.
Further division by c gives the momentum density at the
peak of the radiating wave, g =7.3&(10 "N s/m .

If there are n, coherent, radiating electrons per square
meter within the source region, then the peak radiation-
associated force on the average electron is

F„d——2.2X10 /n, N .

Longmire' has estimated that about 5)&10' Compton
electrons contribute coherently, spread over an area
A =n(400 m), giving a rough estimate of n, = 10' e/m .
This implies that the radiation-associated retarding force
on the average electron is approximately equal to
2.2&(10 ' N at the peak in the radiated power. Because
of the 1/r reduction in the radiated field, the force in the
source region will be larger by a few tens of percent. This
force will now be compared with the other forces on the
Compton electrons to determine if it is negligible.

So1ving the Compton electron equations of motion is a
critical step in determining the basic drivers for
Maxwell's equations and is necessary for quantitative es-
timates of the radiating fields. Forces acting upon these
Compton electrons appear in the equations of motion.
The Lorentz force gives contributions associated with the
F and 8 fields. With the air density represented by p,
and the sea-level value by po, at cw frequency less than ar
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equal to 100 MHz and at altitudes less than 60 km the
electric fields are limited by air breakdown to values of
E & 3&(10p/po V/m. At an altitude of 30 km, near the
center of the source region for high-altitude EMP, this
force is FF ——eE &6.6X10 ' N. The Earth's geomag-
netic field is approximately equal to 6)&10 T, which
implies that magnetic forces can reach Fa „e—

~

—v

&(8
~

(2.9)&10 ' N. With Wrepresenting the electron
kinetic energy, the efkctive force produced by stopping-
power efFects (at P= u /c =0.9) is represented as6

F„, =dW/dx =(2 MeVcm /g)p(5. 4&&10 '6 N, where
the 30-km air density is used for the estimate. The prob-
lem is time dependent. The initial electric Geld is zero,
velocities are changing, and air densities vary. Hence,
each of these forces should be considered in detail in the
Compton electron equations of motion. The peak
radiation-associated retarding force of approximately
2&10 ' N is significant; it must be taken into account
when the electron equations of motion are solved. Rabi-
nowitz has presented independent arguments that show
that this retarding force is comparable to the geomagnet-
ic force that produces the coherence and the radiation.

The momentum density imparted to the radiating elec-
trons can be reduced somewhat by including the radia-
tion that propagates upward. The downward-directed
pulse has a width Atd. The upward-directed pulse is
spread over a much longer time, dependent upon a coher-
ence length I As a ro. ugh estimate, the width of the up-
ward directed pulse is At„=Atd +21 /C. Since
btd &&2l/c, b, t„/btd =2l/(c btd ). The net impulse is

2IF„
F„A~„—F„ht„=F,A~, 1—

c htd Fd

This impulse is directed upward on the radiating elec-
trons and furnishes the downward-directed momentum
density in the propagating wave. So the efkctive retard-
ing force is reduced by the factor within the brackets.
%'ith a coherence length I =10 m, htd -10 s, and with
an estimated F„=10 Fd corresponding to an upper
bound on the upward propagating electric field approxi-
mately equal to 10 times the coherent downward sig-
nal, the momentum density given to the electrons is re-
duced by 0.7%. The angular distribution of radiation
from an isolated 1-MeV electron in helical motion can
also be used to estimate the F„/Fd ratio. The ratio of the
angular distributions of radiated power evaluated in the
backward direction to that in the forward direction (rela-
tive to the velocity) is then approximately 10 . Coher-
ence effects acting constructively in the downward direc-
tion drastically lower this estimate. The net momentum
transfer is large. The backward wave does not
significantly reduce the estimate of the radiation-
associated force.

Consider properties of the force to see whether the
force is already included, perhaps as part of the self-field
eftects. The reaction force is directed vertically upward
and should be dependent upon the horizontal accelera-
tions responsible for the coherent radiation {for our verti-
cally downward line of sight). The self-fields include hor-

izontal electric fields, but can result in a vertical force
only through substitution of the associated accelerations .

into radiation reaction types of force where components
appear antiparallel to the particle velocity. Since the
electron velocity is nearly vertically downward the v & 8
(where 8 is the geomagnetic field or the self-generated
magnetic field in the propagating wave) gives only a small
vertical force, resulting from the horizontal component of
v. In addition, the cross product does not change the
particle energy, and so it cannot account for the energy
carried away by the radiation. The Fs) p

is a statistical,
incoherent effective force; the energy deposited forms
ionization and excitation, not radiation. It is not obvious
that F„,d can be accounted for by self-6eld effects or by
energy-loss e6'ects already included within the equations
of motion. Since radiation reaction forces on individual
electrons are not included in the equations of motion, we
next examine if this accounts for the large retarding
force.

