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A detailed and systematic presentation of algebraic and diagrammatic techniques introduced in
paper I [L. Z. Stolarczyk and H. J. Monkhorst, Phys. Rev. A 32, 725 (1985)] is given. Performing a
similarity transformation of an operator in Fock space, e.g., a Hamiltonian in the generalized
coupled-cluster method (see paper I), leads to lengthy algebraic formulas for the linear parameters
(amplitudes) of the transformed operator. These formulas can be expressed in a compact form by
means of the so-called reduced diagrams. Precise rules are given for constructing such diagrams (re-
lated to the so-called directed graphs of the graph theory) and the algebraic expressions correspond-
ing to them. In particular, rules for generating a connected-diagram expansion of the amplitudes of
the transformed operator are formulated. Several examples illustrating the use of this

diagrammatic-algebraic approach are considered.

I. INTRODUCTION

In the previous two papers (Refs. 1 and 2, hereafter re-
ferred to as papers I and II, respectively) we formulated a
generalization of the coupled-cluster (CC) method’~> for
a system of many fermions. This generalized CC method
addresses the problem of calculating (a part of) the spec-
trum of the Fock-space Hamiltonian The algebraic
approach we proposed!'? involves expressing operator
through so-called quasiparticle fermion operators and
performing a similarity transformation

H-6=0"80, (1)

yielding an effective - Hamiltonian G. The construction of
the wave operator { follows the characteristic prescrip-
tion of the CC method: =5 Qs expressed through opera-
tor exp(e) where the CC operator 6 belongs to a certain
mlpotent operator algebra. In the generalized CC
method,' operator © is determined from the condition
that the effective Hamiltonian G conserves the number of
quasiparticles in the system. Eigenvalues of corre-
sponding to states with a few quasiparticles can then be
easily calculated. The well-known property of transfor-
mation (1) is that

Spec(H )=Spec(G) , (2)

and, hence, a part of the spectrum of A is found that
way. In other words, the generalized CC method
effectively converts the many-particle problem associated
with Hamiltonian A into a few- -quasiparticle problem of
Hamiltonian G. The present paper is devoted to a study
of a variant of transformation (1), namely,

ﬁaf‘=exp(—é)ﬁ exp© , (3)

where A and & are some arbitrary operators acting in a
finite-dimensional Fock space. The purpose of our
analysis is to find a method for deriving algebraic formu-
las expressing the dependence of the linear parameters
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(amplitudes) of operator I on the amplitudes of operators
Hand 6. A diagrammatic approach is devised to handle
lengthy algebraic formulas, and precise rules are given for
converting algebraic expressions into diagrams, and vice
versa. The present study extends a preliminary one given
in paper I, and will certainly be helpful in the better un-
derstanding of some details in the derivation of the gen-
eralized CC equations in that paper. We wish also to use
results of the present paper to generate algebraic formu-
las for calculating expectation values and transition mo-
ments within the framework of the generalized CC
method (see the following paper,® hereafter referred to as
paper 1V).

The content of the present paper is as follows. In Sec.
I1 the algebraic structure of the Fock space and the cor-
responding Fermi-Dirac algebra are reviewed, along with
the notation introduced in paper I. In Secs. III and IV
algebraic expressions and the corresponding diagrams are
derived for operator products and powers, respectively.
Section V contains a discussion of algebraic and diagram-
matic expressions for the amplitudes of the transformed
operator defined in (3). Using the theory of Sec. V, we ex-
plain in Sec. VI how the generalized CC equations [the
Brueckner-Hartree-Fock (BHF) equations] of paper II
were derived. In Sec. VI we derive also additional gen-
eralized CC equations which are necessary in an extended
version of the generalized CC method considered in pa-
per IV. The results of the present paper are summarized
in Sec. VII. Appendixes A-D contain supplementary
derivations and discussions. Throughout the paper we
shall refer to formulas of papers I, II, and IV by quoting
an equation number preceded by the appropriate Roman
numeral I, IT, or IV.

II. FOCK SPACE AND FERMI-DIRAC
ALGEBRA: NOTATION

The full Fock space for our fermion particles is a
Cartesian product of Hilbert spaces spanned by n-particle
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(n=0,1,..., o) wave functions, antisymmetric (for
n >2) with respect to permutations of particles. The Hil-
bert space corresponding to n =0 is spanned by a single-
wave function @, called the physical vacuum. In the
algebraic approximation' one chooses some M-element
basis set of linearly independent spin orbitals, which
spans an M-dimensional subspace X=X(M) in the Hil-
bert space of the one-particle wave functions. Let

{g:3i=t @

be an orthonormal basis in X.

The annihilation operator @; associated with spin orbit-
al ¢, is a linear operator defined in the full Fock space; its
action on an n-particle antisymmetric wave function ¥
gives an (n — 1)-particle wave function @;V:

a1, ...,n—D=n'"?[dr, otmW¥(1,...,n), (5

where f d, denotes the integration over spatial and spin
coordinates of the nth particle. It is also required that

a;,9,=0, (6)

for i=1,...,M. The choice of the phase factor in Eq.
(5) (as used in paper I) is the same as in Ref. 7, but a
different choice is also frequently encountered, see, e.g.,
Ref. 8. For each annihilation operator @; one defines the
creation operator @ ‘ as the Hermitian conjugate

ai=(@,)". (7

The annihilation and creation operators for fermion par-
ticles (the fermion operators, in brief) fulfill the following
anticommutation relations:

(a;,8,],=[a"a’],=0, (8a)

[a;,27], =8/ . (8b)
The set

{a, @)zt 9)

generates an algebra F=¥(M) which we call the Fermi-
Dirac algebra. One may choose another set of genera-
tors, .

(6,6 i=t, (10)
fulfilling relations (7) and (8) by applying a similarity
transformation

b,=0"'a,0, (11)

with a unitary operator U € F. An analog of Eq. (6) also
holds, with the physical vacuum @, replaced by the so-
called model vacuum

o=0"'9,. (12)

One usually attempts to find operator U such that @ is, in
some sense, optimal, e.g., as an approximation to the
ground state of a considered many-particle system (see
paper II). In practice, the choice of U is most often limit-
ed to operators generating linear transformations of set
(9) (see also the generalizations discussed in Ref. 9),
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b;=a,K}+a*L,, , (13)

where we use Einstein’s summation convention. Trans-
formation (13) is the Bogoliubov-Valatin transforma-
tion;'° a special case of it is the particle-hole transforma-
tion [see Egs. (1.27)]. Fermion operators of set (10) will
be hereafter referred to as the quasiparticle fermion
operators.

It follows from Wick’s theorem!! that any element of
algebra 7 can be expressed as a linear combination of the
so-called normal products, X '¥, of fermion operators.
Here X and ¥ are products of annihilation operators of
set (10); for example,

X=bbb, - . (14)

According to the notation introduced in I%aper I, the
string of indices corresponding to operator X of Eq. (14)
will be denoted by

and the number of annihilation operators in X by x. We
also assume that for x =0 the corresponding index string
X is empty and

£=1. (16)

Due to the anticommutation relation (8a), if index strings
X and Y are of the same length (x =y) and differ only by
a permutation of indices, then

X=(—1y?, (17

where p is the parity (even or odd) of the permutation.
Such strings will be called the equivalent index strings;
this equivalency relation will be denoted by X ~ Y. It fol-
lows from Eq. (17) that £ =0 if there is a repetition of
any index in string X, such a string will be called the de-
generate index string. A nondegenerate string (15) corre-
sponding to ordered indices i <j <k < - - will be denot-
ed by X and called the ordered index string. Obviously,
X ~X, and the parity of the permutation which trans-
forms X into X will be called the parity of X and denoted
by p(X). Now parameter p of Eq. (17) may be expressed
as

p=pX)+p(Y). (18)

Let us define also a very useful quantity we call the gen-
eralized Kronecker delta [see Eq. (1.47)]:

5, Y= |(—1 pX+2 for X ~Y and X nondegenerate
' 0 otherwise . (19)

Using the above notation we define a finite-dimensional
Fock space M=D(M) (a subspace of the full fermion
Fock space) spanned by an orthonormal basis set

(o¥=KTop: x=X)x=¥, (20)

where ® is the model vacuum of Eq. (12). The wave
functions ®* are called (generalized) configurations; in
the case when fermion quasiparticle operators of set (10)
are obtained by using a particle-hole transformation, ®*
are simply Slater’s determinantal functions. The Fock
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space I is a Hilbert space of dimension 2". where subspaces #', #°, and F' are spanned by the sub-
The Fermi-Dirac algebra F turns out to be the algebra  sets of (21) subject to conditions x >y, x =y, and x <y,
of all linear operators acting in M. As a vector space, F  respectively [see Egs. (I.54)]. F', %, and F are also
is spanned by set subalgebras of algebra F. Algebras F' and F', called the
+ — Srxy =M excitation and deexcitation algebra, respectively, are nil-

