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A method of calculating expectation values and transition moments within the framework of the
generalized coupled-cluster I,'CC} method is described. This approach allows for a direct calculation
of first- and second-order static properties, as we11 as response functions for a many-fermion system.
Diagrammatic and algebraic techniques of the preceding paper are used to obtain explicit algebraic
formulas for what is called one-particle CC density and transition matrices. From these quantities
the ground-state expectation value and transition moments for an arbitrary one-particle operator
can be easily computed.

I. INTRODUCTION

In this fourth paper of the series (Refs. 1 —3, referred to
as papers I, II, and III) we show that the generalized
coupled-cluster (CC) method introduced in paper I can be
extended to calculations of static and dynamic properties
of a many-fermion system subject to an external pertur-
bation. In a standard perturbation theory, basic in-
gredients needed for computing these properties are the
spectrum of the unperturbed Hamiltonian 8, and expec-
tation values and transition moments for the perturbation
operator f'. The spectrum of 8 (in practice a part of it) is
provided by the generalized CC method. '2 In the
present paper a method for calculating the expectation
values and transition moments will be described,

The standard CC method, being neither variational
nor perturbational, does not provide a simple prescrip-
tion for calculating a system's properties. A systematic
treatment of static and dynamic properties in a frame-
work of the CC method was proposed by one of us. In
this approach, ' suitable for calculating static first- and
second-order properties, as well as dynamic response
functions, an explicit dependence of the CC operator on
the perturbation parameter (and time —when dynamic
properties are considered) is assumed. Similar formal-
isms were also studied in Refs. 9-12. Arponen' initiated
a di6'erent CC approach to static first-order properties by
employing a variational principle; this approach has been
further studied by Pal. ' lt is also worthwhile to mention
a solution of the problem of analytical energy gradients in
the CC method. ' Last but not least, successful CC cal-
culations of static properties of atomic and molecular sys-
tems has been performed by using a 6nite-field perturba-
tion approach. '

A characteristic feature of the method we propose in
the present paper is that it directly determines reduced
density and transition matrices' (or, rather, certain
equivalents called the CC density and transition matrices)
for the unperturbed system. An obvious advantage of
such an approach is that once the n-particle density and

transition matrices are found, the expectation values and
transition moments can easily be generated for an arbi-
trary n-particle operator P; Here, explicit algebraic for-
mulas are derived for the case n =1. Throughout the pa-
per the formalism and notation of papers I, II, and III
will be used. As before, we shall refer to equations con-
tained in these papers by preceding a pertinent formula
number with a proper Roman numeral (I, II, or III).

In Sec. II a brief summary of the generalized CC
method' is presented. Section III contains basic formulas
for expectation values and transition moments, and a
system's properties expressible in terms of these quanti-
ties. The derivation of the CC formulas for expectation
values and transition moments is given in Sec. IV. In
Sec. V we employ diagrammatic and algebraic techniques
from papers I and III to 6nd explicit algebraic formulas
for some one-particle CC density and transition matrices.
An overview of the generalized CC method as a complete
algebraic approach to the many-fermion problem is given
in Sec. VI.

II. GKNKRALIZKD CC METHOD —A SUMMARY

Throughout the paper we use the notation introduced
in paper I and summarized in Sec. II of paper III. In the
generalized CC method the Hamiltonian 8 for the sys-
tem, given in Eq. (I.16), is first expressed in terms of the
quasiparticle fermion operators [see Eqs. (I.26) and (I.27)
and also Eqs. (III.10)—(III.13)] assuming the form given
in Eq. (I.31). In this form 8 is manifestly a
quasiparticle-number-nonconserving operator [see Eqs.
(I.39) and (I.40)]. Then a similarity transforniation (III.1)
is performed, yielding the e8'ective Hamiltonian 6 subject
to the condition of being quasiparticle-number conserv-
ing [see Eq. (I.41)]. In other words, it is required that

CE9
where 9 is a subalgebra of the Fermi-Dirac algebra [see
Eq. (III.23)]. The wave operator 0 appearing in Eq.
(III.1) (called a universal wave operator, since it is—in
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where the excitation wave operator Q,„and the deexcita-
tion wave operator Qd„are expressed in an exponential
form,