RELATIVISTIC FORM AND NUMERICAI ESTIMATES
FOR THE RADIATION REACTION FORCE

The radiation reaction force has traditionally been
neglected in EMP applications. This force results be-
cause the radiated wave carries energy, momentum, and
angular momentum. The nonrelativistic form for the
force is (in SI units where the subscript denotes radiation
reaction) F'„„=e /6neuc da/dt Becaus.e the Compton
electron speeds are -0.9c, relativistic e8'ects must be in-
cluded. Here we examine several forms for the relativis-
tic radiation reaction force. Some are judged nonphysi-
cal. %e concentrate on two forms: the 6rst is associated
with the generation of electromagnetic four-vector
momentum (F„"„);the second is the Schott force on an in-
dividual radiating electron (Si').

One covariant expression for the radiation reaction
force is'

d pp pp dp~ dp
~

+
d~2 m 2c2 d& d&

where ~ is the particle's proper time. This is consistent
with the form given by Rohrlich for the "radiation reac-
tion" force,

e (a"—c a'a„u") .
6&EOC

The "dot'* over a variable denotes a total derivative with
respect to ~. The sign change resu1ts from a sign change
in the definition of the metric tensor (that enters in the
a "a,, term). The Rohrlich form has greater clarity in
showing that the velocity term in the reaction force is
directed opposite to the particle velocity. A general
four-vector f is spacelike (or timelike) when f f is pos-
itive (or negative). The a' is always spacelike. Cohn'
presents a clear heuristic derivation of I ".

These forms for a radiation reaction force (I" and
F„" ) do not lend themselves to a physical interpretation.
The Lorentz invariant energy radiation rate is (using
Rohrlich's metric tensor)
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(5)F"U =P .rr p

Equation (3) is used to estimate P for an individual ra-
diating electron. Let the Lorentz factor of special rela-
tivity, y=3 (kinetic energy= 1 MeV, P=0,94) for a
Compton electron in instantaneous circular motion in a
magnetic field 8=60 pT. Then v a=0, a =eBU/ym
=9.92)& 10 m/s, and the instantaneous power radiated
is P =e y a /6neoc =4 5X10 . W. Equation (4)
sho~s that the spatial portion of F,„associated with this
I is much less than the FF, F&~„,and F„,~ estimated ear-
lier and is negligible in the electron equations of motion.
If this power were radiated incoherently by n, =10'
e/m, the tota1 power per Unit area would be
n, P =4.5X10 W/m, much less than the 6.6X 10
W/m in the EMP peak. If this power were radiated
coherently by each of (the earlier noted) approximately
5 X 10' contributing electrons, the power becomes much
greater than that in the EMP peak. However the con-
tributing electrons are only partially in phase. The
coherent addition that gives 6.6X 10 %'/m at the EMP
peak 1ed us to the 2.2&10 ' N force on the average
e1ectron that we found earlier.

The estimate from Eq. (4) showed that the individual
Compton electrons generate a negligible F„"„.%'e now re-
view some coherence eA'ects to investigate their conse-
quences on these forces. The electric field generated by
one electron is given by (Ref. 8 with conversion to SI
units)

E(x, t) =
4m@0

n —P
y (1 —P.n) A ret

nX [(n —P) XP]+
(1—P.n) Rc3

~2 e2y4 y2P= — —a'a„= — a + (v a) . (3)
6&EOC 67TEOC C

If a"=0 but d "&0, then P=O with Eq. (2) showing that
I "~0 for an instant. However, the radiation reaction
force should be zero whenever the radiated power (P) is
0. When c~d"=a'a„u" with a "&0, then Eq. (2) gives
I "=0;yet P~O. Thus the label radiation reaction force
is a misnomer for 1"". Later we show that the scalar
product of our forms for the radiation reaction force and
the velocity four-vectors is the radiated power I'. Be-
cause 0"U„=O, a "U„=—a„a", and U "U„=—c, we have
I "U„=O, illustrating the orthogonality that is also re-
quired of the total force.

