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In this paper we perform a configuration-space analysis of the local-density approximation (LDA)
for the exchange-correlation energy functional of Kohn-Sham density-functional theory in terms of
the corresponding average exchange-correlation charge (hole) and energy densities. According to
our analysis, the explanation for the quantitative success of the LDA based on the hole charge-
conservation sum rule and the assumed consequent cancellation of errors in the spherical averages
of the hole is inadequate. The principal conclusion of our work is that the constraint of charge neu-
trality is a necessary but not sufficient condition for an approximate energy functional to lead to ac-
curate ground-state energies and ionization potentials. The significant additional requirement for
the functional is that it must, at least qualitatively, reproduce correctly the structure of the hole as a
function of electron position. We perform our calculations within the exchange-only approximation
as applied to atoms and jellium metal surfaces. In atoms the Fermi hole is localized about the nu-
cleus; as a consequence the LDA Fermi hole is accurate only for electron positions close to it.
However, we show that the spherically averaged LDA hole is accurate for electron positions in the
shell regions; it is substantially in error in the intershell and classically forbidden regions. The fact
that the principal contribution to the exchange energy comes from the inner-shell region of the
atom, where the LDA hole is accurate, explains why the errors in the LDA ground-state energies
are small. However, the ionization potential, which depends on the structure of the hole in the
outer regions of the atom, is substantially in error in the LDA since here the LDA hole differs
significantly from the exact one. For metallic surfaces, on the other hand, as an electron is pulled
from within the metal to infinity outside, the Fermi hole is delocalized and spread throughout the
crystal. As a consequence, the planar-averaged LDA hole, which is accurate for electron positions
inside the metal, bears little resemblance to the exact hole for electron positions outside the surface.
Thus the planar-averaged LDA energy density in the regions at and outside the surface, from which
there is a significant contribution to the energy, is poor, and consequently so is the surface exchange
energy. However, the LDA work function is accurate since the surface dipole barrier is fairly in-
sensitive to the choice of the approximate energy functional. Finally, our calculations exhibit a
striking similarity in the structure of the exact spherically averaged Fermi holes for the few-
electron-atomic and many-electron-metallic-surface nonuniform systems, thus demonstrating the
truly universal nature of the exact energy functional.
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I. INTRODUCTION AND DISCUSSION

In density-functional theory'~® (DFT) of a system of
interacting electrons in the presence of some external po-
tential, all the many-body effects are incorporated in the
universal ‘“‘exchange-correlation” energy functional
E . [p] of the electronic density p(r). This functional is
defined as

E, [pl= fexc(r)p(r)dr , (1)

where €,.(r) is the exchange-correlation energy density.
The exchange-correlation energy may also be thought of
as the Coulomb interaction energy between the electronic
density and the exchange-correlation (hole) charge densi-
ty p..(r,r’'). The hole is a consequence of the reduction in
probability of electrons approaching each other due to
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the Pauli exclusion principle and Coulomb repulsion be-

tween the electrons. Thus (in atomic units:
e=#=m =1) we may write*°
pDprT)
Exc[p]:——%ffdrdr——‘—r—:'!— , (2)
where
prlr, ) =p(r") fold}»[g)\(r,r’)—l] , (3)

and where g, (r,1’) is the pair-correlation function’ of the
system with density p(r) and coupling constant A. The
pair-correlation function is the probability of simultane-
ously finding an electron at r and r’. The depletion of
charge about each electron is expressed by the charge
conservation sum rule

fpxc(r,r')dr’zl . 4)

The exchange-correlation energy may also be written
as a sum of an exchange E, [p] and a correlation E [p]
energy functional. However, the exchange and correla-
tion energies in DFT differ® from the corresponding
values obtained by quantum mechanics. The DFT ex-
change energy, for example, is defined in terms of Kohn-
Sham orbitals from the full exchange-correlation poten-
tial and must as a consequence differ from the Hartree-
Fock value. (For a more detailed discussion of this and
other definitions of the exchange and correlation energy
functionals of DFT, we refer the reader to Ref. 8.) How-
ever, as opposed to E, [p] and E_[p] which are both un-
known functionals, the dependence of E [p] on the
Kohn-Sham orbitals is known explicitly via the average
exchange charge density or Fermi hole p,(r,r'). The
average exchange charge density at r’ for an electron at r
is defined’ as

px(r,r)=[y(r,r")}*/2p(1), (5)
where
y(r,r')=23 Wi(r' )W (r) (6)
k

is the single-particle density matrix with y(r,r)=p(r).
The exchange charge density satisfies the conditions

px(r,r)=p(r)/2, (7
pelr,r’)>0, (8)

and the charge-conservation sum rule of Eq. (4).

Since both the functionals E, [p] and E,.[p] are un-
known, they must be approximated. As a consequence
the mathematical rigor of the Hohenberg-Kohn theorem'
proof is lost, and bounds obtained for the ground-state
energy with the approximate total energy functional are
no longer rigorous. Thus in order to interpret accurately
the results they generate, it is important to first under-
stand the validity of the approximations invoked. One
approach to the evaluation of approximate energy func-
tionals is to make comparisons'®~!? either with experi-
ment or with results of quantum-mechanical calculations
where they exist. Another is to remain within the realm
of DFT and to compare!®!! with results derived from ex-
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actly known functionals such as the exchange energy
functional.