(x ¥: X=X, Y= YiZo @D potent algebras. It is to be noted that the decomposition
and the dimension of the vector space F is equal to 22,  (23) depends, in general, on the choice of the set of gen-
Any linear operator A E€F can be expressed as a linear  €rators (10). Anot.her decomposition of the vector space
combination of operators of set (21), # will also be considered,

A =n+2b, 41,5 +175 b, + n'b;b F=F(even)® F(odd) , (24)
where subspaces F(even) and F(odd) are spanned by the
subsets of (21) subject to conditions x +y =even and
As in papers I and II, we assume here that the linear X +y =odd, respectively. Fleven) appears also to be a
coefficients in Eq. (22a) ( amplitudes), of a general form  subalgebra of algebra F. As a vector space, F(even) can
7y ¥, are antisymmetric with respect to (separate) permu-  be expressed in the form
tations _of indicgs wi'thin strings .X and Y. Tl_lus, when the FH(even)=F' (even)® Pa 271(even) (25)
unrestricted (Einstein’s convention) summation over x in-

terchangeable indices is performed, one has to apply a  where ¥'(even) and F'(even) are subspaces (and subalge-
“normalization” factor of (x!)~!. Equation (22a) may be bras) of F' and F!, respectlvely The structure of the

rewritten in a more compact form Fermi-Dirac algebra, given in Egs. (23)-(25), is important
for formulating the generalized CC method.!
A=(xly) -1, Y219, (22b) EHcE
where the unrestricted summation over repeating indices III. OPERATOR PRODUCTS
is implicit. In some cases it is convenient to write a for- AND CORRESPONDING DIAGRAMS

mula employing a restricted summation over repeating

1 . . 1 .
indices. Let us, for example, rewrite Egs. (22a) and (22b) In this section we shall consider operator products

once more, K:é,,énq s él ) (26)
A=33n,"%'?. (22¢)  where
XY
A — Yot
The restricted summation used in Eq. (22¢) has the fol- A= % EY)‘X x'y, (27)

lowing meaning: The first summation sign denotes a R .
summation over all nondegenerate strings X, from x =0 6,=33x" XY, (28)
to x =M, such that if a term corresponding to string X is Xy

taken into account in the summation, all the terms corre-
sponding to strings which are equivalent to X are exclud-
ed from the summation. In other words, the restricted
summation runs over the entire set (if no conditions are
indicated) of nondegenerate, nonequivalent index strings.

and it will be assumed that ék € Fven), k=1,...,n
Hence, in Egs. (27) and (28), strings X and Y are subject
to condition x +y =even. In this section we shall use the
restricted-summation convention [see Eq. (22¢) and the
One of the possible variants of the restricted summation  following discussion]. Below, formulas expressing the A
is to perform a summation over ordered strings X. amplitudes of operator A through the [ ], amplitudes of

In paper I we showed that the vector space ¥ can be operators ek, for various n, are discussed. For n =2 and

expressed as a direct sum of vector spaces, n =3, the pertment. formulas were. given in Egs. (I.B18)
and (II.A9), respectively. We rewrite these formulas us-
F=F'oFoF, (23)  ing the notation of Egs. (26)-(28): (i) n =2,
J
2 1 ZZI Yl Y
M=33 2238 [X ]2[221)(1 ]15}’2}'] ; (29)

X, X\ Y, Y, Z,

(ii) n =3,
XX, YyZy,

M'=3ZIIIII I (-0

z Y,Z
31 22y Y
Llz,x, blz, z,x ]15y3y2y‘ . (30)
X3 Xy Xy Y3 Y, ¥, 23y Zy,

k) bl

Equation (29) is the basic formula in our algebraic technique since the formulas for n > 2 can be derived from it by re-
cursion. This procedure turns out to be quite cumbersome, however, which makes generation of the explicit formulas
for n > 2 worthwhile. In addition, we have found an error in the derivation of Eq. (A9) in paper II, though the final for-
mula is correct. Therefore, in Appendix A we give a detailed derivation of Eq. (30), together with arguments which
lead to the formula for general n.
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A very convenient, compact representation of formulas (29), (30), and those for n >4 may be given in the form of dia-
grams. Such a representation was introduced in paper I; now we are going to put it on a more formal basis. A simple
diagram corresponding to a [ ], amplitude of operator © « is depicted in Fig. 1.

We write [see Egs. (29) and (30)] the following: (i) n =2,

kXY:222EEJXY(z;aPaI;bZ’bl;CZI) ; (31)

ay ayp by byey
(i) n =3,

Ay'= S3I333 3333 Ix3a5,a5,a13b3,b,,b1505,¢5,001) 5 (32)

ay ay ay by by by ¢y ¢3¢y

where quantities (hereafter called simply diagrams)

X, X
JxN(2;a,,a,5b5,b505,)= 2 2 2 2 > &k

Y,Z Y
222 1 Y

]2[221"'1 ]18)’2)'l 33)
X, X, Y, Y, Zy

2

(x,=a,) (x;=a,) (y,=b,) (yI:bl) (zyy=cy;)

and

JXY(3;a3,a2,a1;b3,b2,b,;c32,c31,c21)=(—1)a2c“ 2 2 2 > 2 2 > >

X3 XZ Xl Y3 YZ Yl 232 ZJl
(xy=a3) (xy3=a,) (x;=a;) (yy=b3) (y;=b,) y;=b) (z3;=c3;) (z3;=c5;)

X3X,X Y,z Y Y (34)

z Y
o ]2[22123!X1 I ]layl Y2 YI

z
X X & "l z,,x,
z

21

1
[x,
(zyy=¢y)

are given the diagrammatic representation in Fig. 2. In this representation the vertical ordering of terms, from the bot-
tom to the top (traditionally referred to as the time ordering), corresponds to the horizontal ordering, from the right to
the left, of the [ ], amplitudes in Eqgs. (33) and (34). Symbols a,,a,,... indicate the numbers of outgoing lines,
by,b,, . .. stand for the numbers of ingoing lines, and c,;,¢3;, . . . stand for the numbers of internal lines in a diagram.
In the case of the formula corresponding to general n, one may write

Ay Y=3 3 3 Jy'(n;out;in;intra) , (35)

out in intra

where
out=a,,...,a, , (36a)
in=b,,...,b,, (36b)
INtra=c, , _1,-++»Cp15Cy _1n—20+++3Cn_1,15++5Cyq + (36¢)

The general algebraic form of a diagram reads [compare Egs. (33) and (34), see also Appendix A]

Jy ¥(n ;out;in;intra)=(—1)" > Y > 3 S >,
Xn XI Yn Yl Zn,nAl an
(x,=a,) (x,=a;) (y,=b) (y|=b‘)(z"_"7l:cn_n_]) (z,,=c,y)
X X Y Z e Z
“ e n 1 n“nn—1 nl
X 2 2 2 O Lx, In
Zn—l,n-Z Zn—l,l ZZl
2y 1 n -2 1,0 -2) 2y 11=C —1.1) (zy1=¢y)
Y z e Z Y
n—1%n—-1,n-2 n—1,1 1 Y
[ZnnAI n—1 L [Zzl"‘znlxl ]’8Yn"'Y| ’ (37)
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X n

x SN S b=y, (39b)

Y i=1
X K = =
and

y S~

y

FIG. 1. Diagrammatic representation of a [ ], amplitude of
operator ©,. Bold lines are used for multiple lines.

where what we call the parity of a diagram, P, is calculat-
ed as

P=P(out;intra)= ¥

1<i<j<k<n

+ 2

I<i<j<k<l<n

al-ck‘-
C[jcki . (38)

The above formula for P corresponds to the particular or-
dering of index strings (hereafter referred to as the stan-
dard ordering) we adopted on the right-hand side (rhs) of
Eq. (37). The reader is asked to note a characteristic pat-
tern of “interlocking” indices in both terms on the rhs of
Eq. (38). Sets (36) are subject to conditions

n
S a=x,

(39a)
i=1
(a) a, a,
C2|
b1 bl
(b)
q 03 0z
C31|C32
C2)
b3 b\ b2
FIG. 2. Diagrammatic representation of (a) quantity
Jx¥(2;a5,a,;b,5,b15¢5)  of  Eq.  (33); (b)  quantity

Jx¥(3;a3,a,,a,;b35,b,,b15¢35,¢31,¢2,) of Eq. (34). Bold lines are
used for multiple lines (see Fig. 1).