The radiation reaction force has also been identified by
saying that this force is equal and opposite to the rate at
which electromagnetic four-vector momentum is emit-
ted.

FP — pU P1

C

where I' is the Lorentz invariant energy radiation rate as
defined by Eq. (3). This gives the force a direct physical
interpretation. Note that it is identical to the second
term in the definition of I'i' in Eq. (2) and is the force we
wi11 retain as the radiation reaction force. The rate at
which the force does work is

can now be written in the form
2e

30
67TFOC

K"(r)=ma"— (8)

The F„"„portion of I" in Eq. (7) contributes (along with
Fi'„and F",„,) to the ma" term; it does not appear explicit-
ly in Eq. (8). Rather than a strict radiation reaction force
(F„"„),we have identified the Schott term e~d "/(6neoc')
by which the effective force differs from ma" (see Ref. 9,
p. 146II):

S"=e~d"/(6rreoc ), (9)

where —5"U„=E"U„=F„"„U„=P.In addition to I" and
F„"„,the Schott term in certain cases may also be called a
radiation reaction force. 5" is the first term of I " in Eq.
(2). For the physical reasons stated above, we prefer not
to ca11 I" a radiation reaction force. This labe1 is re-
tained for F„"„even though it is not orthogonal to the ve-

locity four-vector (since it is not the total force). S" has
nonphysical aspects in common with I " as well as being
being nonorthogonal to the velocity four-vector. A nega-
tive S" indicates a four-vector that opposes the ma". Its
neglect gives an overestimated instantaneous acceleration
in Eq. (8).

Rohrlich gives the d" in three-vector form in terms of

Here, P= v/c, R is the vector from the source electron to
the point of observation, x is the observation point, n is a
unit vector along R, and R =

~

R
~

. The subscript, ret,
denotes evaluation at retarded time. To estimate this
electric field in the radiation zone, where the 1/R term
dominates, we again take our y=3 electron in instan-
taneous circular motion in 8=60 pT. %e examine the
transverse E radiating in the forward direction. Here n is
parallel to P and P=e8u/ymc. The distance R is taken
as 35 km (roughly the distance from the gamma-ray ab-
sorption region to the earth directly under our burst).
Our sample electron generates a peak electric field radiat-
ed in the forward direction, F. =1.3)&10 's V/m. If a
group of electrons is radiating coherently in this forward
direction, then N, =4X10' electrons give F. =5)&10
V/m, the peak EMP. At a lower average electron ener-

gy, because of the smaller P more electrons would be re-
quired to furnish the same Geld. A lower estimate for N,
can be obtained by reducing 8 to perhaps 30 km. The
power and the electric field radiated by the ensemble is
increased by the coherence. The associated radiation
forces must also increase.

%e broaden our search for the 1arge radiation reaction
force by following Rohrlich and introducing the Schott
force. Rohrlich defines a force four-vector as

K"(r) =F";„+F",„,— Pu",1
(6)

C

that is identified as the e+ectiue force response for the ac
celeration of the particie The t.erms are the following:
the force resulting from incident radiation, the external
forces, and the radiation reaction force previously en-
countered in Eq. (4) (which is the negative of the rate at
which electromagnetic four-momentum is emitted). The
Lorentz-Dirac equation of motion

ma"=F~ +F",„,+I"
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laboratory time, where dr /dr =y;

d"(r)= d;y +3y (v a) +d-, o 3da 5 a .Ov

dt c 2

5 da 4 7

d (r)= — v. +a + (v.a)
c dt c3

y'da/dr &y'a, /b, t =6.52X10'

3y (p a)a/c &3y pai/c =1.33X10

pd &y'13a, (yp/br+a, /c+4y'p'a, /c)=1.98X10'

(13)

(14)

The spatial three-vector form for the Schott term is
r

S(t)=+ y +3y (v a) +u-
67TEoc 'dr c c

We can now estimate the Schott force associated with
several characteristics of the Compton electron motion.
One of the large accelerations that might be experienced
is produced by the radial electric field. Using the break-
down field estimated earlier, we find that the acceleration
is approximately equal to Fz/(y m) &6.6X10 ' /9. l

X10 '=7.25X10' m/s =a& when y= 1. The sub-

script on a indicates the value of y used for evaluating
the acceleration a &. The y factor occurs because this ac-
celeration is longitudinal, that is, antiparallel (or parallel)
to the velocity. If the breakdown field were transverse,
the acceleration would be F /E(ym)=a, /y. With this
latter acceleration we examine upper limits for the three
terms in the Schott force.

