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The radiative energy shifts produced by environmental modifications of the electromagnetic vacu-

um are studied from the point of view of stochastic electrodynamics. The vacuum can be modified

by the addition of external radiation or by the introduction of conducting objects that alter the dis-

tribution of modes. The general formulas obtained are applied to some simple but representative

situations. The present results are shown to coincide with previous quantum calculations, and some

conceptual di6'erences between the two approaches are discussed.

E. INTRODUCTION

Of fundamental importance for quantum mechanics is
the interaction of charged particles with ever-present ra-
diation fields. Quantum electrodynamics (QED) has
shown us how to interpret the spontaneous decay of ex-
cited states, most of the Lamb shift, the mass correction,
and the anomalous magnetic moment, through the cou-
pling of the atom to the vacuum field. Stochastic electro-
dynamics (SED) shares this view on the origin of radia-
tive corrections. In fact, since a starting point for this
theory is precisely the existence of a real (stochastic) vac-
uum field, the radiative corrections are a natural outcome
in SED. Specific SED calculations yielding results that
are basically coincident with those of nonrelativistic
QED support this view. There is, however, a difference
(besides the formal and methodological ones) between the
two theories, regarding the nature of the vacuum field
and its inAuence on quantum behavior: While QED
views it as a virtual field that is responsible only for
minor effects (radiative corrections), for SED this vacuum
is real; the main effect of its coupling to matter is quan-
turn mechanics itself, and the radiative corrections are
merely a second-order effect,

In either case, it is clear that some basic properties of
the vacuum —such as the intensity of its fl.uctuations or
its spectral distribution —are refiected in the radiative
corrections. This means that a change in such properties
can in principle lead to an observable modification of
these corrections. The background field can be altered,
for instance, by raising the temperature of the whole sys-
tem, by adding external radiation, or by introducing me-
tallic objects that alter the distribution of the normal
modes of the field.

The possiblity of such environmental effects has been
considered and analyzed for more than 40 years. As far
back as 1946, Purcell predicted the inAuence of a reso-
nant cavity on the relaxation time of a spin system. A
few years after the discovery of the Lamb shift; Auluck
and Kothari studied the inAuence of an external radia-
tion field on the value of this energy shift. Since then
numerous calculations have been published along similar
lines, the great majority of them within the framework of
quantum theory. The predicted effects are in general

negligibly small, and their calculation was often con-
sidered merely an academic exercise. Indeed, for a long
time these efFects were hardly amenable to experimental
proof, but the situation has changed in the last years,
thanks to the development of new experimental tech-
niques involving very small distances, very short times,
and sharply defined frequencies. Since 1966, when Drex-
hage and Kuhn reported a modulation of the fluores-
cence decay time of a dye molecule in front of a mirror,
other authors have observed similar effects on the lifetime
of excited states.

Concerning environmental effects on the energy levels,
in the 1960s a series of experiments was performed to
prove that external radiation produces a relative shift of
the Zeeman sublevels of an atomic ground state. The ad-
vent of tunable lasers allowing selective population of
Rydberg states has made it possible to observe not only
the induced alterations of the decay rates mentioned
above, but also atomic energy-level shifts produced by
thermal radiation; the fractional frequency shifts ob-
served are of the order of 10

In view of the rapid development of small-size and
high-precision experimental techniques, it seems con-
venient to develop also the formalism that leads to
theoretical predictions that can be eventually subject to
experimental test. One aim of the present work is to con-
tribute to this effort. But we have a second intention,
which is—at 1east to us —more motivating: namely, to
elucidate the precise mechanism by which the
modifications of the radiative corrections are induced; to
trace the origin of these effects and explain their mean-
ing. This task is facilitated by the use of SED, because in
this theory the presence of the background radiation field
is clear from the beginning and there is no need to think
of virtual photons having real effects.