(39c¢)

i=1

aj+bj+ 3 ci+ 3 ¢ =even,
k=1
(i<j) (k>j)

for 1 <j <n. Equation (39¢) is a consequence of the re-
quirement that each 6 ; € Heven). In general, if opera-
tors 6, and &, are not confined to F(even), formulas (29)
and (33) need be modified by inserting an additional
phase factor on their rhs’s [see the derivation for formula
(I.B18), in this case the phase factor is given in Eq.
(I.B8)]. The corresponding phase factors for formulas
(30), (34), and (37) can also be derived quite easily.

In practical applications of formula (35), one first gen-
erates all possible diagrams for a given A, Y and then cal-
culates their values using Eq. (37). We found it con-
venient! to rewrite formula (37) for each particular dia-
gram as follows: (i) the generalized Kronecker deltas

8XX" Xl, SY""‘Y‘Y

are removed from the algebraic expression, (ii) the sum-
mations over strings X,,...,X, and Y,,...,Y, are re-
placed by the antisymmetrization of the resulting alge-
braic expression separately in lower and upper fixed in-
dices (corresponding to strings X and Y, respectively), (iii)
Einstein’s convention of the unrestricted summation over
repeating lower and upper indices (corresponding to
strings Z,;) is applied; every unrestricted summation
over z,, equivalent indices introduces a factor (z;,!)~',
see Eq. (22b). Several examples of such a treatment of
formula (37) will be given in Sec. IV.

IV. OPERATOR POWERS AND CORRESPONDING
DIAGRAMS

Results of Sec. III will now be applied to a special case
of Eq. (26) with

PN A

0,=06

n n

,=-=6,=6, (40)

where we assume that © € F(even),
6= I o7 41
X Y
(x +y =even)

The diagrammatic representation of the 6 amplitudes of
operators © will be that given in Fig. 1, with letter &
omitted. A new feature of the present case is that now di-
agrams with different structures may correspond to alge-
braic expressions that are closely related. Examples of
such diagrams, differing only in the time ordering of their
components, are given in Figs. 3 and 4. The algebraic ex-
pressions for the diagrams depicted in Fig. 3 read (see the
remarks in the last paragraph of Sec. III) as follows: dia-
gram (al)

Ji(2;1,2;1,0;0)=6,'0;, — 6,0, —6,'0;; ; (42a)

diagram (a2),
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&b

(a?2)

(bl) (b2) (b3)

FIG. 3. Examples of diagrams differing in the time ordering
of their components: (al) and (a2) see Egs. (42); (b1)-(b3) see
Egs. (43).

Ji#'(2;2,150,1;0)=6,,6,'— 6,6,/ 6,6, ; (42b)
diagram (bl),
J;;(4;1,1,0,0;0,0,0,0;0,0,1,1,0,1)
=(—1)1(6,“6,'6,"0,,, —0,“6,'6,"6,,,) ;  (43a)
diagram (b2),
J;;(4;1,1,0,0;0,0,0,0;0,1,0,0,1,1)
=(—1%6,%6,'6,"6,,—6,%6,'0,"6,,) ;  (43b)
diagram (b3),
J;;(4;1,0,1,0;0,0,0,0;1,0,0,0,1,1)
=(—1D"6,%6,'0,"6,,,—6,%6,'6,"6,,,) .  (43c)

It is seen that the rhs’s of Egs. (42a) and (42b) are equal.

ko
L 4
i g

(c)

FIG. 4. Examples of symmetry-related diagrams: (a) and (a’)
see Eq. (45); (b) and (b’) see Eq. (46); (c) and (c’) see Eq. (47).

A similar conclusion can also be reached in the case of
Eqgs. (43a)-(43c); here exchanging of some of the summa-
tion indices is necessary. In general, the following lemma
can be proven (see Appendix B).

Lemma 1. Diagrams differing only in the time order-
ing of their components give identical contributions to
sum (35).

The above lemma suggests that in the case of calculat-
ing operator powers, Eq. (35) may be modified such that
only the contributions from nonequivalent (with respect
to the time ordering) diagrams are taken into account,
each contribution multiplied by an appropriate weight
factor (called the time-ordering factor),

T =T (out;in;intra) , (44)

equal to the number of possible time orderings of the cor-
responding diagram. Things are a bit more subtle, how-
ever. Consider the algebraic expressions corresponding
to the diagrams depicted in Fig. 4 (see the remarks in the
last paragraph of Sec. III): diagrams (a) and (a’),

J;M(2;1,1;1,1,0)=6,%6,'- 6,0, —6,%0,'+ 6,6,
=2(6,0,'-06,%6,") ; 45)
diagrams (b) and (b’),
J;(3;1,1,0;0,0,0;0,1,1)
=(—D"6,%6,'0, —6,%6,'6,) ;  (46)
diagrams (c) and (c'),
J (4;0,0,0,0;0,0,0,0;1,1,0,0,1,1)
=(—1)'076,%6,'6, . (47

Clearly, due to a kind of symmetry (to be discussed later
on in this section), in each case two apparently different
diagrams correspond to a single algebraic expression [and
a single term in sum (35)]. In general, if there are S such
symmetry-related diagrams, the time-ordering factor (44)
should be multiplied by the symmetry quotient

S ~'=S ~Yout;in;intra) . (48)

We propose, therefore, in the case of operator powers,
the following modification of Eq. (35):

A= 3

out,in,intra

T (out;in;intra)jy ¥(n ;out;in;intra) ,

(49)

where the primed sum indicates that only one representa-
tive from each set of time-ordering-equivalent diagrams is
to be taken into account. Quantity

Jx Y(n ;out;in;intra)=S ~!(out;in;intra)

X Jx ¥(n ;out;in;intra) (50)
will be called the reduced diagram. Its graphical repre-
sentation will be the same as that for a usual diagram (see
Figs. 2-4) except that now some amplitudes may be

placed at the same level (see Fig. 5 of this paper and the
figures in papers I and II). However, it is to be stressed
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that when a reduced diagram is to be written in the alge-
braic form given by formula (37), one has to choose one
of possible time orderings of 8 amplitudes and calculate
parity (38) of the diagram accordingly.

We would like to discuss some topological properties
of (reduced) diagrams. According to one important
classification a diagram may be either connected or
disconnected, and these two classes have obvious charac-
teristics. A deeper insight into the structure of reduced
diagrams can be obtained by using graph theory.'?> Con-
sider the following transformation of a reduced diagram
(see Fig. 5): (i) two auxiliary amplitudes, a “bottom” (b)
and a “‘top” (t) are added to ‘‘absorb” the external lines,
(i) a common direction ‘“‘up,” indicated by arrows, is
assinged to all the lines, and (iii) the graphical symbols of
0 amplitudes are shrunk to points. It is to be stressed
that arrows in (ii) have nothing to do with the usual sym-
bols for particles and holes. What is obtained in steps
(1)—(iii) is called the directed graph (digraph) (see Ref. 12,
Chap. 7). A directed graph consists of a finite set of ver-
tices (represented by points) and a finite family of ordered
pairs of vertices called arcs (each represented by a line
with an arrow). In general, reduced diagrams are
equivalent to a certain class of digraphs.

It is seen that a connected diagram corresponds to a
connected digraph; the reverse is not true, however. In
accord with a popular terminology we shall call the dia-
grams which correspond to connected digraphs the
linked diagrams, and those corresponding to disconnect-
ed digraphs, the unlinked diagrams. As seen in Fig. 5(c),
some linked diagrams are disconnected (diagrams). In
paper I we improperly used the term “linked” (“‘un-
linked”) in contexts where ‘“‘connected” (‘“‘disconnected’’)
would be appropriate.

Let us define the automorphism of a digraph!? as a
one-to-one mapping of the set of vertices into itself such
that the corresponding mapping of the family of arcs is
also a one-to-one mapping into itself. The automor-
phisms of a digraph form a group called the automor-
phism group of the digraph. It turns out that one can
define parameter S of the symmetry quotient (48) as the
order of the automorphism group of the digraph corre-
sponding to a given reduced diagram. Examples of re-
duced diagrams, their characteristics, and the corre-
sponding digraphs are shown in Fig. 5. It is seen that one
has always T >S, where T is the time-ordering factor
(44).