For the transverse acceleration with y =3, ht =10 s,
and with the inconsistent but bounding assumption that v
is antiparallel to a, the terms are bounded by

of S". The ratio is F„,/S=y —1.
The arguments here have shown that the examined

contributions to the Schott force (that result from the
Compton electron motion in breakdown electric fields
and in the geomagnetic field) are negligible. When a
significant radiation (associated with other accelerations)
must be accounted for as in the EMP case, then the asso-
ciated Schott terms might be large, and the resulting
force could then dominate the terms contributing to the
Schott force and be comparable to the FE, Fz „, and

Let us consider ways in which coherence e5ects might
increase the Schott force. When applied to a single elec-
tron traveling in a path like that experienced in the EMP
case, the Schott force on an individual electron is expect-
ed to be approximately the same in magnitude as the
tangential force necessary to keep a radiating particle
traveling in a circle of radius r and radiating indepen-
dently of other electrons. Here v a=0, da/dt = —a v/
U, a =U /r, and d =0. The Schott force becomes

Sp(t) = —
2

v,e'y(y'-1)
6meor c

(17)

and is the negative of the required tangential force. In
terms of proper time r (where d /dr =yd /dt),
yS(t)=S(r), the Schott force is in agreement with
Rohrlich, who has solved this problem with a diferent
approach. Without the tangential force, the radiation
rate is initially the same as for the actual orbit. The radi-
ation loss then results in a reduction in U (and a reduction
in r if the circular motion is provided by an imposed uni-
form magnetic field). Coherence effects can increase this
force. If there is an ensemble of N, electrons radiating
coherently as one body, then the total force on the en-
semble will scale as the square of the charge, (X,e), and
the force on the average electron is

If the vectors are such that these terms add, then the
upper bound is

~

S(r)
~

& ', (2. 18X 10"m/s')=1. 24X 10-" N .
6~~oc'

(16)

These contributions to the Schott force are several orders
of magnitude below the FE, Fz~, , and F„, estimated
earlier, and are negligible. For GeV rather than MeV
electron energies, the Schott force becomes comparable
to the other forces even for just the contributions exam-
ined above. At larger energies the Schott force and the
F„, will be the dominant forces.

The geomagnetic force results in an acceleration that
contributes to the radiation reaction force. In this case
P.a=0, reducing the upper bounds found earlier. The re-
sulting acceleration is smaller than the earlier estimate of
radial acceleration; hence this contribution to the Schott
force is also negligible. For particle motion in a circular
orbit, we later find that a is zero, so the timehke com-
ponent of S" is zero. For this orbit the spacelike com-
ponent of FI' is also larger than the spacelike component

e y(y —1)
6' 6'pr c

For a typical high-altitude EMP with U =0.9c, y=3,
r=80 m, and N, & 10' electrons, F„z& 10 ' N, This is

comparable to the geomagnetic force on each electron ra-
diating to produce the EMP. Such a force cannot be
neglected. However, Eq. (18) can only be applied approx-
imately in the equations of motion. The Compton elec-
trons are generated over a large region of space and only
a subset within a quarter wavelength can radiate
coherently as a single body. At f) 1 MHz, for example,
k/4&75 m; this is a small portion of the source region
generating the high-altitude EMP. Even if the equation
were valid for high-altitude EMP, a prescription would
be needed to determine the X, appropriate for electrons
at diferent positions in the gamma-ray absorption region
as a function of time.

As an alternate view of the e6'ects of coherence, consid-
er Rohrlich's treatment of a closed system of X charged
particles. There, the Lorentz invariant form of the equa-
tion of motion for the kth particle is given by the
Lorentz-Dirac equations for each of the particles (with

proper asymptotic conditions as discussed by Rohrlich):
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~~utl =~t', .+I'i+~I;-~ . (19)

The acceleration of the kth particle is caused by three
forces: Fk;„produced by the electromagnetic fields in-

cident upon the ensemble, the "radiation reaction" force
I", and the force produced by all the other particles
F(„„.The subscript ret indicates that the force from oth-
er particles must be evaluated in retarded time.