The simplest and most extensively used approximation
for the functional E, [p] and its exchange E,[p] and
correlation E_[p] energy components is the local-density
approximation (LDA). In this approximation these ener-
gies are represented by uniform electron gas values corre-
sponding to the local value of the density. Thus in the
LDA

ELPA[p]= fgi[p(r)]p(r)dr, 9)

where the subscript i represents exchange (x), correlation
(¢), exchange-correlation (xc), or screened-Coulomb ex-
change (sx), respectively, and where ¢; is the correspond-
ing average energy per electron of a uniform electron gas
of density p. The exchange-correlation charge density in
the LDA corresponds to writing Eq. (3) as

PLPA(r ') =p(r) fo‘dx[g*;om{ lr—r |;p(n)}—1], (10)
where g!°™ is the pair-correlation function for the homo-
geneous electron gas of density p(r). Since in the LDA
for each electron position r the local density p(r) is as-
sumed uniform, the LDA exchange-correlation hole also
satisfies the charge-conservation sum rule [see Eq. (4)],
the condition that it is positive everywhere [see Eq. (8)],
as well as [see Eq. (7)] for the value of the hole density at
the electron position.

Thus the LDA is exact in the limit of slowly varying
densities and should be accurate for densities which do
not change appreciably over a Fermi or screening wave-
length. However, most real systems show a considerable
variation of the density over these lengths. The implicit
assumptions in the application of this approximation to
realistic systems are that either errors in local exchange
and local correlation cancel, or that in those cases where
correlation effects are small, local exchange is adequate.’
These expectations are weakly founded in light of the fact
that in this approximation one employs in classically for-
bidden regions expressions derived from the uniform elec-
tron gas model. The expressions for the average ex-
change or screened-Coulomb exchange energies are de-
rived using plane waves. For the average correlation en-
ergy one usually employs a parametrization'' of results
obtained from correlated wave function calculations.'
However, these wave functions are again approximations
for the uniform gas and not for the inhomogeneous sys-
tems usually under consideration. For the various
successes and failures of the LDA as applied to atoms,
molecules, metals, semiconductors, metal and semicon-
ductor surfaces, we refer the reader to the review articles
of Refs. 3 and 15—17. More recently,'® the cancellation
of errors in local exchange and correlation taken sepa-
rately has been demonstrated for realistic metal surfaces
where correlation energies are a substantial fraction'd
(34-97 %) of the exchange energy. In these calculations
it is assumed that the ‘‘exact” surface exchange-
correlation energies are those obtained via the wave-
vector analysis scheme of Langreth and Perdew.'®?° In
this scheme where the surface exchange-correlation ener-
gy is analyzed in terms of the wavelength of the fluctua-
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tions which contribute to it, it has been shown that the
LDA is exact at large wave vectors, but fails for small
wave vectors for which an exact result exists. This may
be understood on the basis of the fact that short-
wavelength excitations must be insensitive to a variation
in the density. We again refer the reader to the original
literature for details of this momentum-space analysis.

The first insightful configuration-space analysis of the
LDA was performed by Gunnarsson, Jonson, and
Lundqvist.'® They explained the quantitative success of
the LDA in atoms in terms of the spherical average of
the exchange-correlation charge density. Additional
physical arguments in support of the explanation are
given in Ref. 15. However, since this real-space analysis
and explanations bear directly on our present work, we
discuss them here in some detail. In their work Gun-
narsson et al. consider the exchange-only system,® since
in atoms exchange effects dominate those due to correla-
tion. Furthermore, since within this approximation the
exact orbitals are known, it is possible to make compar-
isons with the exact results. They first make comparisons
of a cross section (along the axis of electron removal)
through the Fermi hole of neon for two positions
(r=0.09 and 0.4 a.u.) of the electron in the interior of the
atom. The cross section through the LDA Fermi hole is
obtained by employing the uniform electron gas pair-
correlation function due to the Pauli exclusion principle.
This is given as

g (kgR)=1—1j%k;R), R=r—r’
Jiw)=3j,)7y, (1
g,.(0)=

’

=

where j,(y) is the first-order spherical Bessel function,
and where in the LDA it is the local value of the Fermi
momentum kg (r)=[37p(r)]'’? which must be used.
What they observed was that the cross section through
the LDA hole bore little resemblance to the cross section
through the exact hole. (Whereas the exact hole is local-
ized?! about the nucleus for all electron positions, the
LDA hole is extended, spherically symmetric and cen-
tered on the electron. Thus the further out an electron,
the less the resemblance between the LDA and exact
holes.)

