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The problem of calculating transition rates between atomic fine-structure levels is considered.
Nonrelativistic configuration-interaction calculations of terms of interest are performed and the
terms are then mixed by the relativistic couplings of the Breit-Pauli Hamiltonian. Frequently it
turns out that the mixing components of the Breit-Pauli matrix are larger than the relative term en-
ergies. This leads to sensitivity of the level eigenvectors to small errors in the energies and thus to
errors in the transition rates among the levels. A nonperturbative method for correcting the level
vectors for cases involving any number of strongly mixed terms is developed. The method is based
on solving the inverse eigenvalue problem for a matrix using the observed spectrum to correct the
diagonal matrix elements of the Breit-Pauli matrix. It is applied in the present work to calculate
level wave functions and transition rates for the 1s22s22p°3s, 3p, and 3d levels of the Ne1-Si v ions

of the neon isoelectronic sequence.

I. INTRODUCTION

It has been recognized for some time that calculated
fine-structure oscillator strengths may be in serious error
when there are errors in the nonrelativistic energy sepa-
rations of the terms that mix to form the fine-structure
levels and that it is important to correct for such errors.
The importance of these points is mentioned briefly by
Eissner et al.' and more extensively by Hibbert? and by
Zeippen et al.’> These authors are interested particularly
in cases of forbidden transitions involving levels with
only small admixtures of terms that allow the dipole tran-
sitions to occur. Because the admixtures are small, very
simple corrections to mixing coefficients based on pertur-
bation theory work well.

In Ref. 2 Hibbert gives an example that shows the
dramatic effect that mixing coefficient corrections derived
from observed energy splittings can have on rates. He
considers the 2s3p 3P,-2s2 'S, electric dipole transition in
OV. A simple raw calculation of the rate gives a result
that is in error by a factor of 3 compared to both observa-
tion and large-scale configuration-interaction (CI) calcu-
lations. Adjustment of the !P,->P, splitting to the ob-
served value corrects the mixing coefficient of the ! P term
in the P, level and brings the new calculated decay rate
to the observed (and large scale CI) values.

A new correction method was presented in Refs. 4 and.

5 which does not depend on being able to treat the rela-
tivistic mixing using perturbation theory and observed
splittings but rather obtains corrections by solving an in-
verse eigenvalue problem for the Breit-Pauli matrix with
the observed level spectrum as input. The method was
applied to correct a calculation that used fairly elaborate
multiconfiguration wave functions for the four 3s levels
and the ten 3p levels of neutral neon where we have situa-
tions involving 2, 3, and 4 strongly mixed terms. As in
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Hibbert’s work, some striking improvements in rates
were obtained, the most substantial being a change by a
factor of almost 20 which brought the calculated p,-ss
rate into line with the observed result. Also, the Landé
g factors for the levels, which depend on the mixing
coefficients, were strikingly improved to agree with ex-
periment.

In the present article, we extend the method of Refs. 4
and 5 and we give the results of a calculation of all the
excited n =3 levels for the first five elements of the neon
sequence. We obtain corrected level mixing coefficients
and transition rates for all electric dipole transitions
among these levels. We purposely use a small number of
configurations for the calculation and find nevertheless
that the corrected results are good where comparison
with observation or more elaborate calculations are possi-
ble. Further, we show that a requirement of the earlier
scheme, that we make use of observed g factors to resolve
an ambiguity in choice of solution, can be removed so
that their values are predicted rather than assumed. This
is important since these factors may well not be available
from observations. Also, where the g factors do exist,
their accurate prediction demonstrates the effectiveness
of the correction method in its objective of producing
good mixing coefficients.

This calculation introduces other elements to the prob-
lem that were not previously encountered in this ap-
proach. One is the occurrence in Na 11 of two JII spaces
where five terms are significantly mixed. The situation is
the prototype for much more severe cases such as in the
transition elements, where there is the potential for many
more terms being mixed more or less strongly. The origi-
nal analysis was readily applied to up to four strongly
mixed terms; as the dimensions increase, the direct exten-
sion of this approach is not practicable so we modify it.
In addition, there may be several strongly mixed terms
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from the same SLII subspace—a complication not previ-
ously encountered.