The F(„, results from a sum over all the other parti-
cles, with the retarded time varying with each particle in
the sum. As Rohrlieh states, this term represents the
only mutual interaction between the charged particles.
The transverse electric field effects are built into this
term, including whatever coherence is present in the local
field. So a factor proportional to X does occur in the
self-field term (with a constraint imposed by air break-
down). In this approach the radiation reaction force is
not directly enhanced by a coherence eff'ect. No multipli-
cative factor N appears in any part of the I ~I, term in Eq.
(19). Physically, the radiation reaction force on one elec-
tron cannot depend upon coherent addition of radiation
if the addition occurs at a later time and at a location
deeper in the atmosphere. %'hen each electron radiates,
it experiences a local electromagnetic field that is
enhanced by coherence effects. This gives a correspond-
ingly larger radiation reaction force.

In this section we have identified the radiation reaction
forces FI'„and S",and have chosen not to interpret I " as
a radiation reaction force. The F„on an individual elec-
tron was found to be negligible. The eff'ects of breakdown
electric fields and geomagnetic fields indicated a negligi-
ble S", even with expected coherence effects. We exam-
ined ways coherence effects enhance the radiation-
reaction forces. Earlier we showed that the high-altitude
EMP peak amplitude implies a large radiation reaction.
The following section shows that the large reaction is ac-
counted for by a self-field effect.

SELF-FIELD EFFECT

To account for the momentum in the propagating
wave, we first review how the energy is generated by the
transverse component of the current density. The argu-
ment is then extended to account for the momentum.
The rate at which work is done per unit volume is given
by J.E. The particle kinetic energy is generating the field

energy; J E represents the power density for converting
that kinetic energy into electromagnetic energy and
thermal energy. The generation of thermal energy is ac-
counted for by the sum of the stopping-power efkcts ex-
amined earlier and the conduction-current portion of
J-E. The radiating fields are intimately involved with the
Compton electron energy. In I974, Longmire showed
(and later published in Ref. 11) that when the outgoing
wave equation for the radiating field is solved self-
consistently„ the equation can lead to energy conserva-
tion. The energy thus given to the electromagnetic fields

by the Compton electrons is shared by Joule heating in
the conduction current and by ihe energy stored within
the electromagnetic fields.

To illustrate explicitly the energy conservation, we
consider a one-dimensional example that has some

features similar to generation of high-altitude EMP. In
Appendix A we derive the equation for the outgoing
wave traveling in the direction + x (the circumAex indi-
cates a unit vector in the associated direction). There we
find

E, ( x, r)= —(ZD/2) j J, (x', r)dx' (20)

A plane wave is being modeled, traveling in the x direc-
tion. The energy flux density in the plane wave (W/m )

is given by

Zo2

I J, (x', r)dx'
zo

(22)
O„x g0
x', 0&x &L

L, x&L.

The contribution made by the interval (x;,x/) within

(O,L) is ZDJ0(x& —x; )/4. Each interval of constant
width hx =x& —x; does not contribute equally to the
transverse electric field intensity. To quantify this
difference, we divide (O,L) into I cells of length bx =L/1,
and treat the integral as a sum over the I intervals. At
the end of the nth cel1

f
X

J,(x', r)dx'=Jax„=Jan Ax
0

and E, ( „,x)=r—ZoJDx„/2. The corresponding energy
Aux density is

g2

ZQ

0, n&0
0 0 ni(bx), 1&n &l

L, n&1.

The contribution of the nth ce11 to the energy Aux density
is given by

(E, /Z0)„= (hx) [n —(n —1) ]

with the consistency check g„':(2n —1)=I-. Coher-
ence causes the nth cell to contribute 2n —1 times as
muck as the first cell, and the average cell n times as
much as the first cell. The simple choice of J, indepen-
dent of x in (O,L) makes the cells far from identical. The
differenc between cells n —1 and n is that the field from
the n —I cell is present when the nth cell radiates. The
energy fiux density put into the wave by the current den-

for the transverse fields in free space at a given retarded
time ~=t —x/c. The notation is much the same as
Longmire's" except that the current density J, includes
the conduction as well as the convection terms provided
by the Compton electrons.