In this first paper we set out to study the shifts of the
atomic energy levels induced by alterations of the back-
ground radition field. The results furnished by SED are
compared with other results that have been derived pre-
viously through more orthodox procedures. The analysis
of other induced modifications of the radiative effects (ba-
sically, of the lifetime of excited states) is left for a second
paper '

The paper has the following structure. Section II con-
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tains a brief exposition of the SED description of a bound
electron (specifically, a harmonic oscillator). In Sec. III
we derive general formulas for the radiative energy shifts;
these formulas are applied in Sec. IV to calculate the
efFects of external modifications on the energy levels, and
the results are compared with previously reported quan-
tum calculations. The general connection between the
SED and the quantum formulas is analyzed in Sec. V; in
Secs. V and VI, the main conceptual and methodological
difFerences between the two approaches, concerning the
treatment of the radiative energy corrections, are dis-
cussed.

II. THE HARMONIC OSCILI.ATOR
ACCORDING TO SED

%e should first of all mention that SED has not yet
been able to oIFer a correct description of atomic behav-
ior. ' In many respects this has been a serious drawback
of the theory, but for our present purposes there is a way
around to this problem. We recall that SED provides a
complete and correct description of the charged (nonrela-
tivistic, spinless) harmonic oscillator; this description
coincides formally with the quantum-mechanical one, in-
cluding the Lamb shift and the lifetime of excited
states. '* " Now the periodic motion of atomic elec-
trons can be considered in a first instance —at least for
qualitative purposes —as a spatial combination of har-
monic oscillations with frequency corresponding to the
period of the motion (this is strictly true, in particular,
for circular orbits). ' The main difFerence is that the fre-
quency of the atomic electron depends on the energy lev-
el: the inner electrons have a higher frequency of motion
than the outer ones. In view of the above, we shall treat
the atomic electrons as harmonic oscillators with state-
dependent frequency and calculate the environmental en-

ergy shifts of these oscillators using the formalism of
SED.

A usual starting point for the theory is the so-called
BrafFort-Marshall equation: a classical approximate sto-
chastic equation of motion for the charged oscillator that
includes both the Lorentz force produced by the random
electromagnetic field acting on the particle, and the reac-
tion force arising from the self-field radiated by the mov-
ing charge. In the nonrelativistic treatment the random
Lorentz force can be reduced to its electric component,
and the dependence of this electric force on the space
coordinates can be omitted; the Brafrort-Marshall equa-
tion reads then

x+coox rx= —E(t), —
m

where ~=2e /3me, mo is the natural frequency of the
oscillator, and rn represents the physical (renormalized)
mass, since in Eq. (1) any efFect of the self-field other than
the reaction force m~x has already been taken into ac-
count. The statistical properties of the random electric
field E are selected to insure that this field represents the
classical, stochastic counterpart of the vacuum field of
@ED; in particular, it has an average energy Ko ———,'fuu per
normal mode.

The appearance of noncausal solutions allowed for by
the x term in Eq. (1) is avoided by rewriting this equation
in the approximate form (to first order in r),

'x+ coox+ rcoox = E—(r ),

where the modified electric field E is related to the vac-
uum field by

E —wE =E . (3)

f (E (i) E (0) )e 'corot dt,
2P7l 0' 0

where o =—,'vcoo and the angle brackets represent stochas-
tic averages. To calculate Eq. (4) to first order in r (or o)
it is convenient to express the integrand as a power series
in o., taking care to avoid the appearance of secular
terms; we therefore write

e coscoot =co~pt — sin~pt .—oE

No

The more rigorous treatment of Sec. III will show that
this approximation is indeed valid. From Eq. (4), then,

E=Ep+E)

with

f (E (t) E (0))cos~ot dr
mTNO 0

e2
i f (E (r) E (0))sincoot dt .

m f'NO 0

It is clear from these expressions that cp represents the
main contribution to the energy and c& is a correction of
first order in v. To calculate these terms we must know
the field correlation, or alternatively, the spectral energy
density, which is related to the former by the %'iener-
Khintchine theorem,

(E,(t)EJ(0)) = 5; f p(co)e' 'dc@ .