In the graphical representation a reduced diagram may
be divided into connected parts. Below we shall find how

J

jx¥(n;out;injintra)=S "'y - T F - T8y "
v, 2 W,
><J_'Vl

In the above expression, S is the number of symmetry
operations which permute symmetry-related connected
parts of the diagram in question. Again, in applications
of formula (53) one may follow the suggestions given in

”Vl—'

w L
'(n;0ut;ing;intra; )8y
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‘5 8- p
BB - b
-8 - P
"8L-87 -0
TB88-88 - 090

FIG. 5. Reduced diagrams and their transformation into di-
graphs (see text). The characteristics of the reduced diagrams:
(a) connected, linked, T =1, S =1; (b) connected, linked, T =2,
S =2; (c) disconnected, linked, T'=6, S =6; (d) disconnected,
unlinked, T =3, S =1; (e) disconnected, unlinked, T =6, S =2.

this obvious property can be translated into an algebraic
language. We shall denote connected reduced diagrams
by

Jx Y(n ;out;in;intra) . (51)
Now we assume that a reduced diagram of Eq. (50) can
be divided into m connected parts (m > 1) and

n=n,+ - +4n;, (52a)
out=out,,,...,out, , (52b)
in=in,,,...,in; , (52c¢)
intra=intra,,, . . . ,intra, , (52d)

where symbols on the rhs of Egs. (52) correspond to the
connected parts of the diagram. In Appendix C we prove
that the following formula applies:

w, L
jv_ = "(npiout,;in, intra,, ) - -

-w, .

[

the last paragraph of Sec. III.

It is also of interest to see how the time-ordering factor
(44) corresponding to diagram (50) is related to time-
ordering factors T,,,..., T, corresponding to the con-



37 COUPLED-CLUSTER METHOD IN FOCK SPACE. III ... 1915

nected diagrams appearing on the rhs of Eq. (53). In the
case of T,, = + - - =T, =1 one finds that T is equal to the
number of permutations of all » 6 amplitudes in diagram
(50) subject to the condition that the ordering of ampli-
tudes within each connected part remain unchanged. In
the general case one finds that

n '

T=—2"T, - T, . (54)
nplny

Concluding this section we would like to note that con-
nected (reduced) diagrams provide the basic building

blocks for constructing algebraic formulas expressing A
amplitudes for operator powers.

V. SIMILARITY TRANSFORMATION:
ALGEBRAIC AND DIAGRAMMATIC APPROACH

In this study of transformation (3) we restrict our con-
siderations to the case when both operators A and é,[see
Eqgs. (22) and (41), respectively] belong to algebra F(even).
Obviously, in this case also operator

F=33v,"%'? (55)
XY

belongs to F(even), and thus yy =0 for x +y=odd.
Now we shall describe in greater detail the approach we
proposed in paper I [see the discussion in Sec. V of that
paper, Egs. (I.117)-(I.120)]. Equation (I.117) gives the
well-known commutator-series expansion of . Since in
the present section we do not impose a condition that 6
be nilpotent, this expansion may contain an infinite num-
ber of terms. An important conclusion which can be
drawn from formula (I.117) is that any y amplitude of

J

© T ...T

Y__ ' g —-1__m

x = E E S nl-eond
n =1 out,in,intra m* 1 |

1 m

operator I can be expressed as a sum of connected (in pa-
per I we improperly used the term “linked,” see com-
ments in Sec. IV of the present paper) diagrams, linear in
n amplitudes of operator H and, in general, nonlinear in
6 amplitudes of operator ©. Below we explain how this
connected-diagram expansion can be generated.

The following representation will be useful in our con-
siderations:

expé=1+ > (n)"'&"=14+C N

n=1

(56a)

exp(—8)=1+ 3 (—1)n)~'8"=148". (56b)

n=1

We write

C=33cx %'y,
X Y

6':22C/{1YA+?,
X Y

(57a)
(57b)

and the following formulas for the ¢ and ¢’ amplitudes:

ex'=3 ()~ "(n)

n=1

(58a)

=3 (= 1"n) Ay ¥n)

n=1

(58b)

where parameters Ay Y(n) are those defined in Egs. (49)
and (50). Now we choose Eq. (58a) to show how it can be
transformed in order to express ¢ amplitudes through
connected diagrams built of 8 amplitudes. We combine
Eq. (58a) with Egs. (49), (53), and (54) to obtain

V= W, L
Jv, "(ny;out,;in, intra, )X -

Vv .-
28y "
Wl

- W .
XJjy, '(nyoutjingintra)8y .y V. (59)

The meaning of the primed summation in Eq. (59) is as follows: (i) For a given » one sums over all possible sets (36) sub-
ject to conditions (39) and the requirement that only diagrams nonequivalent with respect to time ordering are taken
into account; (ii) each of the diagrams generated above is decomposed into m ( > 1) connected diagrams [see Eqgs. (52)].
Now the summation over all nonequivalent diagrams, connected and disconnected, can be replaced by summations over
nonequivalent connected diagrams,

S §7'5 3 (mh! > >

out,in,intra m=1 n_ ..., ny= out,, ,inm ,intram

> (60)

()utl,lnl,mtral

here factor (m!)~! appears because now a diagram consisting of m disconnected parts is generated (m!)S ~' times. We
define also some useful parameters,

=3 3 ————*——T(Oumn';mtra)j.‘xy(n;out;in;intra) , (61a)
n=1 out,in,intra n:

P Y . 1y T(out;in;intra) — Y(n:out:in:i ) 61b)

=23 X (= 0 ix'(n;outin;intra) .

n =1 out,in,intra

It can be shown that, after substitution of (60) in Eq. (59), and appropriate grouping of terms, one arrives at the formula
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cx V=7 4+ (21

R

271 Z

w
2 1 Y .
Ty, ﬁwzwl + 0,
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(62a)

where each term containing m 7 parameters is preceded by factor (m!)~!; by a mistake these factors are missing from
formula (I1.120), where this representation of the ¢ amplitudes was first given. Quite similarly, for ¢’ amplitudes the fol-

lowing formula is found:

cxV=ry 2D “‘22228 2 P, Ve T (62b)
v,V W, W,
f
Since parameters 7y’ and 7 ¥ are expressed through con- P=A+AC+C'H+CHC, (66)
nected diagrams [see Eqgs. (61a) and (61b), respectively], it
is evident from Egs. (62) that they are the only connected  here
contributions to ¢y ¥ and cy Y, respectively.
The relationships given in Eqgs. (62) can be rewritten by ® C1f A n
employing the formalism described in Appendix D. Let AC= 2_:1 ()™ H(T*)", (67a)
us introduce operators "=
A ’ — < 1 —1 ’ ml;
FoS SR 63a) CH= 3 (mh (%) ", (67b)
X Y m=
CHC=3 3 m) ') (T*)"A(Tx)y, (670
and m=1n=1
invoking the normal product defined in Appendix D.
(63b) The above formulas provide a starting point for deriving

:227‘&"’2’“? 5
X v

where the 7 and 7' amplitudes are defined in Eqgs. (61a)
and (61b), respectively. It can now be shown that the fol-
lowing representation applies:

14+C =exp*(T) (64a)

1+C =expx(T), (64b)
where the “normal” exponential function of an operator
is defined in Eq. (D14). One may check by using
definition (DS) and (D6) that Egs. (62) can be derived
from Egs. (64). The following formal relationships can
also be derived from Egs. (64):

T=Inx[exp(8)], (65a)

T’:ln*[exp(——é)] ) (65b)

where In* of Egs. (65) is the normal logarithm function,
defined analogously to exp* of Eq. (D14). In principle,
one can express operator T through T [see Egs. (65)],
but it seems that, in general, 7' amplitudes of Eq. (61b)
cannot be expressed through 7 amplitudes of Eq. (61a) in
a sim le way. Therefore, in our approach, operators T
and " are only useful intermediates related to operator
é generating transformation (3).

After these preparations we write operator I'" in the
following form:

the connected-diagram expansion of y amplitudes of
operator f. We shall use the diagrammatic approach de-
scribed in Secs. IIT and IV. The following observations
can be made.

(1) Each y amplitude is a sum of connected diagrams
built of 1, 7, and 7' amplitudes. These diagrams are
linear in n amplitudes, and, in general, nonlinear in 7 and
7' amplitudes.

(2) There are no connections among 7 amplitudes, and
among 7' amplitudes in these diagrams. All other con-
nections are permitted; in particular, 7(7’') amplitudes
may be connected solely to 7'(7) amplitudes.