The next step in their analysis was to note that the ex-
change energy density €, (r), and hence the exchange en-
ergy E, [p] [see Eq. (1)], could also be expressed in terms
of the spherical average p,(r,R ) of the average exchange
charge density p,(r,r’). Thus the exchange energy densi-
ty (per electron) is

e (r)= fo dR Rp,(r,R), (12)
where
pe(r,R)=1 [ dQgp,(r,r+R), R=r—r’ (13)

is the spherically averaged exchange charge density. In
terms of the spherically averaged hole, the charge-
conservation sum rule of Eq. (4) is

4w [ “dR Rp (r,R)=1. (14)
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For the same two electron positions considered before,
they then made comparisons of the exact and LDA re-
sults for the quantity Rp,(r,R) [see Eq. (12)], and ob-
served that there was a substantial cancellation of errors
for large and intermediate distances from the electron.
They attributed this cancellation to the fact that a similar
cancellation must occur in the plots of the quantity
R%,(r,R) since both the exact and LDA holes satisfy
the charge-conservation sum rule [see Eq. (14)]. Or
equivalently, the argument'® is that exact cancellation in
the R %p, (r,R ) curves is only slightly affected by dividing
by R. Thus it is the fact that the LDA satisfies the
charge-conservation sum rule which is the significant fac-
tor underlying the success of the approximation. That
the LDA hole is not localized about the nucleus was not
considered significant. For completeness we note that the
LDA exchange energies for H, He, Ne, Ar, and Kr are in
error’> by —14.2%, —13.6%, —8.8%, —7.5%, and
—5.4%, respectively.

Now the exchange energy arises due to the interaction
between the electronic and exchange charge densities,
both of which in atoms are concentrated within a region
of approximately 1 a.u. of the nucleus. For most of this
region the LDA hole is a poor approximation to the ex-
act one. Thus the argument'® that due to the long-range
nature of the Coulomb force, the interaction energy be-
tween two charge distributions is weakly dependent on
the shape of the charge distributions and depends only on
the total charge is inapplicable to this situation. Thus al-
though it is possible to rewrite the expression for the ex-
change energy in terms of the spherically averaged Fermi
hole, the exchange energy does in fact depend explicitly
on the average exchange charge density. In those cases
where the various charge densities overlap substantially, if
an approximation does not give rise to an accurate repre-
sentation of the average exchange charge density, the
corresponding exchange energy will not be accurate.

A qualitative rationalization®?3 for the use of the LDA
for exchange correlation in the Kohn-Sham equations
that has been suggested is to think of the quantity R (r),
where
1 Prclr,1)

f '

—dr', (15)
|r—r1'|

R(r)

as an average range of the hole. The average range of the
corresponding LDA hole is, of course, obtained by re-
placing p,.(r,r’) in Eq. (15) by its LDA counterpart. The
argument is that provided the range of the LDA and ex-
act holes are similar, the corresponding energies will be
too. (For two specific positions of a spin-up electron in
the nitrogen atom at » =0.13 and 0.63 a.u., Gunnarsson?’
has shown that in the exchange-only approximation the
range of the LDA hole closely approximates that of the
exact hole.) Thus again the conclusion arrived at is that
the details of the shape of the hole are not significant and
that R(r) is in general a fairly insensitive functional of
the density p(r). However, the quantity 1/R(r) of Eq.
(15) is the exchange energy density at position r. Now in
order to determine the exchange energy one requires the
exchange energy density at al/ points in space. Thus in
all of the above analysis there is the implication that the
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results obtained for the two electron positions considered
are representative of all points within the atom; contribu-
tions to the energy from classically forbidden regions,
whether they be in atoms or metallic surfaces, are in any
event negligible.

Finally, we note the following facts which tend to
weaken the contention of the lack of significance of the
structure of the hole relative to its spherical average.
When a self-interaction correction (SIC) within the LDA
is included,'! it is observed that for both electron posi-
tions in the case of the Ne atom, the SIC-LDA cross sec-
tions of the Fermi hole closely approximate the exact
hole. However, although the corresponding SIC-LDA
results for Rp, (r,R ) are also superior to the LDA when
the electron is close to the nucleus at » =0.09 a.u., the re-
sults are substantially inferior to the LDA when the elec-
tron is further out at r=0.4 a.u. The self-interaction
corrected exchange energies for the atoms H, He, Ne, Ar,
and Kr are in error by 0%, 0%, 2.6%, 3.0%, and 3.0%,
respectively. (The SIC-LDA hole!! satisfies charge con-
servation, but for large distances from the nucleus it does
not satisfy the requirement that it be positive every-
where.) Thus these facts would seem to indicate that it is
the hole rather than its spherical average which is of
greater significance. Of course, once again, this is a con-
clusion based on an analysis of only two points in space.
But there is another important fact to be noted. In this
exchange-only approximation, the highest occupied
eigenenergy (which is the only physically meaningful
eigenenergy of Kohn-Sham DFT as the chemical poten-
tial**) as obtained within SIC-LDA is also vastly superior
to that of the LDA value. In comparison to the Hartree-
Fock result for the 2p eigenenergy which is —23.1 eV,
the LDA and SIC-LDA values'' are —12.1 and —22.0
eV, respectively. All the results discussed in this para-
graph thus tend to the conclusion of greater significance
of the Fermi hole, not only for the determination of the
exchange-correlation energy but also for the ionization
potential.

In order to better understand the LDA we perform in
this paper a more detailed configuration-space analysis of
the approximation for the inhomogeneous electron gas in
the Ne atom and at metallic surfaces and surfaces in gen-
eral. In particular we wish to resolve whether the condi-
tion of charge neutrality of the average exchange-
correlation hole of an approximate energy functional is
sufficient to lead to accurate results or whether in addi-
tion other physical requirements must be met. Recall
that all the arguments in terms of the spherically aver-
aged hole have charge conservation as the fundamental
building block. We perform our calculations in the
exchange-only approximation. We do this not only be-
cause exact results are available for comparison, but also
because the behavior of the average exchange charge den-
sity is strikingly different in the two systems. As an elec-
tron is removed from an atom, its Fermi hole is localized
about the nucleus, whereas as an electron is removed
from within a metal to infinity outside, the Fermi hole ex-
pands and in the asymptotic limit is spread over the en-
tire volume of the crystal.”>~?” Thus it would be possible
to determine how important it is for an approximate en-
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ergy functional which satisfies charge conservation to
also reproduce the correct physics of the structure of the
Fermi hole as a function of the electron position.