In writing this equation we have taken into account the
assumed isotropy of the background radiation field; in the
more general case, the correlation tensor need not be di-
agonal.

The relationship between E and E expressed in Eq.
(3) implies that the correlation of the modified field E is
given by

An approximate treatment of Eq. (2) to first order in r
leads to a correct description of the ground state of the
quantum oscillator. In particular, a straightforward cal-
culation using the solution x(t) gives for the average en-
ergy of the oscillator in the stationary (long-time) limit,

e=-,'m (x'+co,'x'),
the expression
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In this case one obtains from Eqs. (6},(9},and (10),

CO= ~~0 ~

This is the main contribution to the energy of the oscilla-
tor coupled to the vacuum field at zero temperature, i.e.,
the ground-state energy. For the first-order radiative
correction one obtains from Eqs. (7), (9), and (10),

3&.
E)= 2 2

ddt
2m' 0

oo N+600 (1+r co )(coo co )—
We have separated the free-particle contribution (i.e., the
value of e, for coo=0} to show that the logarithmic diver-

gence of the integral comes from this term. A cuto6' at
high frequencies in the spectral density of the field
reduces the free-particle first-order radiative correction
to the value

ln(1+~ co, ) .Fp 3A

4zw
(13)

Even for co, as high as mc /A (corresponding to pair
creation, in order of magnitude) we have rco, -cc=e /Pic,

and hence c.
&

-o.mc . This energy has been interpreted
as a mass correction' because it is independent of the
state of motion and it exists even in the absence of forces.
%c shall come back to this point in Sec. IV.

The second term in Eq. (12) represents the radiative
correction to the energy of the oscillator proper, i.e., the
(nonrelativistic, spinless) Lamb shift. A straightforward
calculation gives, always to lowest order in ~,

e) = eo(rcoo/1T)lnrcoo .HO

For an oscillator in equilibrium with blackbody radiation
at temperature T, whose spectral energy density is

1+@
pT(co) =po(co) 1+a

with e=exp( —%co/kT), Eqs. (11) and (12) transform into

2e(coo)
so(T)=so(0) 1+

1 —e(coo)

3

s,(T)=e,(0)+ I 2 2
dco . (16b)

(1—e)(coo —co')

(E,(t)E (0))= 5; J e' 'dco .
1+'7 M

Since we are only interested in approximate results to or-
der ~, we should for consistency omit the extra denomi-
nator appearing in Eq. (9); this we shall do, indeed, ex-
cept in those instances where such omission can affect the
convergence of the integral.

In free space and in absence of external radiation, p(co)
represents the zero-point vacuum field,

N K0
po(co) =

Kc 2&c

The extra terms appearing in these equations represent
thermal contributions to the main energy of the oscillator
and to the radiative correction, respectively. To establish
a connection between thcsc I'csults and thc morc familiar
ones of quantum mechanics, it is convenient to recall the
Fokker-Planck equation of SED and the more complete
description of the oscillator furnished by this equation,
which includes the excited states. ' '" As we shall see in
Sec. III, this description is directly related to the one
given by quantum statistical mechanics.

III. GENERAL FORMULAS FOR THK ENERGY
CORRECTIONS ACCORDING TO SKD

Starting from the Braffort-Marshall equation a general-
ized Fokker-Planck equation has been derived in SED for
the phase-space distribution Q(x, p, t ).' When applied to
the harmonic oscillator in the long-time limit, this equa-
tion reads'

+~ V„Q—mcooV x+—p Qet m " '& m

where

VpVp.
.D—~~Q V„Vp.D—"~Q =0, (17)

2

DJ~= — I (E;(t)E J(0) )sincoot dt (18a)

Dt't'=e I (E,(t)E ~(0) )coscoot dt . (18b}

4me
5

~ pT2 (co)

3PP3 0 1 + Q) Q)0 —Qj
(19a)