0,„=expe, (3a)

Od„——exp= . (3b)

Operators OCV( (even) and =C Pi (even) [see Eqs.
(III.23)-(III.25)] will be called the CC-excitation and
CC-deexcitation operator, respectively, and may be ex-
pressed as

O=yye, YJ'$',
X Y
tx &y)

(4a)

principle —defined for all the eigenstates of 8) is chosen
in the following form:

as one is interested only in the spectrum of 8 there is no
need for knowing the deexcitation CC operator ". How-
ever, this operator will prove its usefulness in determin-
ing expectation values and transition moments (see Secs.
IV and V of this paper). An explicit algebraic form of the
generalized CC equation (9b), from which the g ampli-
tudes of operator " can be determined, is studied in pa-
per III [see Eqs. (III.79) and (III.80)].

For the efFective Hamiltonian 0 fulfilling condition (1)
there can be found an operator B E P such that operator
B '68 becomes diagonal in the basis set (III.20),

I
qp» g q)») (12)

B —tG$@» g»q)» .

here [E I is the spectrum of Hamiltonian B. The ortho-
normal set of eigenfunctions of 8 can now be expressed
as

==ggg» X 1'
X Y

where operator
4b

[see the comments to Eq. (III.22c)]. Due to form (2) as-
sumed for the wave operator 0, it is convenient to split
transformation (III.1) into two steps. In the first one the
auxiliary effective Hamiltonian f' is found,

(5)

is assumed to be unitary,

(14)

For convenience, we rewrite Eqs. (11) and (14) using a
matrix notation,

(6)

and in the second step the proper efFective Hamiltonian 0
is calculated,

B» Gz, Bz, =E &»
Z2 Y X Y

1 2

(z) ——z2 ——x =y)

Zf Z2
(z& —z2 —x —y)

(15)

(16)

(8) where

G Y (q&»i G(pY)
Requirement (1) puts a constraint x =y on the summa-
tloli 111 Eq. (8); this turlls ollt to be equivalellt to colldi-
tions

(18)

(19)
yx' —0 for x ~y,
gx =0 for x gf

(9a)

Conditions (9a) and (9b) compose two sets of equations
from which 8 and g amplitudes [see Eqs. (4)] can be
determined, respectively. These generalized CC equa-
tions are nonlinear coupled algebraic equations (for de-
tails, see papers I, II, and III); it is to be noted that in
each case the number of unknowns (the 8 or g ampli-
tudes) is equal to the number of equations. In paper I we
show that when conditions (9a) are met one has also

gx =0 for x Qg
Y

and 5» is the generalized Kronecker delta defined in Eq.
(III.19). It is to be noted that because C,SC P, strings
X, F, Z, and Z2 [see definition (III.15)] in Eqs. (15) and
(16) are of the same length: x =y =z, =z2. Hence,
operator 0 is already block diagonal in the basis set
(III.20). In paper I, Eqs. (I.101)—(I.106), the structure of
matrices [6»") was given for cases x =y =0, 1, and 2
(these numbers correspond to the numbers of quasiparti-
cles in the system in each ease). For x =y =0 (X, F are
the empty strings) there is no quasiparticle in the system
and the corresponding wave function from set (III.20) is
4, the model vacuum [see Eq. (III.12)). In this case Eq.
(15) reduces to

gx =fx for x =gY Y (10b)

Equation (10b) brings about an important simplification:
g amplitudes of operator C of Eq. (8) can be found
without actually solving Eq. (9b). In other words, as long

(20)

where E is the ground-state energy of the system (actual-
ly, we do not insist that E is the lowest energy level, it
serves rather as a reference from which excitation ener-
gies are calculated). Equation (16) leads to
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(21)

and hence
~

8
~

serves as a normalization constant for
the ground-state eigenfunction of H,

4= /8/QCt. (22)

It is easy to verify that because of the definition (4b) of
the CC deexcitation operator, one has

Qd,4=4,
and thus, when the intermediate normalization for 4 is
assumed (8 set equal to 1),

tlt = exp(O)4, (24)

which is a well-known formula of the standard Cc
method [see also the discussion in paper I, starting
with Eq. (1.122)j.