We describe in Sec. II the particular calculation at
hand and discuss a modified method of correcting the lev-
els which is algebraically straightforward, handles the
general problem, including the case where several terms
of a given SLII subspace are strongly mixed, and obviates
the need for additional information to remove ambiguity.
Thus the extended techniques developed here are applic-
able to the correction of any CI calculation of any ion
provided accurate spectral observations are available. In
Sec. III we report and discuss the results of the present
calculations, and we make some concluding remarks in
Sec. IV. Mathematical details are treated in the Appen-
dixes.

II. DESCRIPTION OF THE CALCULATION
AND CORRECTION METHOD

The calculation proceeds in four stages: (1) calculation
of nonrelativistic wave functions for the relevant terms of
the ion; (2) construction of the Breit-Pauli matrix in the
fixed basis of these terms; (3) solution of the inverse eigen-
value problem using observed eigenvalue input to obtain
a corrected Breit-Pauli matrix; (4) use of this this correct-
ed matrix to obtain corrected level wave functions and
transition rates. Details on each follow.

(1) The structure of the ion levels of interest in this
J

—57.4373  0.0060 0.0073 —10-¢
(0.0006)

0.0060 —57.4196 —0.0032  0.0089

(0.0014)
Hgp=| 00073 —0.0032 —57.4209 —0.0072
(—0.0001)
—10~%  0.0089  —0.0072 —57.4583
(—0.0019)

This is the matrix for the 3d (JI1=2-) space of Siv.
The rows and columns are labeled by the strongly cou-
pled 3d terms *F*, 3D°, 'D°, and *P°. (The 2 space is actu-
ally spanned by 11 either algebraic or physical terms in
the present calculation, but in the physical basis these
four terms of interest are, to an excellent approximation,
decoupled from the rest of the space and can be treated
separately.) The matrix elements are expressed in har-
trees. The diagonal elements are in large part the nonre-
lativistic term energies while the off-diagonal elements
are the spin orbit and other relativistic couplings. We
give in parentheses, below the diagonal elements, the
corrections that are made in this particular case to the di-
agonal elements as a result of solving the inverse eigen-
value problem.

Diagonalizing this matrix yields the relativistically
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work was obtained using the multiconfiguration opti-
mized potential model® (MCOPM). This is an ab initio
ion-structure calculation which is then to be corrected by
the present techniques. We use the configuration set
15225 22p 6 1s22522p53s, 3p, 3d, 4s, 4p, 4d. (For Nall, the
15225%2p°5s configuration is added.) This “minimal” set
allows the outer orbitals to satisfy both spectroscopic and
correlation roles.’

In this calculation we minimize an equally weighted
sum of excited 3s-, 3p-, and 3d-term energies together
with the energy of the ground state using the full nonrela-
tivistic Hamiltonian and CI wave functions for the terms.
As described in Ref. 7, for example, the orbitals are cal-
culated in a set of central potentials and the energy sum
is minimized with respect to variations of these numeri-
cally evaluated potentials. The resulting terms are then
used for a first-order treatment of the relativistic interac-
tions in the Breit-Pauli Hamiltonian to yield the fine-
structure levels. (This is the essence of the calculation.
The computer code actually performs all calculations us-
ing as basis the algebraic terms corresponding to the vari-
ous configurations.- For the sake of clarity we discuss the
problem using the more physical basis of the
configuration-mixed terms that are the eigenvectors of
the nonrelativistic Hamiltonian. In the following we will
refer, as appropriate, to ‘“algebraic” and ‘‘physical”
bases.)

(2) A typical matrix in this physical term basis has the
form given in Eq. (1):

I

mixed fine-structure levels, the elements of the eigenvec-
tors being the mixing coefficients in this basis while the
eigenvalues are the level energies. An important point to
note in Eq. (1) is that the diagonal energy differences are
in some instances comparable or small relative to the off-
diagonal elements. This leads to strongly mixed levels.
Furthermore, even in a very sophisticated calculation, al-
though the term wave functions and absolute term ener-
gies may be very good, errors in the small differences be-
tween diagonal elements are likely to be significant. As a
result, the raw level mixing coefficients may be in serious
error.