Take the situation at a given -, , where the transverse
current density is given by

0, xg0
J, (x,r)= JD, 0&x &L (21)

0, xgL.
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sity is the rate at which the electric field does work on the
current density, —jE,J, dx (units of W/m ). For the
nth cell the contribution is

—f E, (x', r)J, (x', r)dx'= (Ax) (Zn —1) .

«i'/Zo }. 2n —1

ZoJo(hx) (n —1) /4 (n —1)
(27)

Thus at large n the energy Aux density becomes dominat-
ed by the distant upstream generators rather than by the
locally generated fields. The locally generated transverse
fields never dominate the electric fields at the exit of our
one-dimensional example. If the current density were
specified in terms of a distribution of electrons launched
into a vacuum at ~=0 with a specific v„ then at later v.

and for sufFiciently large n &n„ the fields will be high
enough that self-field e6'ects reduce J, for cells with
n & n, . The example illustrates that the 6.6X 10 W/m
energy Aux density generated by high-altitude EMP is a
self-field effect. The energy is balanced by a correspond-
ing loss in Compton electron kinetic energy.

Thus far our simple example has concentrated upon
energy considerations. Note that the electric field is a
transverse field and cannot correspond to a force along
the propagation direction x. The momentum density car-
ried by the wave must also be balanced by a reaction in
our basic source that keeps the current density in the
given form. The momentum density carried by the wave
is

This is exactly equal to the contribution of the nth cell to
the energy Aux density, as required by energy conserva-
tion. Since the average value of 2n —1 in the set n= 1,
2, . . . , 1 is I, the contribution of the average cell is
ZoJo(hx) I/O. The energy in our example comes from
the increased source strength required to create Jo in
cells of higher index n.

Because the contribution of the nth cell has a multipli-
cative factor 2n —1, a large n in our example might make
the electric field large enough to result in a significant
Schott force in the microscopic equations of motion.
However, air breakdown limits E in the actual case. The
analysis has shown that the factor 2n —1 results from a
self-field efFect, where the cells respond to the fields creat-
ed by other cells. The energy Aux density contributed by
each cell is accounted for by the J.E rate at which the
fields do work within that cell. Coherency enters through
the E by means of the 2n —1 multiplicative factor.

The ratio of the contribution of the nth cell to the sum
of the contributions by all the cells from 1 up to n —1 is
given by

With H, =E, /Zo ——Jox/2, we find Ilg/I)t = —JoB,.
More generally, from Maxwell's equations,

Bg/8~ = —JxB . (30)

At a given ~, the rate of gain in momentum density in the
propagating wave produced by an element hx is equal
and opposite to the J&B force density acting on the
current density within the element hx experiencing the
magnetic field. Our earlier estimate of F„d is based upon
the approximately 3-ppsi peak momentum Aux density
being radiated. This momentum is furnished by the Jg 8
force, and ultimately by a loss in electron momentum.
Interaction with the self-generated magnetic field ac-
counts for the momentum density in the propagating
wave; interaction with the self-generated electric field ac-
counts for the energy in the propagating wave.

Because the time rate of change of momentum density
in the propagating wave is furnished by the J, X 8 force
density, one might think it automatic that (on an indi-
vidual electron basis) the FII „——evXBs„ in the EMP
case is equal to the force on the average electron caused
by its interaction with the radiating fields. This is not the
case. The peak propagating 8 is about 2.88 „. The
Compton electron velocity is mainly radial rather than
transverse. (In the 10-ns rise time of the Bell Labora-
tories waveform, a P =0.9 Compton electron in
8 „=6X10 T rotates through & 15'.} The J, X B
varies rapidly with r while F&z„does not. The net force
exerted by the propagating fields on a Compton electron
varies with the electron velocity rather than with the
transverse component. The rough equivalence between
the approximately 2.2X10 ' N radiation-associated re-
tarding force and the 2.9&10 ' N magnitude of Fz „is
not an automatic feature of the J, )(8 force density.

The one-dimensional example can also be developed in
a spherical geometry. There the outgoing wave is given
by

o r
rE, (r, r)=- r'J, (r', r)dr' .

0
(31)

In a region along r we consider the parameters indepen-
dent of 8 and P, giving a spherically diverging outgoing
wave. Let

0, r pro

J, = Jo, ro &r &r

0, r &L+ro .

