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Electric dipole and quadrupole transitions probabilities between two atomic Rydberg states
vl, v'l' have been calculated using three methods. From comparison of results we deduce a new

method from which any radial integrals may be obtained very easily using only two functions of the
diA'erence s =v —v. These functions are gp($) and g](s) which have been calculated in the dipole
case [J. Picart, A. R. Edmonds, N. Tran Minh, and R. Pullen, J. Phys. 8 ll, L651 (1978); A. R. Ed-
monds, J. Picart, N. Tran Minh, and R. Pullen, J. Phys. 8 12, 2781 (1979)].

I. INTRODUCTION

The interpretation of many recent works on high Ryd-
berg states in conventional and laser spectroscopy (for an
extensive bibliography see, for example, Fabre'), requires
the computation of electric multipole transition probabil-
ities for hydrogenic and nonhydrogenic atoms and for a
wide range of the parameters v, /;v', /', in particular for
large values of the eft'ective principal quantum numbers

I
V, V.

Electric dipole transitions which account for the
overwhelming majority of spectral lines have received
much attention. In the hydrogenic cases exact quantum
solutions are available, ' and Heisenberg's form of the
correspondence principle used by Naccache and Percival
and Richards gives close agreement of the semiclassical
formula with the exact values. In the nonhydrogenic
cases, Bates and Damgaard point out that interpolation
applied to certain functions of the radial integrals is a
useful procedure. This leads one ' to hope that radial in-
tegrals for large v, v' might be obtained by a similar ex-
trapolation from values computed for lower v, v' using
the radial integral method of Edmonds and Kelly which
gives exact quantum results for v and v' ~35. %'e make
use of the semiclassical formula ' for the radial integrals
to suggest a satisfactory mean of extrapolation. Another
method is described by Davydkin and Zon, ' who use
J%'KB wave functions and consider the electron as a
classical particle moving in accordance with Kepler s law
on an ellipse with eccentricity e. They obtain analytic ex-
pression for dipole matrix elements by using the
quantum-defect method in the quasiclassieal approxima-
tion (JWKB-QD method). In Sec. II results obtained by

the three methods for dipole radial integrals, correspon-
dence principle (CP), our extrapolation method (EXT),
and the JWKB-QD method, are recalled. From compar-
ison of results it is shown that radial dipole integrals may
be calculated using only the functions go(s) and g, (s) tab-
ulated by Edmonds et a/. 8 Sections III and IV are devot-
ed to electric quadrupole transitions. Using the same
methods as in the dipole case we show that quadrupole
matrix elements may be calculated very easily in the two
cases allowed by the selection rules. Case b, l =I' —l =0
is given in Sec. III and case 6/ =+2 is given in Sec. IV.
Section V contains concluding remarks.

%e adopt the following conventions in this paper.
Atomic units are used. For any electric multipole transi-
tions of I. order between v, / and v', /' atomic states we set

s =v —v

6/ =l' —/ .

In the hydrogenic case the eccentricity e of the classical
Kepler's orbit is defined by

/2
1—

n
C

/, and n, are mean values of /, /' and n, n', chosen in each
case to provide good agreement between exact quantum-
mechanical and correspondence results.

To compute radial integrals for large v, v' we define, for
purposes of extrapolation functions,

~~( I,I, (vl
~

r
~

v'I')
(v, I

)
rL) v, l')
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where the denominator is always supposed to be well ap-
proximated by the hydrogenic formula. %e have I. =1
and Al =+1 for allowed electric dipole transitions, L =2
and bl =0 (with I&0), +2 for allowed electric quadru-
pole transitions.