(3) At this stage, the earlier correction procedure or its
present extensions may be applied to each of the JII
spaces. The inverse eigenvalue problem actually yields
up to N! sets of mixing coefficients for each space, where
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N is the number of strongly mixed terms. From this set,
the correct set must be chosen as we describe below. The
outcome is then usually that one obtains a correction to
the diagonal elements only of each SLII block of the
Breit-Pauli matrix. Examples of the shifts are given in
Eq. (1). There are more complicated cases where there is
more than one strongly mixed vector from a given SLII
space; these are discussed below and in Appendix B.

Using the earlier approach, the N=2 case is trivial,
while the N =3 and N =4 cases encountered in this work
can be reduced to the solution of pairs of nonlinear alge-
braic equations—graphically this amounts to obtaining
the intersections of two multibranched curves in a plane.
(The positions of these curves depend only on the eigen-
values and the off-diagonal matrix elements. The curves
corresponding to the observed eigenvalues will be some-
what shifted from those corresponding to the raw or cal-
culated eigenvalues.) The Landé g factors can be calcu-
lated for each solution (intersection point) that results
from the observed eigenvalue input, and by comparison
with the observed g factors the correct solution is easily
identified as the one with the best g-factor match.

In practice, few observed g factors are available. How-
ever, one finds, in the case of neon where one can check
using observed g factors, that the patterns of intersection
points on the graphs for raw and corrected solutions do
not differ radically. Consequently, after one performs a
reasonable raw calculation and finds the intersection
point that, using the raw spectrum yields the input raw
diagonal matrix elements, then the corresponding ‘“near-
by” intersection point in the corrected calculation yields
the physically correct solution as indicated by the g fac-
tors. Thus it appears to be only a slight though unproven
conjecture that one can dispense with the g-factor cri-
terion if the raw calculation is at all reasonable and sim-
ply use the corrected solution corresponding to the raw

one for each JII space. This is what has been done here
with the result that the calculation predicts the g factors
instead of requiring them as input.

In addition to these cases, which involve up to a 4 X4
problem to invert, a more complicated situation arises in
the case of the JIT=1-—, 2— spaces of the 3d levels in
Nall. At this stage in the sequence, the 3d levels are
plunging down past the 4s levels; as a result, there is rath-
er strong mixing of the 3d levels with the 4s levels at that
ion and we encounter 55 Breit-Pauli matrices. This re-
quires us to extend the method to higher dimensions. A
description of the solution method used for this case is
given in Appendix A.

A couple of points distinguish this problem and
higher-dimension problems from those looked at earlier.
One is that they clearly become algebraically more
cumbersome so that it may be most efficient to simply
solve Egs. (A3)—-(A7) numerically for the corrected diago-
nal elements {H;} rather than attempt substantial alge-
braic simplification as was done in earlier work. The oth-
er is an associated practical difficulty in solving several
(more than two) nonlinear algebraic equations without
graphical assistance: namely, the problem of finding
good starting estimates that converge to the desired phys-
ical solution. The ‘“numerical continuation” scheme
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sketched in Appendix A is very effective in this regard
and was used in this work.

Another feature of this calculation of 3d levels in Na 11
that differs from previous work is that both the 5X5
cases of the previous paragraphs involve more than one
strongly mixed term from a given SLII subspace, so we
require a correction scheme that is somewhat more com-
plicated than the previous one where we just apply com-
mon shifts to the diagonal elements of each SLII block of
the JII space matrix. We describe in Appendix B how
this is to be done.

(4) Finally, when the new diagonal elements {H;} have
been determined, suitable corrections are made to the
Breit-Pauli matrix and we then recalculate the level wave
functions. Using the corrected levels we calculate the
electric dipole transition rates which are reported in Sec.
III. The relativistic calculation of the fine structure and
the transition rate calculations are performed using the
SUPERSTRUCTURE program of Eissner et al! with the
Thomas-Fermi-Dirac potentials replaced by the MCOPM
potentials.

III. RESULTS AND DISCUSSION

We have carried out the program of calculations for
the ions Nel, Na1, Mgii, Al1v, and Siv using either
seven or eight configurations as described in Sec. II.
Beyond that point in the sequence not all the observed
energies required for making corrections are, at present,
available for the set of levels under consideration. In the
following, we discuss separately the L-S compositions of
the levels and the transition rates.