(3) A diagram containing m 7’ amplitudes and n 7 am-
plitudes is multiplied by factor (m!)~!(n!)~'. However,
the time-ordering factor (44) is in this case equal to m In!
since there are exactly m! and n! possible time orderings
of 7" and T amplitudes, respectively. Hence, each reduced
diagram appears with the unit weight in the connected-
diagram expansion of a ¥ amplitude.

(4) If a diagram exhibits some symmetry with respect
to permutations of 7 and/or 7' amplitudes, the symmetry
quotient (48) need be included in the definition of a re-
duced diagram ([see formula (50)]. The problem of a
diagram’s symmetry is in this case a bit more complex
than that discussed in Sec. IV, since a diagram is, in gen-
eral, built of amplitudes of three different kinds. In Fig. 6
graphical symbols of 1, ¥, 6, 7, and 7' amplitudes are
shown; we use here the same convention as introduced in
paper I, Fig. 1. A typical reduced diagram appearing in
the connected-diagram expansion of a y amplitude is
shown in Fig. 7. In order to write a reduced diagram in
the algebraic form, one uses formula (37). As mentioned
in Sec. IV, one has to choose one of the possible time or-
derings of 7 and 7' amplitudes and calculate the parity
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(a) 7 _
y
X

(b) ),XY = E}:l
y
X

) 8, = C:j
y
X

(d) oY = Q:D
y
X

(e) o Y %y
y

FIG. 6. Diagrammatic representation of 7, y, 0, 7, and 7’
amplitudes. Bold lines are used for multiple lines (see Figs. 1
and 2).

(38) of the diagram accordingly. Again the procedure de-
scribed in the last paragraph of Sec. III is to be applied.

The connected-diagram expansions of 7 and 7' ampli-
tudes (in terms of 8 amplitudes) are given in Egs. (61a)
and (61b), respectively. These expansions, when com-
bined with the above-mentioned connected-diagram ex-
pansion for ¥ amplitudes, provide the final connected-
diagram expansion of ¥ amplitudes in terms of  and 6
amplitudes.

FIG. 7. Typical diagram appearing in the connected-diagram
expansion of y amplitudes in terms of 7, 7, and 7' amplitudes.
Single lines shown may represent multiple ones, as in Figs. 1
and 2.
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VI. GENERALIZED CC METHOD:
CALCULATION OF EFFECTIVE HAMILTONIAN

The generalized CC method was described in paper I; a
variant of this approach called the Brueckner-Hartree-
Fock method (an approximate version) was presented in
paper II. A brief summary of the generalized CC method
is given in Sec. II of paper IV. In order to avoid unneces-
sary repetitions, we shall refer to some formulas given in
that paper (by preceding them with the Roman numeral
Iv).

Operators considered in the generalized CC method
belong to algebra F(even); no modification of the formal-
ism discussed in the present paper is thus required. Ais
here the Hamiltonian for a many-fermion system [of the
form given in Eq. (I.31)] and G is an effective Hamiltoni-
an subject to condition (IV.1). Transformation (1) is per-
formed in two steps [see Egs. (IV.2)-(IV.8)]. In the first
step an auxiliary effective Hamiltonian f* is obtained via
transformation (3). It is assumed that operator © (the
CC-excitation operator) belongs to the (nilpotent) excita-
tion algebra F'(even); hence, the § amplitudes of opera-
tor © are subject to the condition

0yY=0 for x <y . (68)

These amplitudes can be determined by solving the gen-
eralized CC equations (IV.9a). In order to write down
the connected-diagram expansions for the y amplitudes
of operator [, it is convenient to rewrite Eq. (66) in the
following form:

f=A01+C)+C'H1+C). (69)

The connected-diagram expansions for some y ampli-
tudes corresponding to Egs. (IV.9a) are shown in Figs. 4
and 5 of paper I. In Fig. 3 of that paper the connected-
diagram expansions for some 7 amplitudes are also given
[see Eq. (61a)]. It is a characteristic feature of these ex-
pansions that they contain only a finite number of dia-
grams; this important simplification is a consequence of
condition (68). In general, infinite connected-diagram ex-
pansions of y, 7, and 7' amplitudes emerge unless opera-
tor 6 is nilpotent.

A careful reader may notice that a few connected dia-
grams are missing from the diagrammatic equation (b) in
Fig. 4 of paper I. We depicted these missing diagrams in
Fig. 8 of the present paper; these terms vanish under the
assumption that the diagrammatic equation (a) in Fig. 4
of paper I is fulfilled. Similar (vanishing) terms were also
omitted in the diagrammatic equation (b) in Fig. 5 of pa-
per I. It is seen that due to a special arrangement of
terms in Eq. (69), an additional compactification of the
diagrammatic expressions has been achieved.

In the BHF method,? the spin orbitals occupied in the
model vacuum @ are optimized in a self-consistent way
until the following condition is fulfilled:

6,;=0, (70)
fori,j=1,...,M. In paper II we proposed an approxi-

mate variant of the BHF method; this variant can be gen-
erated by the diagrammatic equations depicted in Fig. 9
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ISR

FIG. 8. Vanishing contribution to equation (b) in Fig. 4 of
paper I (see text).

of the present paper. It is seen that by substituting these
equations for those in Figs. 4, 5, and 6 of paper I one ob-
tains the approximate BHF equations written in the di-
agrammatic form in Figs. 2 and 3 of paper II. As an il-
lustrative example of “translating” diagrams into alge-
braic formulas, let us consider two reduced diagrams ap-
pearing in equation (b) in Fig. 2 of paper II. These dia-
grams, for convenience drawn in Fig. 10 of the present
paper, correspond to the quadratic terms in CiZek’s
CPMET equations (see Ref. 4). Both diagrams A and B
correspond to the time-ordering factor T'=2; however, as
explained in Sec. V, each of these diagrams appears with
the unit weight in the connected-diagram expansion of a
y amplitude [see Fig. 2(b) of paper II]. We use formula
(34) [as a special case of the general formula (37)] and fol-

J

A= Aijk[ =(—1 )9( N~ lnmnpq( 6mijk anql - 9m1jk 6npqi - emilk 0

1
n pq(emijkenpql

B= B.,k1~—-(—1)"'(2')”1(2v)~l mnpq( g o

mnij qul

= T.”mnpq( Gmm’j 6qul + emnjk Opqil -

- 6mjld enpqi + emikl Bnqu -

mnkj Y pqil

anik equl ).
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(0)(%=<Ej) (d) &

(b)% &5 (e)&%
(C)&=&5. “)&é:_é‘%.

FIG. 9. Representation of 7 and 7 amplitudes used to gen-
erate the approximate BHF equations shown in Figs. 2 and 3 of
paper II. The approximation involved is that all the 7, 7/, and 0
amplitudes other than those shown in (a)-(f) above are set equal
to zero (compare the diagrammatic equations in Fig. 3 of paper
.

E o

low the routine discussed in the last paragraph of Sec.
III. For each diagram the time ordering shown in Fig. 10
is assumed. For diagram A one finds the parity
P =3.3=9; the symmetry quotient S ~!=1. For diagram
B one ﬁnds the parity P =2.2=4; the symmetry quotient
S = 5. Finally, one writes

npgj — emijlonqu )

V] (71a)

mijl enqu ),

- emnlj equi - 6mnik equl - emnil 6quj + emnkl quij )

(71b)

In the case when the particle-hole transformation (I1.27) is used to define the quasiparticle fermion operators (10), some

amplitudes of operators A,

, 6, etc. vanish 1dent1ca11y because of the pseudocharge symmetry [see Egs. (I1.35)—(1.38)].