II. RESULTS AND ANALYSIS

A. Neon atom

For our analysis of the LDA in the Ne atom we em-
ploy the analytical Hartree-Fock wave functions due to
Clementi and Roetti.?®?’ In Fig. 1 we plot the electronic
density p(r) due to these wave functions, and in Fig. 2 the
radial probability density. We consider four representa-
tive electron positions which we treat in pairs. The first
pair corresponds to the two maxima of the radial proba-
bility density at » =0.104 and 0.651 a.u. The second pair
constitutes the point at the intershell minimum of the ra-
dial probability density at »=0.307 a.u. and to a point in
the classically forbidden region at r=2.000 au. All
these positions are indicated by arrows in Figs. 1 and 2.

In Figs. 3(a) and 3(b) we plot the exact and LDA spher-
ically averaged exchange charge densities for the first pair
of electron positions. Observe that for both these posi-

1000
(a)

NEON ATOM

p(r) (a.u)

Q.I0f

[oX

0.010f

00820 22 23
r (a.u)

FIG. 1. The electronic density p(r) of the Ne atom within
Hartree-Fock theory. The wave functions used are those due to
Clementi and Roetti, Ref. 28. The arrows represent the four
electron positions considered in the text.
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4o (r) (a.u.)

0 ] 1 ] 1
0] 0.5 1.0 1.5 2.0 2.5

r (a.u.)

FIG. 2. The radial probability density of the Ne atom within
Hartree-Fock theory obtained using the Clementi-Roetti wave
functions of Ref. 28. The arrows at the maxima, the intershell,
and classically forbidden regions correspond to the four elec-
tron positions considered in the text.

tions of high-radial probability density, the LDA is a
good approximation. However, it more closely approxi-
mates the exact result at the second maximum. This is
because although the electronic density corresponding to
the electron position at the first maximum is higher than
that at the second maximum, the gradient of the density

(a)
ELECTRON AT r=0.104

— EXACT
--- LOCAL DENSITY APPROX.

Py (r.R)a.u.)

2.5

FIG. 3. The exact and local-density approximation spherical-
ly averaged exchange charge densities p, (r,R) for electron posi-
tions r at the maxima of the K and L shells of the Ne atom as a
function of the distance R from the electron.

24r (a)
|8 \ ELECTRON AT r=0.307
’ — EXACT
--- LOCAL DENSITY APPROX.
1.2} k (LDA)
0.6}
3
= o) n = .
e 0] 0.2 0.4 0.6 0.8 1.0 1.2
003t (b)
ELECTRON AT r=2.000
0.02
0.0t
% [ 5 3 d s
R(a.u)

FIG. 4. The exact and local-density approximation spherical-
ly averaged exchange charge densities p, (7, R) for electron posi-
tions r at the intershell and at a point in the classically forbid-
den region of the Ne atom as a function of the distance R from
the electron.

at the former point is far greater. The electronic density
at r=0.651 a.u. (see Fig. 1) more closely approximates a
uniform electron gas than it does at » =0.104 a.u. This
occurs because in the region of the second maximum of
the radial probability density there are eight electrons in
a large volume (see Fig. 2), whereas in the region of the
first maximum there are two electrons in a very small
volume.

In Figs. 4(a) and 4(b) we plot the spherically averaged
exchange charge densities for the electron positions cor-
responding to the intershell and classically forbidden re-
gions. Note the structure developing in the exact curve
of Fig. 4(a) and its prominence in Fig. 4(b). The corre-
sponding LDA curves are poor approximations in these
regions of low-radial probability density, though it is far
worse in the classically forbidden region. Furthermore,
the LDA possesses none of the structure of the exact
curves.

On the basis of the analysis of Figs. 3 and 4 we con-
clude that the LDA is accurate in the shell regions of an
atom; the wider a shell (with more electrons) the better
the approximation. The LDA fails in the intershell and
classically forbidden regions.

The next question which arises is from what regions of
space does the —8.8% error in the LDA exchange ener-
gy come from? In order to answer this question we have
plotted in Figs. S and 6 the quantity Rp,(r,R) (for the
same two pairs of electron positions) since the area under
these curves gives the energy density at these points. A
study of these graphs indicates that comments with re-
gard to the accuracy of the LDA similar to those made in
connection with Figs. 3 and 4 can again be made. How-
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FIG. 5. The exact and local-density approximation in-
tegrands Rp,(r,R) of the exchange energy density of Eq. (12),
where p, (r,R) is the spherically averaged exchange charge den-
sity, as a function of the distance R from the electron for elec-
tron positions r at the maxima of the K and L shells of the Ne
atom.

ever, what should be noted is that although the LDA in
Fig. 5(b) is superior to that in Fig. 5(a), the former graphs
are an order of magnitude smaller. At the intershell
point Fig. 6(a), where the LDA is poor, the order of mag-
nitude of the curves is the same as those of Fig. 5(b). Fi-
nally, in the classically forbidden region Fig. 6(b) where
the LDA fails, the results are a further order of magni-
tude smaller. In Table I we quote the exact and LDA
values of the integral for the energy density