(32)

E = —ZoJo/(4r) r —ro ro &r (r,2 2 (33)

Here r&
——L +ro, Ar =L /1, and at the end of the nth cell,

r„=ro+n Ar. The transverse field and the energy Aux

density are

0, r& ro

g =ox B=c 2EgH

ol g =Et /(Zoc } ln our exalllple. SubstltutiIlg tile E( lIl

terms of x in the interval (O,L) and taking the t derivative
gives

Iig/Bt =ZoJox/(2c )I)x/dt .

L —ro, r &r&
2

0, r &ro

E, /Z, =Z,J,'/16. (r' —r,')'/r', r, &r (r,2

(L ro) /r, r) ri —.
(34)
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Z J
dP /d 0= r E, /Zo = (r„ro )—

16
(35)

In the spherical case the power per steradian is more ap-
propriate than the %'/m . Since dA =r dQ, at the end
of the nth ce11 for n =1,2, 3, . . . , I,

gives Bgl(3t = J—,E, /c. The transverse plane wave has

E, =cB„so (}g/(}t = J—(B„consistent with Eq. (30).
The rate of gain in momentum density carried by the
propagating wave is equa1 to the J, XB, force density act-
ing upon the current density. Separation into convection
and conduction terms gives

The contribution from the nth cell is Bg/Bt = —J„B,—o-F,B, . (42)
Z J2

(r E, /Zo)„= (r„—2r„'ro r4—
, +2r2, r02) . (36)

For this nth cell the rate at which work is done by the
fields (per steradian) is given by

r„ r' E,(r', v. )J((r', r)dr'
r

n —1

Zo JO ~n ~n —1

2 4 4

8 2
ro(r„—r„,—)

2 2 2

(37)

again in agreement with (E, r /Zo)„, as required by ener-

gy conservation. Development of the ratio of the contri-
bution by the nth cell to the contribution of all the cells
from j. to n —1 is a little more tedious than for the Carte-
sian case. At large n, again the ratio scales as 1/n The.
local transverse fields never dominate the electric fields at
the exit.

Rather than using the explicit division into cells to il-
lustrate the energy and momentum conservation, we can
derive these constraints from Eq. (A10). At given r in a
material of impedance Z0, multiplication by the com-
ponent E, parallel to J, gives

Et BEr ~ax = —Z0JrEt ~2 (38)

or

f J(E(dx'= E('/Zo . —
0

Bg B

Bt Bf '

Zog

2E, BE,

Z0c Bx
(41}

Substitution for the spatial gradient term from Eq. (38)

That is, the energy fm.ux carried by the plane wave
(E, /Zo) at any position x is equal to the net rate at
which work is done (per unit ares) by the upstream trans-
verse current density in creating the transverse electric
field intensity.

The current density has convection and conduction
components, J, =J„+o.E„which are in opposing direc-
tions. Substitution of the components into Eq. (39}gives

f J~(E( dx + f ATE( dx = E(/Zo—
0 0

The rate at which the transverse convention-current den-
sity has done work on the upstream E, added to the rate
at which the field loses energy to the upstream conduc-
tion electrons gives the net energy Aux carried by the
plopagating wave at posltlon x.

At a given retarded time, the rate of gain in momen-
tum density carried by the wave propagating in a medium
of impedance Z0 is

Analogous to the energy Aux calculation, a loss in the
transverse convection-current-density term adds momen-
tum to the propagating wave; the transverse conduction-
current-density term absorbs momentum from the propa-
gating wave.

CONCLUSIONS

%e have identified the mechanism that generates the
large retarding radiation-associated force acting on the
Compton. electrons that produce the high-altitude EMP.
The force is significant and is implicit in EMP calcula-
tions for Me V energies when current densities are
modeled in a self-consistent manner. The momentum
Aux density in the propagating EMP resu1ts from the
force due to the interaction between the self-generated
magnetic field and the transverse component of current
density in the gamma-absorption region of the atmo-
sphere. As long as the transverse current density is ob-
tained in a self-consistent manner, then the energy and
momentum in the propagating wave result directly from
J, .E, terms that drain energy and transverse momentum
from the current density and from J, XB, terms that
drain longitudinal momentum from the current density.
%hen convection-electron equations of motion are solved
self-consistently, the e v X 8 and the e F forces include the
reaction forces acting on the transverse current density.