A. L-S compositions

In Table I we give the compositions and Landé g fac-
tors of the 21 mixed levels for each of the five ions. We
also give comparison values from elsewhere for the com-
positions and g factors where available. In the case of
neon, the comparison compositions of the 3s and 3p levels
are from previous larger-scale calculations®® and the
g factors are taken from observations.® For the other
ions, the comparison compositions have been calculated
by various authors using a method based on the Hartree-
Fock model in which the radial integrals and spin-orbit
parameters are varied to fit the observed spectrum. Gen-
erally, the compositions are fairly similar though there
are certainly disparities. In the case of MgIiI, Al1v, and
Siv, for example, the Hartree-Fock values for the L-S
compositions of the 3p(1+) and 3d(2—) levels are very
close to the raw values obtained in the present calculation
but rather far displaced from the corrected values in the
present work.

The g, values’ dependence on these compositions is
given by

gr=3 ws g(S'LJ), 2)
S'L’

where

JU4+1)—LL+1)+S(S+1)
2J(J+1)

g(SLJ)=1+4 (3)
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(Continued).

TABLE L

Level compositions (%) and Landé factors

3d(1-)°

3d(1—)?

3d(1-)!

3Pl 1P1 8L JDI 3P1 8L 3Dl 3Px 8L
0.859 0.747

3D]

Ion
Nel

12 26

62

55

1.394 37
1.397

19

80

0.752

0.860

Nair

0.816

59
59
83

39
39

0.703

40

60

1.481

98

Mg 1t
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40

60
83

98

0.926

0.588

16
15

1.485

98

Alv

85
91

14

85
90
91

98

0.960

0.554

1.486

98

Siv

92

99

fReference 15.

*References 4 and 5.

PReference 8.

8Reference 16.

"See Table II1.
iSee Table II.

‘Reference 12.

dReference 13.

‘Reference 14.

is the g factor for an L-S coupled term occurring with
weight wg; given by the square of the mixing coefficient.

We are aware of published observations of g; values
only for neon. We recall that they are predicted rather
than fitted in this approach and they appear to be very
satisfactory in nieon. This leads to some confidence in the
mixing coefficients of the other corrected levels.

A problem in applying the correction scheme arose in
only one case and that was in calculating the five 3d,4s
levels of the JII=1— space. As we describe in Appendix
B, the approach is to start with corresponding raw values
of {H;} and {A;} and numerically continue to the physi-
cal values. In this case, despite proceeding in rather
small steps, there comes a point in the process where the
Newton’s method calculation fails to converge, indicating
there is no longer a solution to Eqs. (A3)-(A7). This like-
ly implies one of two things: either the observed values
for the A; are in error or the off-diagonal elements §;; are
not sufficiently accurately calculated. The observations
are from the recent compilation of Martin and Zalubas,’
who quote the thesis of Wu.!” In the absence of informa-
tion that these observations are in error, it appears that
larger-scale calculations to yield more accurate off-
diagonal elements should be undertaken to see if the
difficulty lies there.

To further deal with this particular case we give in
Table II two sets of L-S compositions—one from the raw
calculation and one, denoted best, which is from the last
calculation that converged in the numerical continuation
process towards the observed energies. The energies, all
adjusted to have the same lowest value of zero for con-
venience, are tabulated and it can be seen that the “best”
energy is rather close to the observed. Indeed, all three
energies for a given level do not differ greatly. Neverthe-
less, the raw and best mixing coefficients differ substan-
tially in several instances. Thus, apart from the fact that
an exact solution is not quite possible, this case is also
unusual inasmuch as the coefficients vary rather strongly
with modest changes in the set of eigenvalues.

A more typical case is illustrated in Table III, where
the raw and corrected coefficients for the 3d(2—) case in
NalI are displayed. They show the behavior that usually
occurs when the energy shifts are modest. We plan to
further investigate the 3d(1—) case of Nall and report
on it when the reasons for sensitivity and nonsolution are
understood. For the present, no transition rates will be
reported for these levels. The rates from the raw calcula-
tion may turn out to be reasonable but the questions con-
cerning this case should be understood first.