4r fo“’ dR Rp,(1,R)
and the percent LDA error for the four electron positions

considered. For determination of the energy, the more
significant quantity, however, is the product

p(r)dm fo"“ dR Rp,(r,R),

FIG. 6. The same as in Fig. S except that these graphs have
been plotted for electron positions at the intershell and at a
point in the classically forbidden region of the Ne atom.

and these values are also given in the table. It is evident
from the table that the principal region where the error
in the LDA exchange energy arises is the deep interior of
the atom. This occurs both from the high-density K shell
region as well as the intershell region. Not only is the
value of the integral large in this region, but when multi-
plied by the density, the resulting product is very large.
In the L shell region, the LDA error is the smallest as ex-
pected, but the contribution to the energy from this re-
gion is also small. Finally, even though the energy densi-
ty in the classically forbidden region at » =2.000 is larger
than the L shell value at »=0.651, the contribution to
the energy is negligible from this region. Observe also
that for all four electron positions considered, the LDA
exchange energy density consistently underestimates the
exact results. All these errors in the same direction are
thus additive in the determination of the energy.

Thus in addition to the conclusions arrived at above,

TABLE I. Ne atom exact and local-density approximation (LDA) values for the energy-density in-
tegral 417 f: Rp.(r,R)dR and the quantity p(r)4m f: Rp,(r,R)dR for the four different electron po-
sitions considered in the text. Here p(r) is the electronic density and p, (r,R ) the spherically averaged

exchange charge density.

Electron position 4r [ “Rp,(r,R)dR poidr [ 0°° Rp,(r,R)dR % LDA
r (a.u.) Exact ° LDA Exact LDA error
0.104 7.065 6.389 566.8 512.5 ~9.6
0.307 2.542 2.414 11.06 10.51 52
0.651 0.1740 0.1694 0.2607 0.2537 29
2.000 0.6288 0.3777 0.009 692 0.005 821 —39.9
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we note that although the LDA graphs for both the
spherically averaged hole p,(r,R) and the quality
Rp,(r,R) look good for electron positions near the nu-
cleus [Figs. 3(a) and 5(a)], this is the region from which
the principal contributions to the exchange energy arise.
Consequently, for the LDA or any approximate energy
functional to give accurate results for the exchange ener-
gy, it must reproduce very accurately the spherically
averaged exchange charge density in the deep interior of
the atom. Even small differences in this region can lead
to large errors in the energy. This conclusion implies
that for electron positions close to the nucleus in particu-
lar and even in the first intershell region, if the average
exchange charge density were obtained accurately, the
spherical average would be accurate. A study of the one
cross section through the LDA Fermi hole given in the
work of Gunnarsson et al.'®?* shows the hole not to be
very good.

Finally, we also conclude from the above analysis that
although the charge-conservation sum rule of Eq. (4)
must necessarily be satisfied by an approximate energy
functional, it is not a sufficient condition for the accurate
estimation of energies or eigenenergies.

B. Surfaces

We perform our analysis of the LDA at solid surfaces
in the jellium model approximation of a crystal. The
wave functions we employ are those generated by the
linear-potential model® of a surface. With this model it
is possible to consider a wide range of electronic density
profiles existing at surfaces ranging from very rapidly to
very slowly varying and including those typically existing
at metallic surfaces. The behavior of the exact Fermi
hole as an electron is removed from within the crystal to
infinity outside is described in Refs. 25-27, and we refer
the reader to Ref. 26 for expressions pertinent to the sur-
face physics problem to the extent discussed here as well
as for notational details. We note, however, that the elec-
tron position is given by the coordinate y =kx and that
of the hole by y'=kex'. (Here kj is the Fermi momen-
tum in the bulk, and x the electron coordinate perpendic-
ular to the surface.) The parameter yr controls the
profile of the density at the surface. All properties in the
linear-potential model may be expressed in terms of
universal functions of this parameter. As a consequence,
the graphs of this subsection are presented in terms of the
corresponding universal functions. In these figures the
vacuum region is to the right of the jellium edge. As in
Ref. 26 we consider the profiles corresponding to y.=0,
the infinite barrier model; yz =3, a typical metallic densi-
ty profile;*! and y. =8, a very slowly varying profile. The
LDA surface exchange energies for these values of yr are
in error*? by 55%, 17%, and 4%, respectively.