II. EVALUATION GF RADIAL DIPOLE
MATRIX ELEMENTS

A. Hydrogenic case

tion to P —, '. We may write

3

'('nl, n'I')=$-, '(s, y;I, }=g y~g (s),
p=—0

the coeScients of y~ are alternately even and odd func-
tions of $ only. %'e And, for integer values of $,

go(s) =gz(s) = [J,+,(s)—J, &(s)],
( —1)'

3$

Naccache" has applied Heisenberg's correspondence
principle to give the approximation

1+b, l J, ~, (es)
n

g, (s)= [J,+i(s)+J, 1(s)],( —1)'

gi(s) = go(s)+g, (s),
2

where J, , are Bessel's functions.

(12)

(13)

1 —b I 1, i(es)
n,

B. Nonhydrogenic case. Extrapolation method
of Picart et al. (Ref. 1)

l +l'+ 1
l, —

2nn'
n 7n+n'

and obtains good agreement between exact quantal re-
sults and correspondence results.

For purposes of extrapolation we have to consider the
function P*, ', which, using the definition given in Eq. (4),

, 1s

P, '(nl, n'I')=(nl
i
r

~

n'I') 1.5n,~ 1—
n~

(&)

When (nl
i
r

~

n'I'} is replaced by the above semiclassi-
cal formula [Eq. (5)j, the MacLaurin series for (b; 'in-
terms of

l,
y =El

n,

truncated after the term in y, gives a good approxilTla-

The good results obtained in the hydrogenic case lead
us to propose a similar expansion for the nonhydrogenic
case. The g~(s) are obtained by reference of computed
values of the radial integrals using the method of Ed-
monds and Kelly. The functions go(s) g&(s) are
shown in Fig. 1; they have been tabulated for
s =0(0.05)4. Details are given in Refs. 7 and 8.

C. Nonhydrogenic case. JWKB-QD method
of Davydkin and Zon (Ref. 10)

n
dz(x) = —f cos(b, 0—x sin8)d 0 .

0
(14)

Properties of Anger functions may be found in %atson, "
some of them which are used in our calculations are
given in Appendix A.

The dipole radial integral can be written'

Davydkin and Zon have used a quasiclassical approxi-
mation in the quantum-defect method which gives an an-
alytic expression for the dipole matrix element in terms
of Anger functions 8,+, ( —es). The Anger function
da(x) is defined by

V
(vl

i
r

i

v'I') =
5

s (e 1) — + —,
' [8, , ( es) 8—, +,( —es)] [d", +,(——es}—+8, , ( es)]-

AS

Definitions of I,. and y are the same in the three methods [Davydkin and Zon choose v, =vv; however, numerical re-
sults are almost identical with v, =2vv'/(v+ v') j. The functions P —, '(vl, v'I') deduced from radial integral given in Eq.
(15), as in the two methods described above are

P —, '(s, y;I, )=
36'$

s (e 1) + —,
' [4, i( e—s) 8,+—, ( e—s) ] — [8,+,( es)+—8, , ( ——es)]

sin( &$ ) z
VT'S

We find that the MacLaurin series for P&
' in terms of

y, truncated after the term in y, is a good approxima-
tion to P —, '. The coefficients of y~ are alternately even
and odd functions of $ only and may be written in terms

of Anger functions. We find for noninteger and integer
values of $,

1
go(s) =—[d, &(

—s) —d:, + i( —s)],
5
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FIG. 1. Graphs of the functions go(s) ' ' ' g3(s).

1
g, (s)= ——[4, , ( —s)+ 8, +, ( —s)],

S

sin(~s)
g2($) =go($)—

VS
(19)

S
g3(s) =—go(s) +g ~

(s)
2

(20)

= go(s) 1+@ 1+—

Examination of these results shows that in the hydrogen-
ic case, g; functions derived from Naccache's and from
Davydkin and Zon's results are identical. Furthermore,
we can see that g2 and g3 can be written in terms of go
and g „therefore dipole radial integrals can be calculated
using only go and g ).

The functions P —,
' may be expressed as

P-', '( vl, v'1' ) = ti)+; '( s, y; 1, )

Coefticients 3, 8, and C are very easy to compute'„ the
functions P —,

' and the radial dipole integral are then ob-
tained very rapidly.