It seems quite obvious that in the general case of
x =y =n one can solve Eq. (15) without imposing the
normalization condition (16). However, we would like to
make an observation which will prove helpful in our con-
siderations in Sec. IV of this paper. Let us introduce ma-
tnces {Cx, x =y I such that

system described by Hamiltonian A. Quantity

v '=(e
~

vq ') (29)

H(x) =8+sf', (30)

~here k is a perturbation parameter. The Rayleigh-
Schrodin er perturbation theory applied to the ground
state of leads to the following expansion for an eigen-
value of 8(A. ):

E(k) =E' '+LE'"+k E' '+ (31)

where

E{1) y

(32a)

(32b)

is for L = 7 called the expectation value of operator V in
state %', and for X&K, called the transition moment of
V for states 4' and '0; the states in question are ortho-
nonormal eigenstates of H, taken from set (12). Below, a
few examples of a system"s properties which can be ex-
pressed in terms of integrals Vx are given.

Let us write the perturbed Hamiltonian for the system

{z=x =y) E{2) Vx[2
gEx

where

Ax"=~x4 '
(26)

Cx Gz, Cz, =E &x
Zz F x Ã

1 2

{z&—z2 ——x =y)

(27)

where matrix {Cx I is the inverse of matrix {Cx
Now matrix {Cx ] represents a general solution to Eq.
(15), not necessarily fu16lling Eq. (16). A simple identity
following from Eqs. (25) and (26) will prove to be useful:

(28)

and A,x are arbitrary nonzero parameters. After substi-
tuting Eq. (25) into Eq. (15), the following set of equa-
tions emerges:

{x&0)

In Eqs. (32) F. is the ground-state energy of Eq. (20), V is
the expectation value of P' in the eigenstate ~p [see Eq.
(22)], V is the transition moment of P' for states qt and
4, and AE is an excitation energy

gEx Ex (33)

V(r ) t V( t6Jt+ iatt)eat— (34)

where o. &0„ the dynamical behavior of the system may
be described by the response function,

E"' and E' ' correspond to erst- and second-order static
properties of the system.

In the case of a time- and frequency-dependent pertur-
bation

(note: there is no summation over strings Z in this equa-
tion).

Equation (27), for x =y =n (n =0, 1, . . . is the number
of quasiparticles in the system), corresponds to the diago-
nalization of a non-Hermitian matrix {Gx I by means of
R slInllal lty tl ansfoI'Inatlon. The matrices involved RI e
(„)X („)matrices, where M is the dimension of the spin-
orbital basis set (III.4). the dimension of the matrices can
be reduced after symmetry properties of the Hamiltonian
8 are taken into account (see paper I). Obviously, in
practice only a part of the spectrum {E I, corresponding
to small n's, can be calculated this way.

III. EXPECTATION VAI.UKS AND TRANSITION
MOMENTS, AND SYSTEM'S PRGPKRTIKS

Let us assume that operator V is a Hermitian operator
representing a certain perturbation to our many-fermion

(( v, v )).=,' g ~

v
~

'
X

{x&0)

1 1

~—aEx a)+ LEx

(35)

might be used. It should be remembered, however, that
the above sum rule is observed exactly only if set (12) is

It is seen that (( V, V)) reduces to E' ' for co~0.
The static and dynamic properties discussed here cor-

respond to a perturbatlon-theory approach based on the
full set of eigenstates of Hamiltonian H, obtained in the
algebraic approximation. Due to computational limita-
tions (see remarks at the end of Sec. II) one has to restrict
the summations in Eqs. (32c) and (35). To assess the va-
lidity of such restrictions, the sum rule

g /

V
/

'= ( tlt
f

V '4 )
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complete, which is not the case in the algebraic approxi-
mation.

IV. CC FORMUI. AS FOR EXPECTATION
VAI.UKS AND TRANSITION MOMENTS

Vx"= g g &x 'Wz, '&z, '
Zl Z2

(zl ——x) (z2 ——y)

where we denote

(39)

By employing representation (12) of the eigenstates of
8, one may write the general matrix element of Eq. (29)
as

vx'=&cxI ~ 'f'~e "&=&c'I ~ -'v~c "&

= &(8 -')"c'I n -'f'nkvd '&

w, "=&axI n -'0'ne'& .