It can be shown that the nonzero amplitudes 7y ¥, v ¥, 0y 7, etc. are subject to condition (I.136),

xp_xh =yp —Vh »

(72)

where x,,(y; ) is the number of the “hole” indices (denoted by p, o, etc.), and x,(y, ) is the number of the “particle” in-
dices (denoted by 7, s, etc.) in the index string X (Y). Condition (72) can be imposed directly in algebraic expressions:
For each term one generates simply all allowed combinations of ““hole” and “particle” indices. For illustrative purposes

we apply this procedure to quantities 4 and B of Egs. (71):

A= Apcrrs = —( ;ntﬂmotpar Tvus %nmmerars 6utup + ;nmmerprs vtuo %nln’uetpas ervur )
=—3 TImm( - part vaus + erprs eputu e‘rprs eucrtu + epo’st ervur ) ’ (73a)
B EBpars = %nmmempaemrs + 77” weruor evtps - nﬂvueﬂp’ vuos
rvtu( 19pom rurs T Garur Oputs + 6p‘rtreouus ). (73b)

The reader should note that the hole and particle indices
are not equivalent, and therefore the numerical
coefficients in Egs. (73) are, in general, different from
those in Egs. (71). Equations (71) and (73) exemplify the
way in which the BHF equations of paper II [see Egs.

f

(I1.14)—(I1.17)] were obtained. In Fig. 11 we show di-
agrammatic expressions for some y amplitudes not con-
sidered in paper II (one will find an application for these
amplitudes later on in this section). The ¥ amplitudes of
Fig. 11 are, in general, nonzero since they are not subject
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>
]

G syl
FIG. 10. Two diagrams contributing to equation (b) in Fig. 2
of paper II (see text).

to condition (IV.9a). In the algebraic form they read

yi=ni+ Lng*m,, I —gkimg,, i), (74a)

yijkl:nijkl , (74b)

7/ij;d:nij}d_{_%(njkmne"m/_}_lelnmemmj_,Ij‘lmngmmk) )
(74¢)

When the pseudocharge symmetry is taken into account
[see condition (72)], Egs. (74) may be rewritten as follows:

Yprznpr+ %(npasteastr_‘_ ,qafsregﬂp) 4 (753')
yPIT = pors (75b)
,ygparz ngpar+ %npatuegm r+ nUTlregﬂp . npﬂregﬂ g , (75C)
yzprs = 7Iz'm + _;’,"Turseruzp + npﬂreﬂzs - T’pﬂseﬂz " (75d)

Concluding this section, we wish to derive a set of gen-
eralized CC equations from which § amplitudes of the
CC-deexcitation operator £ [see Eq. (IV.4b)] can be cal-
culated. These equations, corresponding to condition
(IV.9b), have not been considered thus far since they are
not indispensable in determining the effective Hamiltoni-
an G [see the discussion below Eq. (IV.10b)]. However,
the £ amplitudes prove to be useful in calculating expec-
tation values and transition moments (see paper IV).
Operator £ belongs to algebra F'(even) and the & ampli-
tudes are subject to condition

ExY=0 for x >y. (76)

Equation (IV.7) may be rewritten as [compare Eq. (69)]

(a) ﬂ+ﬁ=ﬂ+a'

N R )
FIG. 11. Diagrammatic expressions for some y amplitudes of

operator f* [see Egs. (IV.5) and (IV.6): (@) 7%, (b) ¥"*, and (c)
/%, obtained using the approximation set forth in Fig. 9.

4 F =
] ] ]
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X

(a) i
&' = ?II:IIZP XY

B2
® v #\7? C xey .
S #ﬁ’ ey
(d) v - L}ﬁ? <y

FIG. 12. Diagrammatic representations of (a) the £ ampli-
tudes of the CC-deexcitation operator £ [see Eq. (IV.4b)]; (b)
and (c) 7 and 7' amplitudes [see Egs. (61)] related to & ampli-
tudes; and (d) the g amplitudes of the effective Hamiltonian é;
[see Egs. (IV.7) and (IV.8)].

G=(1+D"F+01+D"FD, 77
where

14D =exp(2), (78a)

1+D '=exp(—£) . (78b)

Similarly, as in Eqs. (64), operators D and D’ can be ex-
pressed through operators T and T, respectively (the 7
and 7 amplitudes of these operators are now related to
the £ amplitudes of operator £). The graphical symbols
of the &, 7, and 7' amplitudes, and the g amplitudes of
operator G are shown in Fig. 12. We shall consider here
an approximate operator £ in which only amplitudes of
the forms £/ and £7% are different from zero; the corre-
sponding 7 and 7' amplitudes are depicted in Fig. 13.
One can notice that there is no analog of condition (70) in
the case of amplitudes £/. By employing the approxima-
tion set forth in Fig. 13, we derived the connected-
diagram expansions of some g amplitudes (see Fig. 14).
These are the CC equations for £ amplitudes [see condi-
tions (IV.9b)]. In the algebraic form, these equations read

(a) (ﬁ ?. (c) ﬁ) _%)_
(b)W (rr—_n). (d)w _(FIP.

FIG. 13. Connected-diagram expansions (61) of some 7 and
7' amplitudes in terms of £ amplitudes (see Fig. 12). In further
considerations we shall assume that the 7, 7/, and £ amplitudes
other than those shown in (a)-(d) above are equal to zero.
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gli=yli—(&*y, J—E*y, —LEMy V=0,

gijklz,yijkl___ (gim,ymjki_é-jm,ymikl+§km,ymijl_§lm,ymzjk)

_ (é—ijkmym 1—§jk[m7m i+§ik1m,ymj__§ij1m,ym k)

gpr:,ypr_ (gpsysr+§arya_p) _gos,}/aspr:() »

gparszypars_(gpt,ytars_é—aly’prs__grr,yrpas+§'rs,yrpar)

_ (gpartyls_'_g‘rors,y Tp _é—‘rprs,y 1Fa __é-past,y'r)
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(79a)
+(EMEY K gy, I gy S gy, K ey, Ky, )
_ _;_( é-ijmn,ym" k1+€jkmn,}/mn i1__gikmn,;/mnjl+gilmn,ymnjk__é-jlmn,ymn ik+é—k1mn,ymnij):__0 . (79b)
By assuming the pseudocharge symmetry [see condition (72)], the following form of Egs. (79) is obtained:
(80a)
+ ( é-ptgou,y ut rs__ grrgo’t,y ﬂo‘s+ é—ptg‘rr,y " as+ g‘rsgal,y ﬂpr_é—pté-'rs,y . a'r+ é-‘rré-vs UTpa)
(80b)

| gpotu rs oTtr, s T, os TS, or oTls r | 1 gTurs
—‘('fé‘p Y tu +§ ﬂp ___é—p Y +§p Y _§ ?’ﬂp +7§ T,f’")=0.

It is seen that Eqs. (80a) form a set of linear equations for
amplitudes £°". After substituting the solutions of these
equations into Egs. (80b), a set of linear equations for am-
plitudes £°°" is obtained.

(a)

(b)

= o .

=) 9 =g ]
3] dp 2§ 4y =0 =9

FIG. 14. Approximate CC equations, corresponding to Egs.
(IV.9b), from which £ amplitudes can be calculated: (a) g¥/=0;
(b) g¥'=0. Diagrammatic formulas for the ¥ amplitudes ap-
pearing in these equations can be found in Fig. 3 of paper II and
in Fig. 11 of the present paper. It is also assumed that condi-
tions (IV.9a) are fulfilled.

VII. SUMMARY

The present paper contains a complete presentation of
the algebraic-diagrammatic formalism proposed, in a pre-
liminary version, in paper I. This formalism is devised to
facilitate calculations of products and powers of linear
operators acting in a (finite-dimensional) Fock space for
fermion particles. An important application of this for-
malism is in performing similarity transformations of
operators in the Fock space.

Within this formalism one expresses all operators as
linear combinations of normal products of fermion opera-
tors [in general, these are quasiparticle fermion operators,
see Egs. (11)-(13)]. For an operator, the linear
coefficients in such an expansion are called amplitudes.
The essence of the present formalism is to provide alge-
braic formulas expressing the amplitudes of an operator
product directly in terms of the amplitudes of the opera-
tor factors. In this approach a certain algebra of ampli-
tudes is defined; the basic equation of this algebra is Eq.
(29) corresponding to a product of two operators. For
convenience we have derived also explicit formulas corre-
sponding to products of more than two operators; in
these cases a diagrammatic representation of algebraic
expressions turned out to be very useful. In the present
paper both the algebraic expression and the correspond-
ing graphical symbol are called simply a diagram. The
diagram (its algebraic counterpart) corresponding to a
product of n operators is given in Eq. (37).

In the case of operator powers, a new kind of diagram,
called the reduced diagram, is introduced. We have
shown in Sec. IV that reduced diagrams can be related to
so-called directed graphs'? (digraphs). This observation
may be helpful in computer generation of reduced dia-
grams and determination of their time-ordering factors
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(44) and symmetry quotients (48). Connected reduced di-
agrams provide the basis building blocks for constructing
algebraic formulas for the amplitudes corresponding to
an operator power.

In Sec. V we have derived a connected-diagram expan-
sion for the amplitudes of a similarity-transformed opera-
tor. Given in terms of reduced diagrams, such an expan-
sion can be calculated for individual amplitudes of the
transformed operator. The derivation of this connected-
diagram expansion is greatly facilitated by introducing,
after Jeziorski and Paldus,'® a new kind of operator prod-
uct in Fock space (see Appendix D).