2% 8
D/&~ pT(co )5;,——=D5;, ,

—
3Pl

with pT(co) given by Eq. (15), and hence

(19b)

In the stationary situation, Eq. (17) separates to lowest
order in v. into the equations

~ V„Q mcoox VpQ =—0, .

noopQ+D V~Q =0,
whose normalized solution is

t72 %6)0
3

cxp
2nD

The time-independent solution of this equation represents
the phase-space distribution for the oscillator in equilibri-
um with the background field. Let us consider that E is
the electric part of the blackbody radiation 6cld at tem-
perature T Then fro.m Eqs. (9) and (18), the diffusion
tensors are given by
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e, = ( n
~

Dgx; r)„~ n ) = i' T—rD "~ . (21)

Note that for the harmonic oscillator the value of c., is in-
dependent of the state of motion, which means that there
is no relative shift between levels and hence the transition
frequency is not afkcted by this energy correction. For
an arbitrary (nonisochronous) bounded system, however,
the frequency m0 depends on the energy level, and so does
the expectation value in Eq. (21). This happens, in partic-
ular, in the atomic case; the radiative correction produces
then an observable frequency shift for transitions between
bound states.

In order to compare Eq. (21) with quantum mechanics
we take Eq. (18a) for D "I', use E= —(1/c) A in the long-
wavelength approximation, and perform a double in-
tegration by parts, using the stationarity of the field,
(E(t) E(0))= (E(t+s) E(s)). Once more, we shall re-
call the difkrence between E and E only where it is
necessary for the convergence of the integrals. %e thus
obtain

This is the %igner distribution for the quantum oscillator
in equilibrium with blackbody radiation; by eliminating
the temperature parameter one arrives at the usual
description of the oscillator in terms of quantum states
and discrete energies. A perturbative treatment in terms
of the small parameter ~ gives for the first-order radiative
correction to the energy, '

Equation (24a) coincides with the result obtained by Bar-
ton' for the (first-order) correction of the energy for a
free electron (called 5& in Ref. 15). In quantum mechan-
ics, this correction comes naturally from the A term in
the Schrodinger equation when the electromagnetic field
is introduced as a perturbation.

The discussion of the connection between Eq. (24b) and
the corresponding quantum formula is left for Sec. V. In
the following we shall use Eqs. (24) to calculate the ener-
gy variations in some simple situations where the field is
externally modified,

IV. APPLICATIONS TO SIMPLE PROBLEMS

As Eqs. (24) show, an energy variation is always pro-
duced when the radiation field is modified. Such a
modification can be produced (a) by changing the energy
content per' normal mode (for instance, by raising the
temperature of the field, or adding external radiation), or
(b) by altering the spectral distribution of the field (for in-
stance, by introducing a metallic cavity that eliminates
the low-frequency modes).

The simplest kind of modification of the field, from the
mathematical point of view, consists in a homogeneous
and isotropic change of its spectral energy density. Since
for an isotropic field, we have from Eq. (8),

( A(s) A(0) ) =4irc f p(cu)co 2coscos dco, (25)
0

e 2 e02 2

2 ( A ) — f ( A(t) A(t —s ) )sint00s ds .
2mc 2mc

(22)

Eqs. (24) reduce in this case to

Fp 27M 2 —2f (p —po)to d ~
m 0

(26a)

Note that the first term is independent of co0, whereas the
second one vanishes for co0=0. This allows us to identify
the first term as the free-particle contribution to the ener-

gy correction and the second one as the Lamb shift prop-
er, 1.e.,

e", =(e /2mc )( A )
2

A s A 0 sinco0sds .
2mc

(23a)

(23b)

%hen A represents the zero-point radiation field these
equations reproduce Eqs. (13) and (14). But more gen-
erally, Eqs. (23}give the radiative corrections (for the free
particle and for the oscillator, respectively) produced by
any radiation field represented by the vector potential A.