Numerical values of dipole radial integrals obtained us-
ing (1) the four functions go, g~, gz, g3 tabulated by Ed-
monds et al. , (2) the function P-,

' of Eq. (21) expressed
in terms of the two functions g~ and gt, and (3) the
method of Edmonds and Kelly, which gives exact values
for v and v'535, are given in Table I. %e can see that
dipole radial integrals may be obtained using only the
two functions go and g, with almost the same precision
than with the four functions.

Using JWKB-QD approximation and the recurrence
relations between Anger functions and the derivatives
given in Appendix A, we can show that coeScient
g4(s), . . . , gl, ($) of terms in y, . . . , y" for all gk may be
expressed as functions of go(s) and g, (s). Functions

g4, . . . , gz may be written as

+g, ($)(y+y ) — y
sin(%$)

S sin(ns)
g4($)=go($)+ g)($)—

4 %$

= Ago(s)+Bgi(s)+C . (21) 3s sin(~s)
g5($)=g]($)+

g
go($)— (23)

TABLE I. Dipole radial integrals. &
~
r! )«r, integrals calculated by the extrapolation method of

Picart et al. ; &
~
r,:)~~zr, integrals calculated by our new approximate method using only the functions

ge(s) and g, (s); &! r
~
)«, integrals calculated by the method of Edmonds and Kelly. The percentage

diA'erence is the difference between exact values given by method of Edmonds and Kelly and our new

method (AEXT).

Transition

30.8s-29.2p
30.8d-29.2f
7.6s-6.2p
31.4s-28.6p
31.41-28.6f
8.4s-5.6p

0.0334
0.1001
0.1447
0.0334
0.1002
0.1488

1.6
1.6
1.6
2.8
2.8
2.8

—152.46
—148.09

—7.6695
70.705
65.836

3.132

& I»
l

&«x.
—152.46
—148.10

—7.6713
70.707
65.853

3.131

—152.46
—148.10

—7.6702
70.701
65.841
3.135

Percentage
dift'erence

0.001
0.001
0.01
0.008
0.02
0.1
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s z 5s sin(ms )
g6(s) = 2+—go(s)+ g, (s)—

6 ' l2 '
ms

where we use the proper phase factor ( —1)'+' to agree,
as in the dipole case, with the conventions of Bates and
Damgaard and Oertel et ar. ' %e then have

s 11s sin(ms)g;(s)= 1+ g, (s)+ gc(s) —7
24m

(25)

%e can then compute dipole radial integrals even for

y 5 1. %e can set y,„=0.8 when the extended series is
used.

Pz(n/, n '/) =Pz(s, y;/) = ( —1)'+ '

5s I2
1 ——

2
C

III. EVALUATION OF QUADRUPOLE
RADIAL INTKGRALS BETWEEN STATES

KITH h, l =0

A. H3/drogenic case

Quantal and semiclassical formulas are identical for
s =0 if we set

1

(I&z(s, y;/)= g y ~Q'z&'(s) .
p=0

(32)

The coeScients of y ~ are even functions of s only. %e
find, for integer values of s,

The MacLaurin series in terms of y truncated after
the term in y gives a good approximation to ()&z.

/, , =/(/+1) —
—,
' with /&0,

which gives

(26)
Q() '(s) =( —1)'+' [J,+,(s)+J, , (s)]

5s 2

= ——g((s),6
5s

(33)

/(/+1) —
—,
'

(27)
Q(0)(s) ( 1)s+1 3

[J,+,(s)+J, , (s)]
10s

%'e choose for n, the same definition as in the dipole
case,

2nn'
fl~ =

ll +n
%e then have

+—[J,+,(s) —J, , (s)]
1

—g((s)+go(s)
3 6
4 5s

(34)

lz
&n, /

I
r

I n, /) =2.5n, 1 ——
5 n,'

%'e set

2
4 I,

Y =5

2n4
&n/

I
r

I
n'/) =( —1)'+' J,(es), (30)

(the factor —', is chosen for convenience, as it will be seen
below).