There seems to be an apparent problem with formula (39)
in that it requires the knowledge of matrices {Bx ] sub-
ject to troublesome condition (16). This problem disap-
pears in the case of calculating expectation values:

V,.= yy ax'Wz'azx
Z Z

1 2
1 2

One finds also that [see Eqs. (15) and (16), and definitions
(18) and (19)]

(38a)

(zl —z2 —x)

XX Cx 'Wz 'Cz
Z Z

1 2
1 2

(z, =z, =x)

(41)

(z =y)

(p —i )t@x y gz(g z)e

(z =x)

(38b)

the last equality follows from Eq. (28). In the ease of a
transition moment (X&I'), let us note that what is actu-
ally needed for calculating second-order properties [see,
e.g. , Eqs. (32c) and (35)] is the square of its absolute
value,

Note that in Eqs. (37) and (38) there is, in general, x+y,
since t need not be a quasiparticle-number-conserving
operator. By substituting Eqs. (38) into Eq. (37) one ar-
rives at the formula

I
vx'

I

'= vx "vr (42)

By substituting formula (39) into the above equation one
finds that

V~ Vy ——X

Zl Z4 Z2
(z

1

—z4 ——x ) (z2 ——z3 ——y)

1 4 2

(zi —-z4 ——x) (z2 =z3 =y)

+8 'W '8 "8 'W '8X Zl Z2 F Z3 Z4
Z3

Z3

(43)

where, again, we have been able to use Eq. (28). It can be
shown that matrices {Bx ] can be eliminated in a similar
way also from the formulas for higher-order properties.

Equations (41) and (43) are our basic CC formulas for
expectation values and transition moments„respectively.
For calculating matrix elements (40), one needs to know
operator

(44)

Iv I'= gy w'c, xc, 'w, .
Z Z

(zl —z2 —x)

(48}

One also finds that the left-hand side (lhs) of Eq. (36) can
be written as

l

derived by Arponen' (his "extended expS" method).
For the second-order properties (32c) and (35), Eq. (43)
simplif][es to

g Iv I'=Xw wx. (49)

Diagrammatic and algebraic expressions for some m

amplitudes of operator @'will be derived in Sec. V. Now
we write a specific case of Eq. (41) corresponding to the
first-order property (32b):

v=w=&e In-'f'ne & .

Note that operator W of Eq. (44) is not Hermitian, and
hence, in general, Wx&(W )*. Parameters W, W, and
8'z may be expressed in terms of m amplitudes of opera-
tor IV [see Eq. (45)] by using formula (I.B30); in this case
one gets, simply,

By substituting Eqs. (2) and (3) into the above formula
and taking into account property (23), one finds that

V= &4
I exp( —=) exp( —O}t&'exp(e)

I
4&,

which is equivalent to the formula for expectation values

8'= m,
~X ~X

(50a)

(50b)
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where the U amplitudes are given by [see Eqs. (I.31) and
(I.32)]

(S3a)

V P
p 0'

s s
J

Ur Qr &

(53b}

(53c}

In Eqs. (53) indices p and cr correspond to spin orbitals
occupied in the wave function 4 (model vacuum), and in-
dices r and s correspond to unoccupied spin orbitlas [see
Eqs. (I.25)]. In Eqs. (51), (52), and (53a) Einstein's sum-
mation convention is used [see also Eqs. (III.22a) and
(III.22b).

V. ONE-PARTICLE CC DENSITY
AND TRANSITION MATRICES

In this section we assume that 0 is a one-particle
operator in Fock space,

V=Q a a.
l J

where u;j=(uj')' are one-particle integrals, and the fer-
mion operators are those of set (III.9) [see also Eqs.
(I.16)-(I.19)]. When expressed through the quasiparticle
fermion operators of set (III.10) corresponding to the
particle-hole transformation (I.27), this operator reads

(52)

As the effective Hamiltonian C [see Eqs. (S) and (7)],
the transformed operator @'ofEqs. (44) and (45) is calcu-
lated in two steps. First, the auxiliary transformed opera-
tor 'F is found:

(54)

X F

and then operator 8'is determined as

8'= 0 d„'YQd„.