The same equations (23) can be used to calculate the
variations of the energy shift produced by a modification
of the external conditions. Let us denote with a subindex
e the modified field and with a subindex 0 the vacuum
field; then the variations of the (first-order) radiative
corrections are

5c)HO
2' e 67 f 2

P
& z dc@, (26b)

0 QP ~0—Q7

where P denotes the principal part. Let us study the two
cases separately.

(a) First consider a change of the energy Z of the field
modes. If, for instance, the temperature of the field is
raised, then p(co) represents blackbody radiation,

pT(M ) =CO KT/77 c (27)

fi
FP ira (kT)

C$
mc

2CKA 6)0
2 2

561 —
2 — P

2 — 2d
mme 0 1 —& cg0 —u

(28a)

(28b)

ET= —,
' fico(1+e ) /( 1 —e),

according to Eq. (15). From Eqs. (26), the energy varia-
tions are then given by

2mc

6c. = — As -AO — As. AO
2mc

g slnQ)0s ds

(24a) Equation (28a} shows that any particle (even a free parti-
cle) acquires an extra energy as the temperature of the
background field is raised. This result coincides with 5&
derived by Knight' on a quantum basis. As discussed in
Ref. 17, from the point of view of SED it is natural that

depends on temperature, because it represents the ki-
netic energy of the random motion of the particle im-
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pressed on it by the blackbody radiation field. Avan
et al. ' arrive within the quantum scheme at the same
conclusion about the kinetic origin of c.&, if this shift is
interpreted in its turn as a mass correction, as these au-
thors propose, it will afkct the value of g —2 for the spin-
ning electron; this point, however, is outside the scope of
the present paper.

At room temperatures the frequency shift calculated
from Eq. (28a} amounts to 5v=2.4 kHz. Such a small
shift has been recently observed in highly excited Ryd-
berg states, in which the electron is nearly a free particle.

To evaluate the thermal contribution to the Lamb shift
we rewrite Eq. (28b) in the form

5E, =(2afi /irmc )coof(y), (29)

where

5e, = —(2n. /15)110(kT) /(iric)

where 110——e /mcoo is the polarizability of the oscillator.
In the quantum-mechanical analog of this result —which
looks formally identical to the above —5c.

&
is interpreted

as a dynamic Stark shift due to blackbody radiation. '

It is interesting to note that the strong binding of the
electron has the effect of suppressing the kinetic energy
otherwise induced by the thermal radiation field. In
more orthodox terms, binding of the electron to an atom
suppresses the scattering amphtude for (low-frequency)
photons. ' It is precisely the difFerence between 5e, for
tightly bound electrons and for nearly free electrons
which has made it possible to observe the thermal Lamb
shift by measuring the transition frequencies between the
ground state and highly-excited atomic states.

There are of course other means of modifying the aver-
age energy content of the normal modes K(co), thereby
affecting p(co); this can be achieved, for instance, by opti-
cal irradiation. The energy shift thus produced —called
"Laxnp shift" by Kastler —can be readily calculated
from Eqs. (26) and (27), if K(co) is known. Knight' con-

f(y)= I P
z

dxe"—1 x —y

and y =fuaolkT. For y «1, the integral gives approxi-
mately f (y )= —C ly, with C of order unity; hence,

5e", =— (2ak T—/rrmc )(ficoo/kT) .

This is a correction of first order in y to the free-particle
energy (28a). The energy shift for a loosely bound elec-
tron is therefore correctly given by (28a) in a first approx-
imation.