For s&0, using Heisenberg's form of the correspon-
dence principle we obtain the semiclassical approxima-
tion for the quadrupole radial integral,

Values of integrals calculated using the semiclassical
formula [Eq. (31)] have been compared with exact
quantum-mechanical values to check the validity of our
choice of I, and n, . The validity of the approximation by
series truncated after y has also been checked numeri-
cally. Some examples are given in Table II; in the two
cases the precision is very good.

B. Nonhydrogenic case. Extrapolation method

The good results obtained in the hydrogenic case lead
us to propose a similar expansion for the nonhydrogenic
case. Functions Qo (s) and Qz '(s) are deduced from
values of the quadrupole radial integrals between states

TABLE II. Quadrupole radial integrals 6/ =0 between hydrogenic states. &
I

r'
I

)sc, integrals calculated using the semiclassical
formula; &

I

r'
I )Asc, integrals calculated using the truncated expansion of the approximate semiclassical formula; &

I

r'
I

)E„,exact
values of the integrals, calculated by the method of Edmond and Kelly. The percentage difFerence is the difFerence between the exact
values given by the method of Edmonds and Kelly and the approximate semiclassical formula C',ASC).

Transition

Sp-7p
10@-Sp
31@-29@
31@-29g
26@-23@

0.0239
0.0169
0.0015
0.0175
0.0022

&
I
"

I &se

2703
—1086

—1.4209x 10
—1.4023 x 10

2.432 x 10'

2705
—1087

-1.4210x 10'
—1.4029 x 10'

2.432 x 10'

&
I
r'I )Ex

2706
—1093

-1.4218 x 10'
-1.4034 x 10'

2.433 x 104

Percentage
difference

0.04
0.5
0.05
0.04
0.04
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with AI =0, computed in the region of v and v', where we
can use the program of Edmonds and Kelly. The
method is similar to that used in the calculations of func-
tions g~(s). ' The formulas which have been used are
given in Appendix B. %e have checked the values given

by the formula

pole matrix elements for AI =0, in terms of Anger func-
tions. Obviously, using the same method we obtain the
same formula for the quadrupole radial integral, which
may be written as

yo( I ~~) yo(s y2. I) y y2PQ(0)(s) (35)
p=0

against those obtained from the method of Edmonds and
Kelly. %'e can see from Table III that the error does not
exceed 1% for v, v'&8.

C. Nonhydrogenlc case. JWKB-QD method

Davydkin and Makarenko' use the same approxima-
tion as Davydkin and Zon' to calculate the radial wave
functions, After transformations similar to those used in
evaluating dipole matrix elements' they obtain quadru-

+e [8,+)( —es)+8, )( —es)] .

(36)

As it was said by Naccache, there are an infinite number
of valid choices for I, and v, and to compare results
given by the three methods we choose the same
definitions of I„v„and y as in the two methods de-
scribed above.

From Eq. (36) we obtain an analytic expression for the
function (()z, which is

$2(vl, v'I ) =$2(s, y; I ) = ( I —e) +—[cP, +, ( —es)+d", )( —es)]
ms $2

5 1 ——
5 v2

C

The MacLaurin series of Pz in terms of y gives where

Qi) '(s)=
2

[d', +,( —s)+cF, )( —s)]=——g, (s), (38)
5$ and

(I+ 3y2)
5$

F- ——-y3 2
4 (40c)

Q2 '(s) = ———g) (s)+go(s)[o]
4 5$

(39)

$2(s, y;1)=Dg, (s)+Eg Q(s) (40a)

These results are identical to results obtained using our
extrapolation method.