The relativistic form of the classical radiation reaction
forces on a single particle have been examined. These are
the additional forces introduced into the equations of
motion just because the charged particle is radiating en-
ergy and momentum. Present high-altitude EMP codes
neglect these reaction forces; hence, rigorous energy and
momentum conservation are not inherent within the
codes. However, radiation reaction forces as calculated
for an isolated electron are negligible compared to other
forces on the MeV Compton electrons. These reaction
forces F„"„and S" are a type of self-field erat'ect where the
electron reacts to its own radiation. Neglect of these
forces does not lead to overestimates of the high-altitude
EMP peak. As described in the previous paragraph, the
primary self-field efkct is the electron reacting to the
coherent fields created by the other charged particles to
provide the J, -E, and the J, XB, terms.
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APPENDIX TRANSVERSE ELECTRIC FIELD
FAR A ONK-DIMKNSIGNAL OUTGO'ING %AVE

In SI units, the differential forms for Maxwell's curl
equations are Ampere's law,

Vx H= J, +aE+i30/Bt,
and Faraday's law of induction,

In terms of E, with the impedance Z =(p/e)', the
equations become

(V E)„—e '(Vp)„2(—pe)'» — (rE, )

—ZV J=O,

VXE= —B8/Bt . (A2) 1/2(V'E)s —e '(Vp)e —(pe')' — (rEe)+ZJe =0,
Br r Br

The current density is divided into the convection current
J„ the conduction current O.E, and the displacernent
current BD/Bt. The divergence of Faraday's law gives
B(V 8)/Bt=O, and so in the initial absence of magnetic
monopoles, V.8 remains zero.

The divergence of Ampere's law coupled with the
equation of continuity

V (J, +r»E)+Op/Br =0

gives B(V D —p)/Br=0. The initial condition V D=p
remains true at later times.

The equations are sometimes more convenient to solve
after a transformation of variables. %hen the EMP is
produced by a propagating pulse of photons, spatial vari-
ables have steep gradients at the position of the pulse. At
a given position, as the pulse passes, the fields change
rapidly with both space and time. At a given retarded
time the spatial variation is much less severe. This allows
larger spatial steps in numerical simulations of the phe-
nomena. In terms of retarded time r=t (pe)' —r in a
spherical coordinate system (r, 8,$), the various opera-
tors transform as V~V —(pe)'» e„B/Br, and B/Bt
~B/Br. Within any region where e,p remain uniform,
the equations become

(A6)

(V E)g e'—(Vp)~ —(pe)'» — (rE~)+ZJ~ ——0 .
Br r Br

(rE, )+ZJ, =0 .
2 B

I' Bl'
(A7)

At a given ~, the integral form for the spherical wave is
then

rE, (r, r) = —
—,'Z jr'J, (r', r)dr' . (A8)

The same exercise in Cartesian coordinates, where
r = t —x (pe) ', gives the following equations for the
components of E:

V E„—e 'Bp/Bx —2(pe)'
B1

—ZV J=O,

In a one-dimensional radial problem where the electric
field has only a transverse component (E, equals a linear
combination of E& and Es), where the variables depend
only upon r and ~, and where the temporal variations
dominate the spatial variations of E„the equation for E,
becomes

p 'VX8 —(e/p)' e„XB8/Br=J+eBE/Br,

V XE—(pe)' e„XBE/Br = —BB/Br,

V 8—(pe)'»'BB /Bt =0

V H (pe)' BE /B—r=p/e

ap/Br+V J (p~)'"BJ„/Br=o, —

(A4) V E» —e 'Bp/By —(pe)' 2 +ZJ» =0, (A9)

V'E, E 'Bp/Bz —(p—e)'-" 2 '+ZJ, =0.
where J=J,+a.E. Eliminating E from the equations
gives In a one-dimensional Cartesian problem where the elec-

tric field has only a transverse component E, =E or E„
where the variables depend only upon x and ~, and where
temporal variations dominate the spatial variations of E„
the equation for E, becomes

(V 8)„+p(VXJ)„—2(pe)' — (rB„) =0,

(E, )+-,'ZJ, =0 .

(V'8),+p(VX J)& (pe)' ' — —(r&e) pJq-
Bp"

(V'8)~+p(VXJ)p —(pe)' ' —
B

(r&g)+pJg

At a given ~, the integral form for the planar wave is

E, (x,r)= ——,'Z fJ,(x', r)dx' .
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