For y ««1, on the other hand, f(y ) has the approxi-
mate value

f (y) —= —(~'/6y') —(ir'/15y"),

which introduced in Eq. (29) gives

5e~ =-5s", (2—ir aA co—o/15mc )(kT/Acuo)

Thus we see that for a tightly bound particle, the Lamb
shift is almost cancelled by the free-particle shift: The
small thermal correction that survives is

siders an admittedly artificial situation in which a con-
stant number n of photons of every frequency m is added
to the vacuum within the range of frequencies
a & co/c & b; this amounts to K(co }=(n +—,

' )fuo and,
hence, from Eq. (27), p, =(2n+1}po for a &co/c &b and

p, =po outside this range. Equations (26}give then

5e", =naA (b a—)/mm,

a(ficoo) b z (coo—/c )
5F) =pl —

2
ln

mmc a —(coo/c )

in accordance with the quantum results reported in Ref.
16. (To compare 5e, , apply the quantum result
specifically to the harmonic oscillator. ) It is evident from
the above results that the number n and the spectral
width (b —a ) must be quite large to obtain a significative
shift.

(b) The distribution of modes of the radiation field can
be affected by introducing conducting objects that impose
new boundary conditions on the electric and magnetic
components of the field. The modified spectral distribu-
tion will of course be, in general, anisotropic and inhomo-
geneous, which means that instead of Eq. (25), one must
use

2

( A;(s)A, (0) )= J cosmos den
0 Q)

(30)

in Eqs. (24). When the distribution of modes becomes
discrete —for instance, in the space between two parallel
metallic plates —the integral over ~ transforms into a
sum over all possible modes. Such a case has been con-
sidered by Barton, ' who obtains for the free-particle
correction

5 Fp airfi 1 1
5ei + 2mL 12 4 sin (nz/L )

(31)

for L «z « iri/mc = A,„where L is the separation between
plates and z is the distance of the atom to one of the
plates. [Note that for L-A.„Eq. (31) already gives
5e", -amc which is too large to be considered a pertur-
bation; a more reasonable limit for the validity of this re-
sult would therefore be L «1,, / aMoreover, at such
small distances one would have to consider the e8ect of
the plates on the distribution

~ f ~

of the electron, since
the mean radius of the electronic orbits is larger than
A,, /a. ]

Since the above result was derived by Barton from Eq.
(24a)—although using a quantum language —there is no
point in repeating the derivation here. In the calculations
that led to Eq. (31) the radiation field was considered in
its ground state; it is clear that when the energy content
of the modes is raised, the formula for 5c.", has to be
modified accordingly.

It is interesting to observe that the modification of the
field-mode distribution results in a repulsive force on the
particle from the nearest one of the plates; the energy
correction attains its minimum value at z =I./2.

Already in 1965, Marshall had shown that the
Casimir force —the attractive force between two parallel



ENVIRONMENTAL EFFECTS ON THE LAMB SHIFT. . .

neutral metal plates —usually considered to be of quan-
tum origin, can be explained as a consequence of the
efFect of the boundary conditions on the random zero-
point radiation field; what Eq. (31) expresses is another
consequence of this efFect, now on a charged particle lo-
cated between the plates.

%hen the distribution of modes is changed without
altering the isotropy of the field, one can use Eqs. (26) to
evaluate the energy shifts. Consider, for instance, a
waveguide that has the efFect of eliminating all modes of
frequencies co g co, without altering signi6cantly the oth-
er modes. As a result, the free-particle energy is lowered
by the amount

5eFip ———(a/2ir)(6'co ) /mc

and the oscillator energy is shifted by

2 20!A 6)p
25e, , = — lni 1 —(t0 /coo) i

.
2&Ptl 8

Once more we see that for very high oscillator frequen-
cies (coo&&co ), 5s, essentially cancels 5e", : A tightly
bound particle does not "feel" the presence of the walls.
The reason for this is that the 6eld modes that contribute
most to the kinetic energy e, of the particle (those with
co-coo) were not altered by the waveguide. For an almost
free particle, on the other hand (coo g~m ), one has

«~02 2

5eHo= —,ln
'1Tl?2 C ~p

which represents a small correction to 5e", . In this case
the field modes with m-cop are absent, and their contri-
bution to the kinetic energy c,

~
is therefore subtracted.