From Eqs. (38) and (39) we can see that the function ((tz

and then the quadrupole radial integral may be calculated
using only the functions go(s) and gi(s), which are avail-
able from the authors for s =0(0.05)20. The function Pz
may be approximated by

Coe%cients D and E are very easy to compute. Values of
quadrupole radial integrals obtained using Eqs.
(40a) —(40c) are checked against exact values of Edmonds
and Kelly in Table III. %e can see that quadrupole ra-
dial integrals with 61 =0 may be calculated as dipole ra-
dial integrals using only functions go(s) and g i (s).

From Table III we can see that the errors decrease
with s/v„but also with y . However, when s/v, is not
too large, better precision may be obtained when the ex-
pansion of il)z is truncated after the term in y . This is
not true for transition 7.9p-6. lp because $ is largest here;
nevertheless, the error does not exceed I% even in that
case. The coefficient Q4 '(s) is also a function of go(s)

TABLE III. Quadrupole radial integrals Al =0 between nonhydrogenic states. (
~

r
~

)Ex~, (
~

r'
~

)~Ex~, (
~

r'
~

)E&, and the per-
centage diA'erence have the same definition as in Table I.

Transition

30.4p-29.6p
7.4p-6. 6p
30.6p-29.4p
7.6p-6.4p
30.9p-29. 1p
7.9p-6. 1p

0.0015
0.0274
0.0015
0.0276
0.0015
0.0281

0.8
0.8
1.2
1.2
1.8
1.8

1.0804 g 10'
3114.3

3.8124' 10'
1093.1

—1.3117'10
—352.57

(
I

"'
I &AEx~

1.0803 ~ 10'
3113.8

3.8113X 10'
1092.8

-1.3107~ 10'
—352.32

1.0804 X 10'
3.115.5

3.116~10
1092.1

-1.3119X 10'
—357.04

Percentage
difference

0.01
0.05
0.008
0.06
0.09
1
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and g, (s ) and is given by

Q4 '(s)= ———g, (s)+ go(s) ——3 9 11 5 sin(mrs)

8 5$4 4 m$
(41)

The exact formula is well approximated, with an error
term in 0 (n ), by

(nl
~

r
~

nl+2)= ,'n —1—(I +3/2)'

IV. EVALUATION OF QUADRUPOLE RADIAL
INTKGRAI. S VVITH d L =+2

A. Hydrogenic case

For $ =0, the quantum-mechanical formula for the ra-
d1al lrltegral is

The correspondence principle gives the semiclassical for-
rnula

(nl
~

r
~

nl +2) = ,'n e—

The quantal and semiclassical formulas are almost identi-
cal if we choose

' 1/2

(nl
~

r
~

nl+2) = —', n 1—
7l

1/2
(I +2)'

Pl

(42)

l = I+I +1
C (45)

For s&0, Heisenberg"s correspondence principle gives a
semiclassical approximation for the quadrupole radial in-
tegral with hl =+2, which may be written

, 2n,'
(nl

~

r
~

n'! +Ill ) =( —1)'+' I[(2—e )J, (es) —2es(1 —e )J,'(es}]+bl(1 —e )'
2$2

X [s(1 E )J,(es) e—J,'(es)] I, —

where n, is defined as in the first two cases,

2nn'
n

Pl +Pl

We set y =b, lI, /n, .
The functions P2 (nl, n 'I') are then given, using Eqs. (4), (43), and (46), by

(nl, n'I')=P~ (s,y;I, )=( —1)'+'
[ [(2—e )J,(es) —2es(1 —e )J,'(es)]

+El(1—e )' [s(1—e }J,(es) eJ,'(es)]I . —

We hope that the MacLaurin series for P2
— in terms of y

truncated after the term in y will give a good approxi-
mation to Pz . We then write

3

gz (nl, n'I')=Pz~ (s, y;I, )= g yi'Q' '(s) .
p=0

CoeScients of y~ are alternately even and o6' functions
only of s. The even functions Qo(s) and Qz(s) are the
same as for transitions with Al =0 {definition of
y =—', I, /n, was used for that reason).