B. Transition rates

We report in Tables IV and V the computed transition
rates for all the electric dipole transitions among the
n =3 levels for these ions. Included with the neon values
are the observed rates for the 3p levels. The calculated
rates are virtually all within 10% of the observations.
Judging from the g, values, the 3d transition rates should
be equally good, though we do not have observational
data for comparison. As we proceed along the sequence,
except for the case of the Na1l 3d (1—) levels which we
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TABLE II. L-S compositions for the incomplete calculation of 3d, 4s(1—) levels in Na1. *“Best” results are the energies and
compositions from the last calculation in numerical continuation from raw to observed energies before breakdown in Newton’s
method occurred.

L-S composition (%)

E.. Eua Euns® Raw levels Best levels
Level (cm™") 3d’D, 3d°P, 4s°P, 3d'P, 4s'P, 3d°D, 3d°P, 4s’P, 3d'P, 4s'P,
3d(1-)! 0 0 0 3 94 1 1 1 2 94 2 1 1
3d(1—)? 1014 1020 1070 14 0 20 62 3 6 1 40 44 9
4s(1—)! 1225 1232 1236 22 1 41 8 29 30 0 25 24 21
3d(1-)? 2388 2394 2470 48 1 19 28 3 31 0 26 25 18
4s5(1—)2 2509 2515 2525 14 4 18 1 64 31 5 7 6 51

#Reference 9.

TABLE III. L-S compositions for calculations of 3d, 4s(2— ) levels in Na1l. Raw and obs refer to calculated results with raw and
observed energies for the levels.

L-S composition (%)

E... E? Raw levels Obs levels
Level (cm™1) 3d’F, 3d°D, 3d'D, 3d°P, 4s°P, 3d°F, 3d’D, 3d'D, 3d°P, 4s°P,
3d(2-)! 0 0 0 6 4 85 4 0 5 3 88 4
4s(2—) 627 708 0 4 3 1 92 0 3 2 1 94
3d(2—)? 728 876 53 19 28 0 0 56 17 26 0 0
3d(2—)° 1856 2013 47 21 32 0 0 44 21 36 0 0
3d(2—)* 2005 2174 0 50 33 13 4 0 54 32 11 4

#Reference 9.

TABLE IV. Transition rates for 3p-3s levels in Ne 1-Si v ions. The first line for each transition gives the calculated result with the
exponent in parentheses. The second line, for Ne I only, gives observed results. These have the same exponent as the calculations and
the quoted experimental error is given in parentheses. The notation for the levels uses the energy ordering system of Table I. Results
of other recent calculations for Si v are included.

Transition rate (sec™')

Transition Nel Nan Mg 11 Al1v Siv Siva

3p(3+4)-3s(2—) 5.620(7) 2.274(8) 4.546(8) 7.219(8) 1.015(9) 9.340(8)
5.15(.01)°

3p(2+4)1-3s(2—) 1.830(7) 8.078(7) 1.648(8) 2.696(8) 3.894(8) 3.740(8)
1.79(.07)

3p(24)'-3s(1—-)! 3.313(7) 1.404(8) 2.804(8) 4.362(8) 5.927(8) 5.340(8)
3.01(.12)

3p(24)-3s(1—)? 3.134(6) 3.415(6) 3.921(6) 4.716(6) 5.797(6) 5.190(6)
3.07(.13)

3p(2+)%3s(2—) 3.062(7) 8.654(7) 1.798(8) 3.304(8) 5.230(8) 5.210(8)
2.93(.10)

3p(24)%3s(1-)! 4.929(6) 2.141(7) 5.693(7) 1.244(8) 2.164(8) 2.350(8)
4.49(.16)

3p(2+4)%3s(1—-)? 1.984(7) 1.168(8) 2.277(8) 3.062(8) 3.516(8) 2.530(8)
1.78(.06)

3p(24)*3s(2—) 1.198(7) 9.005(7) 1.809(8) 2.438(8) 2.833(8) 1.980(8)
1.21(.04)

3p(24)-3s(1—)! 1.898(7) 7.357(7) 1.364(8) 1.925(8) 2.392(8) 2.040(8)
1.78(.06)

3p(24)-3s(1-)? 2.643(7) 8.495(7) 1.901(8) 3.668(8) 5.931(8) 5.840(8)
2.36(.08)

3p(14)'-3s(2—) 2.920(7) 1.001(8) 1.905(8) 2.990(8) 4.228(8) 4.400(8)
2.66(.11)°

3p(14)'-3s(1—)! 1.120(7) 4.284(7) 8.011(7) 1.190(8) 1.538(8) 1.560(8)
1.01(.04)

3p(1+4)'-35(0—) 2.796(6) 1.181(7) 2.213(7) 3.215(7) 4.064(7) 4.000(7)

2.47(.11)
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TABLE IV. (Continued).