One should be aware that in practice co cannot be ar-
bitrarily high: Conducting walls are transparent to elec-
tromagnetic fields of frequencies higher than 10 mc /fi

(or even lower, if the walls are very thin) and the cavities
are therefore not efFective at these frequencies. Since the
main contribution to c& comes from the high frequencies,
only a small fraction of this energy [of order (co /co, ),
where ro, is the relativistic cutoff' frequency mc /fi] can
be removed by means of the cavity.

V. CONNECTION WITH THK GKNKRAI.
QUANTUM FORMULAS

The speci6c calculations of Sec, IV serve to show that
the SED formulas for the energy variations induced by
environmental changes of the radiation field, Eqs. (24),
give correct results. It seems therefore opportune to ana-
lyze the connection between these general formulas and
those derived from the quantum formalism.

With this purpose in mind let us go back to Eq. (21),
which gives the total radiative correction to the energy,
and rewrite it in a quantum language; with D'~ given by
Eq. (18a), we obtain

'D"~y—&n ~x, ~k)&k ~p, ~n)

y f"&E;(s)E (0)) &n
~ x, ~

k)
f2Pl k 0

x & k
~ p, ~

n )a)„-„'sin~„„sds,

where k refers to the intermediate states of the particle.
In making this transition to the quantum language we
have taken advantage of the fact that the oscillator of
SED has been shown to coincide with the quantum one.
In writing the last equality we have taken into account
that co„k ——+~p. After a double integration by parts one
obtains

& g &n ]xz )
k ) &k [p; (

n ) —
& &;AJ )+co« f & A, (s)A&(0))since«s ds

AFPlC 0

Finally, applying the Thomas-Reiche-Kuhn sum rule to
the first term and using

& n
~ p, ~

k ) =ima)«& n
~ x, ~

k ),

I

Equation (32a) coincides with (23a), and Eq. (32b) is an
alternative expression for the Lamb shift of the oscillator,
equivalent to (23b). To perform the time integration in
Eq. (32b), we expand the vector potential as a Fourier
series,

one gets

~FP+ ~HO
A(t)=+[ A exp( iso t)+ A e—xp(iso t)], (33)

with

=(e /2mc )& A ), (32a)

where co &0. The amplitudes corresponding to different
normal modes are uncorrelated: & A; A~* ~ )

A~" )5,whence Eq. (32b) transforms into

2

z g f &n [p A(s) ik)&k ip A(0) in)

Q slnGP~kS EA

P,
o=, , y g & n

~ p ~.*
~

k ) & k
~ p A.

~

n )
flail C

l +
CO„k +CO~ CO„k —QP~

(34)
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Although not explicitly stated, Eqs. (32b) and (34) imply
statistical averaging of 3; A -'.

The above equation applies to any kind of random ra-
diation field represented by A, whether in free space or
inside a cavity, whether in its ground state or in an excit-
ed state. In particular, when A represents the zero-point
vacuum field, the sum over a transforms into an integral
over co, and Eq. (34}reduces, using Eqs. (9), (10), and (33),
to

suit without the need to renormalize: The appearance of
the two terms in the integral I„k in Eq. (35)—in contrast
with the single term under the integral sign in the quan-
tum expression (37)—eliminates the presence of a free-
particle (co„k ——0) contribution in the SED case. More-
over„as mentioned above, the convergence of I„k is as-
sured by the extra factor (1+v co ) ', the cutoff'co, has
been introduced just for convenience.

VI. CONCLUSIONS

with

~nk = —nk

The logarithmic divergence of this integral can be elim-
inated by recovering the denominator 1+v co which we
have omitted throughout; but in order to maintain the
similarity with the usual quantum procedure we choose
rather to make the integral converge by replacing the
infinite upper limit by the finite cutoff co, -mc /vari&&co„i.

The above equation becomes then

HO
E)

2e g I
(k

I p I

n &
I

co„„ln
3&01 c

(36}

This result coincides with the Bethe formula for the
Lamb shift. ' In conclusion, both the free-particle energy
correction, Eq. (32a), and the Lamb shift, Eq. (35), are
correctly given by SED in the nonrelativistic, spinless ap-
proximation.