(55)

It is very advantageous that to calculate the system's
properties described in Sec. III; one needs to know only a
small subset of W amplitudes [see Eqs. (50)]. Below we
shall 6nd explicit algebraic formulas for the amplitudes
N, N, and NJ.

%e shall use diagrammatic and algebraic techniques
described in paper III. A raphical representation of the
v amplitudes of operator, the v amplitudes of operator
Y, and the w amplitudes of operator k is shown in Fig.
1. Diagrammatic expressions for some v amplitudes are
given in Fig. 2 and those for m amplitudes in Fig. 3. The
final diagrammatic formulas for the amplitudes tLl, m;~,
and w", expressing them in terms of v, 8, and g ampli-
tudes, are given in Fig. 4. The approximations used to
obtain these formulas are those employed in papers II
and III. Now we write down these formulas in the alge-
braic form according to the rules set forth in paper III:

~kill+ pk C~ "k emiij 64 Ui ~m&ki ~

kl I kl m kl m kl rn
wij Uij + 2

U ~klij Y(k Ui ~mklj 0 Uj ~mkli ) 0 k ~mlij

~lmk 0 " ~imk } r~(k "
i (giklmU/np gJklmUlnp )

& (giklmU np J gjklm nt) i} i gi/kl & gi/kl mn6i
6 nklrn nklm k nlm k elm T kl 4 nmkl

(57a)

(57b)

(57c)

It is seen that the right-hand sides (rhs's) of the above
equations are linear in v amplitudes, so these equations
may be rewritten as follows:

w =U +U, ~DJ'(
I
)+—'O'JDij(

I
)+ ,'U; D'(

I
), — (Ssa)

u; =U; + ,'U" Dki; —(ij
I )+[U, Dk ('j

I
) 'U "Dk;(ij

I
)]—

+Uk'Di;, "(V
I »

w'=U'+ ,""'D.i "(
I
V)-

+[»k'(
I
ij)—U' Dk (

I V)]

+Uk'Di'"(
I

lj}+[Uk'D'"( IV) 'Uk'D'"(
I
V}]-

+ ,'UkiD"'(
I
V)-

Here we have introduced quantities Dz (X
I
F) which

l

form what we call the one-particle CC density (for X = Y)
and transition (for X&Y) matrices:

D, '(
I

}= 2s~™k'"ejki .'0'"—'
fj,ki——

D, (
I
}=——'0"'t)kij

Dtl(
I

) glj

Dkl, (V I
) =f)ki;,

Dk, (V I

}=—
—,
'0' iji kj

Di, "(V
I
)=4" ~ i„

Dkl"( Iij)= (k™eki'—0' f)ki ')—

Dk'(
I
V}= ,'k™fbik'+ ,'S—J™—~ki~-

Dk'(
I
V}= 2(™~ik'+—64—1™~ki~-

D k&g(
I

~

} & (gikmno j gjkmng i)

D'"(
I
V)=P' ~

(S9d)

(S9e)

(59g)

(59i)

(59j)
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+ + ( ) + (
J Jg isE IJ aei

~l 9& s ~IJ w~r &
V g~r e

(b) I I I I

ux Y

I[

I I I I

&&
[I

(c)
A. A) %XVp+p++&'''y+

I

D &k(
~

~

) g&k

D"'(
~
tj)= gjk . —

(59m)

(59n)

It is seen that quantities Dz (X
~

I') are antisymmetric
1

with respect to permutations of indices within strings Z,
and Zz. In the case when the quasiparticle fermion

FIG. 1. Diagrammatic representation of (a) the U amplitudes
of operator f' [see Eqs. (52) and (53)], (b) the v amplitudes of
operator 9 [see Eqs. (54) and (55)], and (c) the w amplitudes of
operator @'[see Eqs. (44) and (45)].