The present algebraic-diagrammatic method of gen-
erating the connected-diagram expansion for a
similarity-transformed operator was first employed in pa-
per I where we derived a set of the generalized CC equa-
tions. In Sec. VI of the present paper we have discussed
details of that derivation; by using the same technique we
have also derived an additional set of CC equations corre-
sponding to the deexcitation part of the wave operator
(IV.2). We hope that these examples will prove helpful as
a guide in using this new algebraic-diagrammatic ap-
proach.

We would like to conclude with a few remarks.

(i) The present formalism avoids explicit operations on
fermion operators (involving the application of Wick’s
theorem!! or the contraction theorem'#). The use of the
contraction theorem'* is implicit here, see the derivation
of Eq. (I.B18) [an equivalent of Eq. (29) of the present pa-
per] in Appendix B of paper L.

(i) The form of algebraic formulas derived in Secs.
III-V is independent of the choice of the fermion opera-
tors (10). In particular, these formulas remain valid for
fermion operators defined by means of a general
Bogoliubov-Valatin transformation (13).

(iii) In the present approach the diagrams serve only as
some helpful intermediates in generating explicit algebra-
ic formulas.
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APPENDIX A

In this appendix we would like to give a rigorous proof
of formula (30). Arguments leading to the formula for
general n [see Egs. (35)—(39)] will also be presented.

For a product of n =3 operators one may write

A~ A

A=6,k , (A1)
where
E :éZél ) (AZa)

K=3 Sky'X'7. (A2b)
X v

By applying formula (29) to operators defined in Egs.

(A1) and (A2a) one finds A and « amplitudes,

XV ¥,z
M= 333 I8y, Tk "by . (A3)
vy, wz

Y Y

Vv,V VA
M PR N PR B

KZVW= 2 ;.

v, n

z

1 21

X8y, y," - (A4)

We now follow the procedure introduced in the Appen-
dix of paper II, allowing for a direct coupling of [ ]; am-
plitudes in Eq. (A3) to [ ], and [ ], amplitudes in Eq.
(A4). We use identity

v,V
SZV i 122 E 2 28232231"}2‘)(1

XZ Xl Z}Z Z}l

Z3pXyZy X,

Z,,Z X, X Vv
12431 2% 2

X8, y U, (A5)

RI Rl

which can be derived from an analog of Eq. (I1.A4).
However, the subsequent formula (II.AS5) is correct only
in cases when the index strings of the Kronecker 6 are
nondegenerate [compare definition (19)]. Therefore, for-
mula (II.A6) appears to be incorrect. Instead, one may
rewrite Eq. (AS) in the form

SZVVJ/]: 2222 (=1

XZ X! Z}Z Z}I

ZJIX2
2

ZypX,
X8233X1 8231X

Xy

Z]ZZJI X?.
x5, 250,

v

v
2 1
Xﬁzzzxz 6231)(1 ’

(A6)

where, in comparison with the form of Eq. (II.A6), a new
factor
ZpX,

8Z}ZXI ZXIXZ

At (A7)

appears. This factor is responsible for deleting from sum
(A6) those terms which correspond to ‘‘overlapping”
strings Z;, and X, and/or Z;, and X,. By substituting
Egs. (A6) and (A4) into Eq. (A3), one arrives at the for-
mula which resembles Eq. (30), except for factor (A7),
which now enters the formula. Below we show that fac-
tor (A7) can be dropped from this formula and Eq. (30) is
recovered. In order to prove this we shall take formula
(30) as the starting point and show that the terms corre-
sponding to overlapping strings Z;, and X, and/or Z3;
and X, cancel mutually. Let us write
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Zy,=Cp»Sy (A8a)
X, =85,4,, (A8b)
231 :C31S12 ) (ASC)
X,=8;,4,, (A8d)

where the index string S,, (S,) represents an overlap be-
tween strings Z;, and X, (Z;; and X,). Now we substi-
tute Egs. (A8) into Eq. (30), making also substitution

2222

Cyy A, Cy 4

222 8C32A1 6C31‘42 T

(A9)

where the factor analogous to (A7) is introduced to as-
sure that the common part of Z;, and X, is contained in
S,,, and the common part of Z3; and X, is contained in
S1,. We write
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Y,Zy, Y,Zy $12521
= —1 A10d

lz,,x, L=lc,,s,,5, 4, L(=1) . ( )

Yy Y,

Lh=lz,c,s,5,,4, I - (A10e)

[ZZIZSIXI
The final phase factor emerging after multiplying the
rhs’s of Egs. (A10) amounts to

(—1 )5%2 +a,c3 =( __1)‘12( __1)"2‘31 )

(A11)

Let us note that all the terms on the rhs’s of Egs.
(A10b)—(A10e) contain string S;,S,, and therefore one
may assume that strings S, and S,, have no common in-
dices [otherwise the rhs of Egs. (A10b)-(A10e) would
vanish]. Thus, a nondegenerate string T, can be found
such that

T\, ~S125y - (A12)

We now rewrite the quantities on the rhs’s of Eqgs.
(A 10b)—(A10e) in the form

(_1)"2231=(__1)5212‘*"31512‘”12“2+"z‘31 , (A10a)
X,A4,5,,5,,4 X,4,T ;A 5,8
SXX3X2X1=8XX3A231232’A1(—1)S12% , (A10b) BX 3fPncact 7_26/\’ 39212 187_‘2 12721 , (A13)
12
[X3Y323223|]3___[X3Y3C32031512521]3(_1)"31512*512‘21 ,
| etc. After all these preparations, Eq. (30) may be written
(A10c)  as
J
Y Cy A C,, A
Ay ZT < 222333 2 8¢, 4, ’ ISC“AZ A X, 4y, 413Y5,Y5,Y5C,Ca0, 25Ty |
12 | Xy Ay A Y3 Y, Y Gy Cy 2y,
(A14)
where
a,c X, A4,T, A Y,C,,Cy T
Ay Y(X3, A5, A3Y3,Y,, Y 5C5,Ca0,Z, 5T y) =(—1) 2315, 372 i, amnmsiing,

X[CnT

We now show that the quantity defined in Eq. (A15) van-
ishes if string T',, is nonempty (¢,,50). One may write

3 2(_1)’12(8T12512521)A= D (_1)512 ,
Sz $y Si2 Sy
(51282 ~T1p)
(A16)

where on the rhs of this equation the summation runs
over all substrings of T';,. There are exactly

fa! (A17)
sty —spp)!

Iz

S12

124,

3

z Y s 5,8

2421 1 Y 12 129214

Llz, c, 1,4, 1dy,v,y, 2 2 (=1)"03r, "
SIZ SZl

(A15)

[

nonequivalent strings S, of the length 5;, which are sub-
strings of T},. But for ¢,, >0, the rhs of Eq. (A16) van-
ishes due to identity

o ‘12 S12
3 |, |(-VT=0. (A18)
512=0

We thus find that in Eq. (A14), the only surviving terms
correspond to the empty string T';,. That leads to our
final conclusion: In Eq. (30) all the terms in which strings
Z;, and X, and/or Z,, and X,, overlap cancel mutually.
This makes the inclusion of factor (A7) in this formula
unnecessary.
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Using essentially the same technique as above, we have
also found an analog of Eq. (30) for n =4. Derivations
for n =2, 3, and 4 pave the road for the formula for a
general n value. The pattern of index strings in Eq. (37)
emerges as a natural generalization of those for the cases
n =2, 3, and 4, and so does the formula (38) for the parity
of a diagram; the validity of this formula can be proved
by induction. As for the case of n =3, in the derivation
of the formula (37) unwanted factors of the type

z, X Z,,X,

w5, x, , (A19)

6
z,,X,

analogous to factor (A7), emerge. Those factors appear
for all the pairs p+q; p,q <n and can be eliminated, one
at a time, using the procedure we described in detail for
factor (A7).

APPENDIX B

In our proof of lemma 1 of Sec. IV we shall use Eq. (37)
with amplitudes [y Y], replaced by Y. It is seen that
changing the time ordering of 6 amplitudes in a diagram
can be performed stepwise, with two adjacent amplitudes
exchanged at a time. Assume that diagram Jy' is ob-
tained from diagram Jy ¥ by exchanging pth and (p + 1)th
amplitudes, followed by reordering of some index strings

n n
A= 3 (@611, =0p1Cp)+ 3 (8,000,
i=1 k=1
(i <p) (k>p+1)
+ 2 (cer,,jcpi—c,,j p+1,i)+ 2
I<i<j<n l<k<l<n
(i,j <p) (k,I>p+1)

Quantity A, corresponds to the change in the ordering of
index strings in the generalized Kronecker deltas in Eq.
(37),

SXXn'“XpoJrl"4Xl=(_1)xpxp+15XXn”'Xp+1xp”'xl ,
(B6a)

Y__(__ ypyp+l Y
8Yn.“Ypr+1”'Yl -—-( 1) 8Yn.”Yp+lY ”.Yl )
(B6b)

where the quantities on the left-hand sides (lhs’s) corre-
rY _ - =

spond to Jy*. Because x,=a,, x, =4, y,=b,, and

Yp +1=b, . [see Eq. (37)], one finds that

A2=ap0p+|+bpbp+1 . (B?)