The odd functions may be written

Q', '(s)=( —I)'
~ [J, ,(s) —J,+,(s)]

5$

6 6= ——go(s) = ——gz(s),
5$ 5$

Q',"(s) = ——Qo(s)+ Q, (s)

6—'g, (s)+ — go(s)2 5 5$

Values of the quadrupole radial integrals obtained from
the semiclassical formula of Eq. (46) and of the expansion
given in Eq. (49), using our definitions of I„n„and y, are
cheeked against those obtained from the method of Ed-
monds and Kelly in Table IV. %'e can see that the quan-
tal and semiclassical results are in good agreement and
that the MacLaurin series for (()z may be truncated after
the term in y for

~

y'
~

& 0.4.

B. Nonhydrogenic case. Extrapolation method

Good results obtained in the hydrogenic case lead us to
propose a similar expansion in the nonhydrogenic case.
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TABLE IV. Quadrupole radial integrals
~

b, l
i

=2 between hydrogemc states. The definitions are the same as in Table II.

Transition

10s-9d
9d-10s
8s-7d
7d-8s
31s-29d
29s-31d

0.3167
0.3167
0.4018
0.4018
0.1001
0.1001

5468.6
8755.1

1949.1
3548.7

-1.3285 x 10'
—1.5084' 10'

I )Asc

5468
87S4.8
1947.6
3546.9

-1.3286 ~ 10'
-1.5083 x 10'

5453.9
8754.6
1988.6
3549.2

—1.3288 X 10'
-1.S089X 10'

Percentage
dift'erence

0.25
0.002
0.5
0.06
0.02
0.04

%e write

3

(vl, v'I')=$2 (s, y;l, )= g y~Q~ '(s),
p=0

where the functions Qz '(s) are supposed to be dependent
only on s. The functions Q' '(s) are deduced from values
of the quadrupole radial integrals between states with
Al =+2, computed in the region of v and v', where we
can use the program of Edmonds and Kelly. The
method is identical to that which we used in the dipole
case. ' The formulas which have been used are given in
Appendix C.

%e find, as in the hydrogenic case, that the even func-

tions are identical for b, l =0 and b, l =+2, when the ex-
pansion is truncated after the term in y; we write these
functions Qo and Q2. We have checked the values given
by Eq. (52) against those obtained from the method of
Edmonds and Kelly in Table V. The functions
Qo(s) Q3(s) are shown in Fig. 2.

C. Nonhydrogenic case. JWKB-QD method

Davydkin and Makarenko' obtained analytic expres-
sions of quadrupole matrix elements for Al =+2 in terms
of Anger functions. The quadrupole radial integral may
be written, using the same definitions of I„v„and y, as
in the first two methods as

(vl
~

r
~

v'l') =
2 (e —1) +Es[o", t( —Es) —d', +i( —Es)]+—(2—E )[8, 2( —Es) —dt, +2( —Es)]

S [el~ 2( —Es ) +d, + 2( —ES )]+Es [4q i ( —Es ) +0 ~ +. i( —ES ) ] (53)

Using recurrence relations between Anger functions, the function Pz deduced from Eqs. (4) and (53) is given by

P2 (vl, v'I')=rtiz —(s, y;l, )=
5~4 2

2Es (E 1)[dr, —i( —Es) —8, +, ( Es)]+E s — (E—1)

+E(2—E )[8,+, ( —Es)+8, i( —Es)]

+y Es(1 —E )[8,+i( —Es)+cP, , ( —cEs)r]

—E[8, i( —Es) cP, + i( Es)]+E(2+E——) sin(mrs) (54)

%e choose the same definitions for l„v„and y as in
the first two methods. The MacLaurin series of Pz in
terms of y gives the same results as the correspondence
principle when s is an integer, and, otherwise, the same
results as the extrapolation method.