FIG. 3. Diagrammatic expressions for w amplitudes of
operator lk (a) w, (b) w;, , and (c} w". The graphical symbols
for parameters r'»'" and ( amplitudes of operator = [see Eq.
(4b)j appearing in these expressions are shown in Fig, 12 of pa-
per III. Expressions {a)-{c)have been derived using the approx-
imation set forth in Fig. 13 of paper III and Fig. 2 of the present
paper.

operators of set (III.10) are obtained by using the
particle-hole transformation [see Eq. (I.27)], the pseudo-
charge symmetry imposes restrictions (III.72), and in this
case Eqs. (59) read [see also Eqs. (53)]

(60a)

o=+. (60c)

I: I

+ ~» = 4~ +
l l

(c) ... II::: ~.+ 4P&'3 =,' ' + ( & ~

(d)

( 3

I I I+
) ~

~ei
(e)

l
(b) Wl+

~ = ', ~.' + ( s — c ) ~

+ + ( ) e

(c) ep ~IQ
)

FIG. 2. Diagrammatic expressions for v amplitudes of opera-
tor 7: (a) v, (b) v, (c) v;, , (d) v', (e) v;, "', (f) v;,k', and (g) v;,ki.
The graphical symbols for parameters ~z, and the 8 amplitudes
of operator 6 [see Eq. (4a)j appearing in these expressions are
shown in Fig. 1 of paper I. In the derivation of (a)-(g) the ap-
proximation set forth in Fig. 9 of paper III is assumed; the v
amplitudes other than (a)-(g) are assumed to be equal to zero.

I l4~
3 (

I

FIG. 4. Diagrammatic expressions for w amplitudes of
operator k, obtained by substituting the expressions given in

Fig. 2 for those of Fig. 3.
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DP"( I ) — P"

D „,(pr
i
)=8

D „(pr
i

)= —g"8 „„,
D, (pr

i

)= —g"8 „, ,

D„„,'(pr
[
}=—g"8, „, ,

D, "(
/
pr ) = —(P'8 „"+j'"8, , ) —g'""8. .. ,

D P(
~

pr)= g"8—„P+—,'P'"'8, „, ,

D, "(
i
pr)= —('8„,"+—,'P '"8

D (7pf(
~
pr )

1 gpcTsI8 I'+ gi7Uwl'8 p

D Prs(
~
~r ) gPuus8 r+ ] gosrs8 P

D "{ ICr)=~""

D"{ISr }=V'

D '(
~
pr}=P "' .

(60h)

(60i}

(60j)

(60k)

(601)

(60n)

(60o)

(60p)

(60q)

There are our final formulas for the one-particle CC den-
sity and transition matrices. The derivation of the two-
particle CC density and transition matrices can be per-
formed similarly; such a derivation would produce ap-
proximately twice the number of terms in Eqs. (60).

Our one-particle CC density and transition matrices
are defined merely as sets of linear coeScients (59) and
(60) corresponding to formulas (58). In order to show
how they are related to the usual density and transition
matrices, ' let us consider the case of the ordinary one-
particle density matrix corresponding to our ground-state
wave function qs [see Eqs. (22) and (24)]. The expectation
value [compare Eq. (29)]

v=&e
i

Pq &&+
i

e&-' (61)

(63)

and matrix 6 represents the one-particle density matrix'
for the wave function O'. In order to facilitate the com-
parison between the ordinary and the CC density matrix,
we rewrite Eq. (62) by using difFerent indices for occupied
and unoccupied spin orbitals [compare Eqs. (53)]:

With the same operation performed on Eq. (58a) and by
taking into account relations (46) and (50a), one arrives at
the formula

V=U+U D '{
~, )+U„'D, "(

~

)+U""D „(
~

)+vp„Dp"(
~
),

I', 653

for the one-particle operator I of Eq. {51)can be written
in the following form:

(62)

where the quantities appearing on the rhs of this equation
are defined in Eqs. (53) and (60a)—(60d). The comparison
of formulas (64) and (65) reveals the following relations:

=5 D—P(', ),
6,"=D,"(

~
),

b„P=D „(~),
b.p" DP"——(

i
) .

(66a)

(66b)

(66c}

(66d)

Matrix b, calculated by using Eqs. (66) is exactly Hermi-
tian [see Eq. (63)] only in the case when the generalized
CC equations (9) have been solved exactly. Because our
Eqs. (60a)-(60d) correspond to an approximate solution
of Eqs. (9), an average procedure yielding

&„P=(bp")'=-,'IDp„(
~

)+[DP"(
~

)]*),
etc. , can be applied.