In order to determine whether the various rationales
for the accuracy of the LDA described in the Introduc-
tion are applicable to the surface physics problem, we be-
gin our analysis by first considering the spherically aver-
aged exchange charge densities. (For the infinite barrier
model wave functions an analytical expression for the
spherically averaged Fermi hole is given in Ref. 26.) In
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Fig. 7 we compare the exact and LDA holes for four
representative electron positions. The graphs are plotted
as a function of & =KkgR, where R is the distance from
the electron. (The infinite barrier is at y =0, and the jelli-
um edge at y=—37/8.) Inside the solid at y =—4.0
[Fig. 7(a)] where the Fermi hole is spherically symmetric,
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FIG. 7. Variation of the function p,(y,72)/p for the infinite
barrier model (yr=0), where p,(y,R) is the spherically aver-
aged exchange charge density, and the corresponding function
in the local-density approximation vs the distance from the elec-
tron for different positions y of the electron.
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it is difficult to distinguish between the LDA and exact
results. This, of course, must be the case. Even when the
electron is at the surface [Fig. 7(b)] where the gradients of
the density are large, the LDA is still very accurate.
However, as the electron is pulled out beyond the surface
to y=—0.50 [Fig. 7(c)], the Fermi hole is no longer
spherically symmetric, and the LDA hole deviates
significantly from the exact results, possessing none of its
structure. In the low-electronic density region at
y=—0.05 there is, as expected, no similarity at all be-
tween the LDA and exact holes. If one were to consider
only the two electron positions corresponding to panels
Figs. 7(a) and 7(b), one might conclude that the LDA was
very accurate. But recall that the LDA surface exchange
energy is in error by 55% in this case. Consequently, it is
evident from Figs. 7(c) and 7(d) that a substantial fraction
of the error arises from the region outside the solid.
(Note that in Fig. 7 the ordinate scale is the same in all
four panels.) This is also the region where the shape of
the LDA spherically averaged hole deviates substantially
from the exact hole. Thus, once again, we conclude that
for an approximate exchange-correlation energy func-
tional to be accurate, the hole to which it gives rise must
be accurate for ali electron positions.

The obvious next question is how well does the actual
LDA Fermi hole compare with exact hole? However,
prior to making this comparison we note the striking
similarities between the results for the spherically aver-
aged Fermi holes in the few-electron-atomic system (Figs.
3 and 4) and the many-electron-surface system (Fig. 7).
The graphs of Fig. 3 corresponding to the regions of
high-radial probability and electronic density in the Ne
atom are similar to those of Figs. 7(a) and 7(b) which also
correspond to regions of high-probability and electronic
density. The development of structure in the graphs of
Fig. 4 in the intershell and classically forbidden regions is
also strikingly similar to the structure exhibited in Figs.
7(c) and 7(d) in the regions of low electronic density at
the surface. The implications of the similarities of this
property in the quite different nonuniform systems dis-
cussed is that approximate exchange and correlation en-
ergy functionals must be truly universal in the spirit of
Hohenberg, Kohn, and Sham. The concept of a different
functional for each different kind of inhomogeneity
violates the fundamental density-functional theory tenet
of universality.

Due to the symmetry of the surface physics problem,
we make comparisons in this paper for the planar-
averaged Fermi holes?®~%’ as a function of electron posi-
tion. (Note, however, that although in the jellium model
approximation the electronic density in the planes paral-
lel to the surface is uniform, this is not the case?’ for the
average exchange charge density.) In Fig. 8 we compare
the LDA and exact holes for the rapidly varying density
profile of the infinite barrier model. (See Ref. 26 for
analytical expressions for the exact planar-averaged hole
for these model potential wave functions and for the
plane waves of a uniform electron gas, the latter being re-
quired for the LDA calculations.) Inside the metal [Fig.
8(a)], the LDA as expected closely approximates the ex-
act result. However, even at the jellium edge [Fig. 8(b)],
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the difference between the two is quite significant. [Note
that the information of this rather substantial difference
is completely lost in the process of spherically averaging.
See Fig. 7(b).] As the electron is pulled out of the surface
[Fig. 8(c)], all similarity ceases. (In this model potential,
although the wave functions vanish at y =0, the LDA
hole extends into the region y >0, since it is symmetric
about the electron position and must also satisfy the
charge-conservation sum rule.) The behavior of the LDA
hole for a typical metallic density profile as the electron is
pulled from inside to outside the metal, is very similar
[see Figs. 9(a)-9(c)]. For a very slowly varying profile
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(Fig. 10), note that as expected the LDA hole is accurate
even for electron positions outside the surface [Fig.
10(b)]. It begins to fail only far out in the classically for-
bidden region [Fig. 10(c)]. Observe also [Figs. 9(c) and
10(c)] that the structure the exact hole develops within
the metal when the electron is in the classically forbidden
region is absent in the LDA.

However, what is more significant is that the LDA
does not reproduce an important feature of the physics of
this problem: As an electron is removed from within the
metal, the exchange charge remains behind and begins to
spread throughout the semi-infinite half-space of the crys-
tal.>-¥" Even for electron positions near and outside the
surface well over 90% of the exchange charge lies inside
the metal. -2’ Thus there is substantial overlap between
the electronic density and the Fermi hole, their Coulomb
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FIG. 9. Same as in Fig. 8 except that these graphs are drawn
for a typical metallic surface electronic density profile (yz=3).
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interaction giving rise to the surface exchange energy. In
the LDA for all electron positions outside the surface,
over 50% of the exchange charge must be outside the
metal since the LDA hole is symmetric about the elec-
tron. The incorrect overlap between the LDA hole and
electronic density at and outside the surface is what gives
rise to the 17% error in the surface energy for the metal-
lic density case (Fig. 9). For very slowly varying densities
(Fig. 10), the LDA hole is in error only in the region
where the electronic density is negligible, and conse-
quently the error in the surface energy is small (4%).
Thus we see that although the LDA hole satisfies charge
conservation, its description of the hole for metallic sur-
faces is inaccurate. Again, as in the atomic case, we con-
clude that charge conservation is necessary but not
sufficient. An approximate functional must correctly
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reproduce the structure of the Fermi hole.