We find for the even functions Qo '(s) and Q2 '(s) the
same formulas as when hl =0; we thus write

Qo" (s)=Qo" (s) =Qo(s) = ——g, (s),
5s

Q2 —Q2 (s) =Qz(s) = ———g, (s)+go(s)(2) (0)
5s

The odd functions may be written

Qi '(s)=Q, (s)= — [8, , ( —s) —d, +i( —s)](2)
5s2

6 sin(ms)+
ms'

(55b)

(56a)
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TABLE V. Quadrupole radial integrals
~

dd
~

=2 between nonhydrogenic states. The definitions are the same as in Tables I and
IV.

Transition

30.4s-29.6d
29.6s-30.4d
7.4s-6.6p
6.6s-7.4p
30.6s-29.4d
29.4s-30.6d
7.6s-6.4d
6.4s-7.6d
30.9s-29.1d
29.1s-30.9d
7.9s-6.1d
6.1s-7.9d

0.10002
0.10002
0.429 97
0.429 97
0.10004
0.10004
0.431 74
0.431 74
0.10009
0.10009
0.435 57
0.435 57

0.8
—0.8

0.8
—0.8

1.2
—1.2

1.2
—1.2

1.8
—1.8

1 ~ 8
—1.8

& i
'i &Fx

1.0227@ 10'
l. 1375x 10'

2386.5
3790.7

3.4110' 10'
4.2371 g 10

642.66
1657.0

-1.2929@10'
—1.3140' 10'

—309,64
—311.77

1.0225 ~ 10'
1.1373g 10'

2386.4
3789.4

3.4103X 10'
4.2359~ 10'

642.61
1657.0

—l.2921' 10'
—1.3129y 10'

—309.53
—311.31

1.0227 ~ 10'
l. 1375X 10'

2384.5
3810.0

3.4110' 10'
4.2372 x 10'

645.54
1672.2

—l.2929 X 10'
-1.3139~ 10'

—307.32
—314.92

Percentagedifference

0.02
0.02
0.08
0.5
0.02
0.03
0.4
0.9
0.06
0.08
0.7
1

Q, (s) = ——go(s)+—6 6 sin(mrs)

ms'

Q', '(s)=Q, (s)= ——Qo(s)+Q, (s)(2) I s
2 2

Q3(s) = ———
g~ (s)+—go(s) ——1 3 6 6 sin(ns)

2 S Ss S
(57b)

Pz (s, y; 1, ) = — Fgo(s )+Gg, (s) H—6 sin(ms)

%$

where

F=X—+~ —+r —,6 23 33
Ss 4 Ss

629336=—+y +y

(58a)

(58b)

We can see that the function P2 and the quadrupole
radial integral may be calculated using only functions
go(s) and g, (s). The function {(iz takes the form 0 =y+

2
(58d)

30

FIG. 2. Graphs of the functions Qo{s) . Qi{s).
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We have checked the values of quadrupole radial in-
tegrals obtained using Eqs. (58a)—(58d) against the exact
values of Edmonds and Kelly. We obtain good agree-
ment between the exact and approximated results.

The functions Q approximated by either Bessel or
Anger functions are almost identical to extrapolated
functions; in other words, we have the same number of
significant figures in both cases. If we set Q„as an ap-
proximate value in terms of Anger functions and Q~ as
an extrapolated (or "exact") value of functions Q, some
measure of the error is given by the numoer

p;=max
i Q~(s) —Q„(s) i, 0&s &3

where 1 =1,2, 3 is the order of the function Q:

APPENDIX A: ANGER FUNCTIONS.
DEFINITION AND RECURRENCE

FORMULAS

The definition of the Anger function 8~(s) is suggested
by Bessel's integral and is given by

8z(x)= —f cos(b, 0—x sinO)10 .
7T' 0

(Al)

This function obviously reduces to J„(x) when 5 has the
integral value n.

The recurrence formulas which are satisfied by the
functions of Anger and which we use in that paper" are

Po
——P, = 1 X10 , (x)—82, +,(x) =2/2, (x), (A2)

P, =P, =lx10 '

The numerical values of the functions Qo, Qi, Q2, and

Q3 for s =0, (0. 1)3, calculated using exact matrix ele-
ments with the equations of Appendixes 8 and C, are
available from the authors. The same precision is ob-
tained when the functions Q, are calculated in terms of
Anger functions (i & 3).