VI. GENERALIZED CC METHOD —AN OVERVIK%'

In papers I, II, and III and this paper (paper IV), the
formalism of the generalized CC method has been
presented. This method provides a systematic treatment
of the many-fermion problem studied in the algebraic ap-
proximation (i.e., with the Pock space generated by a
chosen finite basis set of spin orbitals). A hierarchy of
coupled nonlinear algebraic equations (the generalized
CC equations) is obtained, with the amplitudes of the CC
excitation and deexcitation operators as unknowns. By
solving these equations the amplitudes of the efTective
Hamiltonian and the CC density and transition matrices
can be determined. These quantities may then be used
for calculating the energy spectrum and static and dy-
namic properties of a given many-fermion system. In pa-
pers I and III we developed special algebraic and di-
agrammatic techniques for deriving and handling of
numerous algebraic formulas which appear in the gen-
eralized CC method. The approximation schemes de-
scribed in paper I, employing truncated CC operators,
effectively decouple certain subsets of the generalized CC
equations; this makes the many-fermion problem in ques-
tion computationally tractable. This hierarchy of ap-
proximations (closely related to that of the generalized
CC equations) begins with the Hartree-Fock approxima-
tion and ends at the exact solution. It is fair to say that
the approximations studied in paper I, and implemented
in papers II, III, and IV, are suitable for many-fermion
systems with soft-core interactions such as electronic sys-
tems. For systems with a hard-core interparticle poten-
tial, as considered in nuclear physics, other approxima-
tion schemes might be developed, see the article by
Kummel et al. in Ref. 4.

Apart from providing a well-defined hierarchy of ap-
proximations suitable for practical applications, the gen-
eralized CC method offers also a new insight into the
quasiparticle model for a system of many fermions. This
model emerges here not as a semiphenornenological ap-
proximation but rather as a rigorous scheme in which
every eigenstate of the system's Harniltonian H is as-
signed a new quantum number equal to the number of
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quasiparticles. Such an assignment can be achieved by
applying a mathematical procedure we describe in detail
in paper I, Sec. III-V. In the case of a "normal" system,
for which the Hartree-Fock (HF) approximation is quali-
tatively correct for a S-particle ground state, our quasi-
particles (in this case "particles" and "holes" ) correspond
to some (%+I )—particle states of the system. As eigen-
states of A, these states are stationary states of the system
that lead to infinite lifetimes for the corresponding quasi-
particles. At this point the reader may note a difference
between the present quasiparticle model and that of the
Green's function method, ' where the lifetimes of quasi-
particles are, in general, finite. In our model the descrip-
tion of a many-particle system, given in the terms of
quasiparticles, parallels that given in the terms of parti-
cles, the Hamiltonian 8 for the particles corresponds to
the Hamiltonian C for the quasiparticles, the physical
vacuum 4o (the vacuum for the particles) corresponds to
the model vacuum 4 (the vacuum for the quasiparticles).
By design [see Eqs. (III.1) and (III.2)], the spectra of 8
and 6 are identical, and in the present paper we have
shown how the expectation values and transition mo-
ments corresponding to eigenstates of 8 can be calculat-
ed by employing some quantities associated with Hamil-
tonian C. It is to be stressed that the choice of the model
vacuum 4 is (to some extent) arbitrary from the

mathematical point of view; it depends on the choice of
the reference eigenstate qt [see Eqs. (22) and (24)]. qt is
usually chosen to be the eigenstate of A' corresponding to
the ground state of the system. Such an assignment may
depend, however, on the value of the chemical potential
for the system. In our approach (see paper II), 4 is an
approximation to the Brueckner (or maximum overlap)
configuration corresponding to O'. It can be determined
iteratively starting, e.g., from the appropriate HF wave
function.

%e conclude that the generalized CC method o6'ers a
consistent and complete approach to the many-fermion
problem in the algebraic approximation and may provide
an alternative to the Green's function method' which
still dominates in the field of the quantum many-body
theory.
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