In the atomic case, it is natural to write the exchange
energy in terms of the spherically averaged exchange
charge density as in Eq. (12). Since in the surface physics
problem, the inhomogeneity in the electronic density is
only in the direction perpendicular to the surface, we
write the exchange energy density in terms of the quanti-
ty ' (x,x') as

€x =1 dx' T (x,x"), (16)
where
L(r,r’)
T, (x,x")= _{dx“fdx;|~“|)—r-:—rT (17

Lyy) 1 2
3ki/m  f)w

where
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is the planar average of [p,(r,r')/|r—r"|]. The ex-
change energy may then be written as

E [pl= f_:dxp(x)sx(x). (18)

As such we may think of I',(x,x’) for the surface inho-
mogeneity as being the equivalent, in a sense, of R times
the spherically averaged hole for atoms. Consequently,
we now make comparisons between the LDA and exact
results for ', (x,x’'). In terms of the variables y:EFx,
y'=kpx', q=k/kp, q'=k'/kg, and p=P /kp, where
P=k|'|—-k”, and where k,k" are components of the elec-
tron momenta perpendicular and parallel to the surface,
we may write the universal quantity T (y,y’)/(3k % /)
per unit surface area as

1 1 , , 2 No—ply—yp’
S, da [ dg'doly.y) [ dp Hip.g.ghe P (19)

m(1—g%)—2 (1—q'2)sin~‘(1—5,2)—1/2+g<1—q'2~§2)1/2 for &<1—q"
-9

ﬂ(p,q,Q')= " 2 Iy 2
m(q'“—q°) for £°>1—¢q'* and £>0

m[(1—q')+(1—g?)] for £&2>1—q'* and £<0

__1_ 2 2_ 2
—2p<p +9°—q"),

1
fw)= [ dg1—g" 6,7,

and where ¢,(y) is the component of the wave function in
the direction perpendicular to the surface. The expres-
sion Eq. (19) is general in that it has been written in terms
of arbitrary wave functions ¢,(y) which may depend
upon various parameters. For the linear-potential mod-
el?® the wave function depends upon the field strength pa-
rameter yp, and consequently Eq. (19) is a universal func-
tion of this parameter. The equation for I', can be easily
derived by following the Appendix of Ref. 32.

A comparison between the LDA and exact results for
I', in the infinite barrier approximation is made in Fig.
11. The trends are similar to those discussed for the hole.
In the interior [Fig. 11(a)] the LDA is accurate but as the
electron approaches and passes through the surface its
deviation from the exact results becomes more pro-
nounced. The function I', in the LDA is symmetric
about the electron position and consequently extends into
the forbidden region y > 0. The exact function I', on the
other hand, tends to remain principally in the crystal.
For the more realistic metallic density profile case (Fig.
12), at the jellium edge [Fig. 12(b)] the maxima of the two
functions differ by a factor of 2. Even just outside the
surface [Fig. 12(c)], the LDA does not resemble at all the
exact curve, the maxima differing by an order of magni-
tude. [Note that the electron position in Fig. 12(c) is
closer to the surface than in Fig. 9(c) for the hole.] Simi-
lar remarks can be made about the slowly varying elec-
tronic density profile case shown in Fig. 13. Since the

Gag ¥,y ) =05 (»)d5(y )b, (y" )y (¥)

I

area under the I', curves is the energy density at that
point, we see that the LDA energy density is in error not
only at and about the surface but also beyond it to some
extent. These differences will increase the further out the
electron. However, the differences become of little
significance only far out in the classically forbidden re-
gion since there the electronic density is negligible [see
Eq. (18)]. We see once again how important it is for an
approximate energy functional to reproduce accurately
the behavior of the Fermi hole. Only then will the func-
tion ', and consequently the significant quantity, the en-
ergy density, be obtained correctly.

III. CONCLUSIONS AND FUTURE WORK

In this paper we have performed a real-space analysis
of the local-density approximation of density-functional
theory. The analysis, performed for the Ne atom and jel-
lium surface, is in terms of the Fermi hole along lines
similar to those of Gunnarsson et al.>!® According to
these authors, the principal reason for the quantitative
success of this approximation is that the corresponding
Fermi hole satisfies the charge-conservation sum rule.
Furthermore, the actual shape of the Fermi hole is con-
sidered insignificant since charge conservation ensures to
a great extent that the LDA spherically averaged Fermi
hole is relatively accurate. Undoubtedly, if for all elec-
tron positions the spherically averaged hole is accurate,
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the energy will be too. However, the mere satisfaction of
charge neutrality does not guarantee this to be the case.
Our analysis indicates that a considerable amount of in-
formation is lost by the process of spherically averaging,
and that although charge conservation is a necessary con-
dition, it is not a sufficient criterion. An additional con-
dition of prime importance is that an approximate energy
functional must accurately reproduce the behavior of the
Fermi hole. The structure of the Fermi hole as a function
of electron position describes a fundamental aspect of the
physics of the problem. As such, it is imperative that ap-
proximate functionals not only satisfy sum rules such as
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charge conservation, but that they also correctly repro-
duce this intrinsic property of the nonuniform electron
gas. It is only then that one could apply these functionals
with confidence to systems in which the exact results are
unknown because then both the ground-state energy as
well as the ionization potential will be obtained accurate-
ly. Furthermore, by demonstrating the striking similarity
in the structure for the spherically averaged Fermi hole
in the few-electron-atomic and many-electron-surface
nonuniform systems, we reemphasize that it is also im-
perative for this functional to be universal in the spirit of
Hohenberg, Kohn, and Sham.