A similar analysis performed for the 6 amplitudes in Eq.
(37), corresponding to the ordinal numbers smaller than
P, gives contribution

n
AJ: z cpicp+l,i;
i=1
(i <p)

(B8)

(€1p +1Ckp —C1pCh p+1) -
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to recover the standard ordering given in formula (37).
Such reordering is possible only if

(B1)

Cp+1,p=0 )

i.e., there are no lines connecting the pth and (p +1)th
amplitudes in the graphical representation of the dia-
gram. It is evident that Jy ¥ and Jy ¥ may only differ in
sign. We thus write

Jy¥(n;out’;in’;intra’)=(—1)2Jx ¥(n ;out;in;intra) ,
(B2)

where the primed and unprimed symbols, of Egs. (36) in
general, correspond to different strings of numbers than
the unprimed ones [see examples given in Egs. (42) and
(43)]. It will be useful to consider A as a sum of four
terms

A=A +A,+A+4A, . (B3)

Here A, corresponds to a difference of the parities of dia-

grams Jy ¥ and J; ¥:
A=P—P". (B4)

By applying definition (38) with condition (B1) one finds
that

n n
ck,p+1)+ 2 2 (Clpcp+l,i—cl,p+lcpi)

=1 I=1
(i<p) I>p+1)

(BS)

the contribution corresponding to the # amplitudes with
the ordinal numbers greater than p + 1 reads

n
A= 3
k=1

(k>p+1)

CkpChop+1 - (B9)

In order to simplify the expression for A obtained by sub-
stituting Egs. (BS5) and (B7)—(B9) into Eq. (B3), let us in-
troduce quantities

4,= 3 ¢, (B10a)
j=1
(j>p+1)
n
B,= 3 ¢y, (B10b)
i=1
(i <p)
n
A, 0= X Cipins (B10c)
j=1
(j>p+1)
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n

B, 1= 2 Cpini-

i=1
(i <p)

(B10d)

We shall also modify the rhs of Eq. (B5) by changing all
the minus signs into plus signs; obviously this operation
does not change the parity of A;. It can now be shown
that the following expression is obtained:

AZ(GP+AP +Bp )(ap+1+ Ap+1+Bp+l)+bpbp+1 .
(B11)
Because of our assumption that © € F(even) [see Eq.

(41)], conditions (39c) apply. Taking into account Eq.
(B1), one may write

ap+bp+Ap +B,=2q , (B12a)
J
Jx ¥Y(n ;out;in;intra)
=S H—-17* s -3 > -3
X, X, Y, Y,
(x,=a,) (xy=a) (y,=b,) (y,=b)

where the form of

Y, Y
n
Ky ...x

n 1

'(n ;out;in;intra)

can easily be inferred from Eq. (37). We shall consider
the case when diagram (C1) consists of two connected
parts (subdiagrams); this corresponds to m =2 [see Egs.
(52)]. Now one may choose a particular time ordering of
6 amplitudes in diagram (37) such that

Y, Y o
Ky ...x, " '(n ;out;in;intra)
— Y, ¥, o
=Ky ...x. " F*Un,;outyin,intra,)
n k+1
= Y, Y, o
XKy ...x, (n,;outy;in;intra;) , (C2)

where k =n, and the symbols with bars on the rhs of Eq.
(C2) correspond to the connected parts of the diagram.

The following identities for the generalized Kronecker
deltas will be useful:

sV X X X, X
6XX,. X|:z ZSXVzHBVz n k+18V1 k 1 ,
V2 V]
(C3a)
w w
6Yn"‘Y1Y:2 ZSWZWIYSYn"'Yk—Fl 26yk...yl ! .
W, W,
(C3b)

Because of the assumed disconnected character of dia-
gram (C1), one has

¢;=0 (C4)
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ap+1+bp+1+Ap+1+Bp+1=2q', (Bl2b)

where g and ¢’ are some integer numbers. By combining

Eq. (B11) with Eqgs. (B12), one finds that
A=(2q9 —b,)(2q"—b, ) +b,b, . , (B13)

and, hence, A turns out to be even. Finally, Eq. (B2) is
shown to read
Jy¥=J,Y, (B14)

which concludes the proof of lemma 1.

APPENDIX C

In this appendix, formula (53), expressing a reduced di-
agram in terms of connected reduced diagrams, is de-
rived. An arbitrary reduced diagram (50) may be written
as

Y .
'(n;out;m;mtra)ﬁyn .‘.YIY, (C1)

for j >n, and i <n,. It can be checked that in this case
[see formula (38)] the parity of diagram (C1) can be ex-
pressed as

P=P2+Pl > (CS)

where P, and P, are the parities of the connected subdia-
grams. For the symmetry quotient (48) one finds

s'=s;'sy!s 7, (C6)
where S7! and S5 ! are the symmetry quotients for the
connected subdiagrams. Quantity S is equal to 2 if the
subdiagrams are related by symmetry, S =1 otherwise.
In general, S <m!, where m is the number of the con-
nected subdiagrams of a diagram. It is to be noted that
Eq. (C6), or its generalization for m > 2, may not be ap-
plicable to the case when the constituting subdiagrams
are chosen to be disconnected. This is because in such a
case a part of a subdiagram may be symmetry related to
another subdiagram or its part and this makes the inter-
pretation of quantity S dependent on the inner structure
of the subdiagrams.

It is easy to check that by substituting Egs. (C2), (C3),
(CS), and (C6) into Eq. (Cl1), formula (53) for the case
m =2 is obtained. A generalization of this derivation for
m > 2 is obvious.

APPENDIX D

A product of fermion operators, e.g., those of set (9),
can be formally put into the form of the normal product
X'y by suitably reordering fermion operators in the ini-
tial product under the assumption that the rhs of Eq. (8b)
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is equal to zero. This operation, often denoted by enclos-
ing the operator product in a curly bracket, is sometimes
used to define a ‘“‘normal product” of two (or more)
operators, €.g.,

A=1{6,6,} . (D1)
The above definition is ambiguous, however. Consider
two pairs of operators,

6,=a'a, 6,=a', (D2a)
and

6,=1, 6i=aa, . (D2b)
It is easy to check that

6,6,=6,86 (D3)
but

(6,6,]+(6:6} . (D4)

In general, expression (D1) is undefined unless the struc-
ture of the operator in the curly brackets is specified.

Aware of deficiencies of definition (D1), Jeziorski and
Paldus'® recently proposed a rigorous algebraic definition
of the normal product. We rewrite their definition for
operators from F(even) using the notation of the present
paper [see Egs. (27) and (28)]:

A=6,%6,, (D5)

where

X, X, Y Y
)‘XY:E >33 l[X2 2]2[Xl l]lBYzYlY (D6)

X x5 5y

It is seen that formula (D6) can be obtained from Eq. (29)
after suppressing on the rhs of that equation all the terms
corresponding to nonempty strings Z,,. After applying
the above definition to operators

6,=X17, (D7a)
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and

6,=X1¢,, (D7b)
one finds that

XIP)=RIP)=(%,%)'1, 7, , (D8)

which justifies the name “normal product” for the opera-
tion (D6). It is easy to check that this operation is com-
mutative:
éz*él=él*é2 . (D9)
The normal product (D6) introduces a new algebraic
structure in F(even) corresponding to a commutative
algebra we denote by F(even* ). Within this new algebra
we define the normal power of an operator, for integer n:

(T)=T*(Tx) "1, (D10)
with

(T*)°=1. (D11)
In the same vein

(7)1, (D12)

if it exists, will be interpreted as the normal inverse of
operator T. It can be shown that algebra Fevenx) is a
nilpotent algebra: For arbitrary T one finds that

(T *)"=0 (D13)

for n > M. Hence, any series of normal powers contains a
finite number of terms and thus converges. For any
operator function, expressible through operator power
series, one may define its normal counterpart, e.g.,

expx(T*)= 3 (n)"H(T*)".

n=0

(D14)

Operator exp#(T) is related to Lindgren’s'® operator

{exp(T)} (D15)

in the same sense as definition (DS5) is related to (D1).
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