It seems convenient to point out some difFerences be-
tween the procedures used in SED and in QED to arrive
at these formulas. In the quantum case, second-order
perturbation theory is used, with the interaction Hamil-
tonian given by H;„,= —(e/mc)p 2+(e /2mc ) A .
The quadratic term gives rise to the free-particle energy
correction. But the energy derived from the linear term,

3&Pl c
(37)

still contains a (linearly divergent} free-particle contribu-
tion that must be subtracted to obtain the Lamb shift
proper. The formula thus derived, '

HO
E,g

still contains a logarithmic divergence, which calls for the
introduction of a cutofF.

In the SED case, the term that gives rise to the radia-
tive energy shift is present from the very beginning [see
Eqs. (17) and (21)]; there is no need to introduce it as an
additional interaction. In the explicit calculation of the
energy shift, the free-particle and bound-state contribu-
tions are clearly identi5ed and the latter gives a finite re-

We have seen that SED and QED give the same formu-
las for the radiative energy corrections of the oscillator in
the nonrelativistic, spinless approximation, and hence
they also predict the same results for the energy varia-
tions produced by environmental modifications of the ra-
diation field. But we observe that in SED there is no risk
of an incorrect or undue interpretation of the various en-

ergy terms, because the physical origin and nature of
these terms is clear from the beginning. Moreover, the
fact that the coupling with the radiation field is used as a
starting point in SED, and not introduced ad hoc,
guarantees that no part of this interaction will be omit-
ted, thus avoiding the risk of arriving at misleading re-
sults such as the partly incorrect quantum calculations
discussed in Refs. 13 and 14. In addition, by keeping
track of a second-order efFect of radiation reaction, SED
arrives at a convergent expression for the Lamb shift, in
contrast with Bethe's formula.

The SED theory as presented here does not enable us
to calculate the external efFects on the observable mass,
because our starting point, Eq. (1), is already written in
terms of the physical (renormalized) mass. In a second
paper we show that a Hamilionian treatment of the
particle-plus-field system, leading to the Braffort-
Marshall equation (1), yields a formula for the mass
correction 5m„and that this correction does indeed de-
pend on external conditions.

Barton' asserts that the long-range efFects on the atom
placed between the metallic plates depend wholly on the
fact that the field is quantized. This was also usually said
of the Casimir and Van der %aals forces before they
could be shown to be a consequence of the random zero-
point radiation field, without the need of quantization. '
The calculations presented in this paper support the SED
conclusion: The appearance of long-range efFects that de-
pend on Planck's constant i' (or the fine-structure con-
stant a) can be explained as a natural consequence of the
coupling of matter to the random zero-point field.

This allows for a clearer explanation of the energy vari-
ations due to environmental changes: there is no need to
think that the "mode structure of virtual photons" is be-
ing changed; there is, in fact, no need to think at all of
"virtual photons having real efFects, " as is said, e.g. , in
Ref. 12; the zero-point radiation field is as real as the
efFects it produces. By the same token, there is no need
to invoke "virtual transitions*' to explain the contribution
of nonresonant frequencies co&~„k to the Lamb shift, as
is customary in quantum calculations: Instead of being a
product of energy-non-conserving emission and absorp-
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tion of virtual photons, for SED the Lamb shift results
from the permanent interaction of the stochastic electron
saith background radiation of all frequencies.

Although the explicit calculations presented in this pa-
per refer only to the free particle and to the harmonic os-
cillator, the meaning of the results and all our above con-
clusions are directly applicable to other bounded systems.
%'hen SED eventually offers a correct and complete

description of the atomic problem, it vvill also serve to
calculate the radiative energy corrections and their envi-
ronmental changes more rigorously.

The authors wish to thank T. A. Brody for his careful
revision of the manuscript.
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