Our study has shown that for atoms the LDA is accu-
rate for the wider shells which have many electrons, but
that it fails in the classically forbidden and intershell re-
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gions. In the deep interior such as in the K shell region it
is also fairly accurate. But this is the region where the
principal contribution to the exchange energy arises; it is
the differences here that cause the error in the LDA re-
sult for the energy. We know from the one cross section
studied that the LDA Fermi hole is a poor approxima-
tion to the exact hole and that it becomes worse as an
electron is pulled out from an atom. However, it best ap-
proximates the exact hole only when the electron is in the
deep interior. Now the exchange energy is the Coulomb
interaction energy between the electronic charge density
and the Fermi hole. Thus in the deep interior the three-
dimensional overlap between the LDA hole and the elec-
tronic density is obviously substantial enough for the
LDA to lead to a less than 15% error in the exchange en-
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ergy of atoms. On the other hand, the highest occupied
eigenenergy depends upon a potential which is derived
from the average exchange charge density in the region at
and outside the corresponding atomic shell. Outside the
shell the LDA hole is very poor (see Table I), and as a
consequence the LDA value of the highest occupied level
for Ne is in error'! by 48%. The improvement of the
hole via the self-interaction correction scheme'' reduces
this error to 4.8%.

For the nonuniform system at jellium metal surfaces
our study has shown that the LDA hole is accurate inside
the crystal as well as up to near the surface when ap-
proached from the interior. However, whereas for elec-
tron positions at and outside the surface, most of the ex-
change and electronic charge lie inside the metal, over
half of the LDA Fermi hole lies outside. Significant con-
tributions to the surface energy also come from the re-
gion at and outside the surface. Thus we understand why
for metallic surfaces the LDA surface exchange energy is
in error'® by 15-46 %. The LDA work functions®® in the
exchange-only case, on the other hand, differ from the ex-
act results by less than two-tenths of an electron volt.
This difference is small because the contributions to the
chemical potential due to exchange effects (which are
substantial) are fixed at the bulk value; it is only the shape
of the effective potential at the surface which is different
for different exchange charge densities. The differences
in effective potential lead to differences in the surface
electrostatic dipole barrier, and it is only this component
of the work function which changes.

The significance of the additional requirement that an
approximate functional lead to an accurate Fermi hole as
a function of the electron position is evident from the
present work and the discussion above. It is also clear
that a considerable amount of additional work needs to
be done before the LDA is fully understood. For one, it
is important to make three-dimensional comparisons be-
tween the exact and approximate holes. For example, it
is important to learn how the LDA and exact holes com-
pare in planes perpendicular to that of electron removal
both in atoms as well as at metallic surfaces. Compar-
isons between the corresponding exchange charge densi-
ties and the respective potentials would also lead to fur-
ther insights. In recent work® on the gradient expansion
approximation (GEA) for the exchange energy, Perdew
has imposed real-space cutoffs on the corresponding hole
to ensure charge neutrality and positiveness—the gen-
eralized gradient approximation. (The GEA hole satisfies
neither of these conditions.) For atoms the exchange en-
ergies are within 1% of the Hartree-Fock value, and for
the infinite barrier model of a surface the error in the sur-
face exchange energy is —44%, which is a substantial im-
provement over the —155% error®® in the GEA result.
It would be interesting to determine whether this im-
proved functional, which satisfies exactly the same condi-
tions as the LDA, leads to improved Fermi holes. Per-
dew>* has, however, indicated that the truncated hole in
an atom always encompasses the nucleus and that its
center of gravity is shifted towards the nucleus.

In order to understand the LDA for exchange correla-
tion or correlation separately, comparisons between the
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exact and LDA Coulomb holes must be made. When
Coulomb correlations are included in the uniform elec-
tron gas, the electron digs a deeper hole about itself, i.e.,
the probability of finding two electrons close to each oth-
er is further reduced. The pair-correlation function for
exchange correlation g, (kzR ) must now have a value at
the electron position of between 0 and {. As a conse-
quence, the spatial extent of the pair-correlation function
is reduced. It is thus assumed!® that on introducing
Coulomb correlations the LDA exchange-correlation
hole becomes more localized about the electron position.
Does this localization occur, and if so, does it make the
hole superior in those regions where the contributions to
the correlation energy are a maximum? What is the rela-
tionship between the localization of the exchange-
correlation hole in the outer shell and classically forbid-
den regions and the highest occupied eigenenergy? How
does the fact that in the LDA both the exchange and
correlation holes are centered about the electron position,
and now presumably more localized about it, explain the

cancellation'® of energy errors in local exchange and

correlation at surfaces? Calculations to answer such
questions must be carried out if we are to better under-
stand the LDA and thereby to improve upon it meaning-
fully. As for the exact results, we know from the litera-
ture>’ that the size of the Coulomb hole for atoms such
as He and Be is similar to that of the electronic charge
distribution. For surfaces, it is only recently that the
three-dimensional structure of the exact Fermi hole has
been studied.?’ The structure of the exact Coulomb hole
at a metal surface has yet to be determined.?® This work
is in progress.’’
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