Furthermore, better precision may be obtained when
terms in y" and y are introduced. The functions Q4 '(s)
and Q& '(s) are also functions of gz(s) and gi(s), but we
observe that the odd functions Q4 '(s) and Q~ '(s) are not
identical. We find

i(x)++g+ i(x) = 82,(x)—2
26 sin(nb )

(A3)

+q(x)+ —4z(x)+ 1 — 4z(x)= sin(~A) .
1 x —b,

X X 7TX

(A4)

Numerical computatian. Anger functions have been
computed using an adaptive integrator especially suited
to an oscillating nonsingular integrand.

T

Q4 '(s) = ———g, (s)+ go(s) ——
8 5s ' 4 4 ms

(59)

APPENDIX 8: NUMERICAL
COMPUTATION OF THE FUNCTIONS

Q00{s) AND Q02(s)

3 1 23 57 sin(ns)
Q4 (s)= ———g, (s)+ go(s)—

8 s 20 20 ms
(60)

We may write without ambiguity

$2(vl, v'1) ={()2(y,s;1),

Q s (s)= ——„' —,'g i (s)+ ——+ go(s)
9 sin(mrs)

4 5s 15 10 ms2

(61)

V. CONCLUDING REMARKS

Using Heisenberg's form of the correspondence princi-
ple in the hydrogenic case, our extrapolation method, '

and the JWKB-QD method' ' in the nonhydrogenic
case, we have shown that electric dipole and quadrupole
radial integrals between atomic Rydberg states vl, v'l'
may be calculated very easily in terms of two functions
only of s: go(s) and g, (s). The expansion which is used
to calculate radial integrals can be extended as far as any
wanted order p; the method is then valid provided the
Coulomb approximation is justified.

~here y and s have been defined above. The values of
the functions Qo(s) and Q2(s) at chosen values of s may
be computed from those of $2(s, y;1) if the latter is com-
puted for suSciently small values of y so that the contri-
bution of degree 4 and higher in y may be neglected.

We have found that it is necessary to take values of v,
of at least 25. We choose two difI'erent values I, and l2 of
l, while keeping v, Axed. Defining l„, l,2, y&, and y&
as above, we find

Qo(s) =
2 2 [1C2$2(y i, s;1i ) —1, i $2(y2, s, I )],

l 2

(B1)
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1
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Calculations have been done with the help of CIRCE
(Centre Inter-Regional de Calcul Electronique).

It is advantageous to take l, = 1 and lz ——2, which gives
l =—'and y =4/3v l = —"and y =13.6/3v .
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APPENDIX C: NUMERICAL
COMPUTATION GF THE FUNCTIQNS

Qo(s), . . . , Q3(s)

The method is the same as that described in Appendix
B. But calculations are done, as in the dipole case, on
two functions,

v, and 6/ fixed. Defining

P+z(y, s;l,. ) = ', [Pz(—y, s; I, )+(t z(y, —s;t, )],

(t-, (y, s;l, )= [d,(y, s;I, ) Pz(—y, s;I—, )] .
1

2y

%'e have then, with an error of order y,

P+z(y, s;l, ) =Qo(s)+y Qz(s),

Pz (y, s;I, )=Q, (s)+y Q, (s) .

We choose two difkrent values I, , l 2 of I, while keeping

z[Iz&:(yi s i» —It&z(y»s iz)1
12 —I2

Qz(s)=
z z [(tz+(yz, s;lz) —Pz (y„s;I,)], (C7)

1

'Vz —T )

1Q3(s)=, , l&z(yz s;tz) —0:. (yt s ti)1.
'V& —'Y

&

It is advantageous to choose I
&

———,'and Iz ———,'.
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