Transition rate (sec™')

Transition Nel Nair Mg Al1v Siv Sive

3p(14)'-35(1—)? 1.326(5) 4.894(5) 1.240(6) 2.687(6) 5.143(6) 3.600(6)
1.3(.1)

3p(14)%3s(2—) 6.755(6) 1.814(7) 3.522(7) 6.109(7) 9.746(7) 8.840(7)
6.17(.3)®

3p(1+)%3s(1—)" 3.526(7) 1.267(8) 2.515(8) 4.139(8) 6.095(8) 5.620(8)
3.26(.15)

3p(1+4)%-35(0—) 1.148(7) 8.061(7) 1.636(8) 2.387(8) 2.892(8) 2.680(8)
1.06(.5)

3p(14)%-3s(1—)? 2.190(6) 1.478(6) 1.467(6) 1.925(6) 2.536(6) 1.960(6)
1.87(.09)

3p(14)%-3s(2—) 3.394(6) 2.138(7) 3.981(7) 5.670(7) 6.925(7) 8.760(7)
3.75(.15)

3p(14)3-3s(1—)' 5.902(5) 1.339(7) 3.103(7) 4.966(7) 6.640(7) 6.910(7)
6.8(.3)

3p(1+4)%-3s5(0—) 2.636(7) 6.792(7) 1.234(7) 2.075(8) 3.270(8) 3.470(8)
2.59(.10)

3p(1+4)3-3s(1—-)? 2.452(7) 1.230(8) 2.587(8) 4.034(8) 5.356(8) 4.140(8)
2.22(.08)

Ip(14)*35(2—) 1.213(7) 6.403(7) 1.375(8) 2.192(8) 2.988(8) 2.310(8)
1.10(.05)®

3p(1+)%-3s(1—)! 6.151(6) 3.032(7) 6.066(7) 8.742(7) 1.016(8) 9.150(7)
4.68(.24)

3p(1+4)*3s5(0—) 1.622(7) 7.262(7) 1.583(8) 2.659(8) 3.906(8) 3.150(8)
1.51(.07)

3p(14)%-3s(1—)? 2.382(7) 8.388(7) 1.596(8) 2.584(8) 3.806(8) 4.010(8)
2.40(.11)

3p(0+)'-3s(1—)! 6.276(7) 2.653(8) 5.386(8) 8.583(8) 1.190(9) 1.100(9)
5.72(.25)

3p(0+)1-3s(1—)? 3.336(5) 4.106(6) 1.248(7) 2.986(7) 6.155(7) 5.200(7)
3.5(.4)

3p(0+)%-3s(1—)! 1.096(6) 1.292(7) 4.734(7) 1.267(8) 2.894(8) 4.080(8)

3p(0+)%-3s(1—)? 7.846(7) 4.558(8) 1.152(9) 2.081(9) 3.138(9) 5.060(9)

*Reference 11.
"Reference 17.
‘Reference 18.

TABLE V. Transition rates for 3d-3p levels in Ne1-SiV ions. The exponent for each rate is given in parentheses. The notation
for the levels uses the energy ordering system of Table I. Results of other recent calculations for Si v are included.

Transition rate (sec™!)

Transition Nel Nan Mgl Al1v Siv Siva
3d(4—)-3p(3+) 4.560(7) 4.727(8) 1.215(9) 2.107(9) 2.954(9) 2.960(9)
3d(3—)"-3p(34) 1.778(6) 3.390(7) 1.084(8) 2.332(8) 3.629(8)
3d(3—)"-3p(24)! 3.410(7) 3.342(8) 9.196(8) 1.716(9) 2.495(9) 2.490(9)
3d(3—)1-3p(24)? 6.338(6) 6.857(7) 1.230(8) 1.034(8) 7.667(7) 4.280(7)
3d(3—)-3p(2+ )} 8.217(5) 1.456(7) 2.942(7) 2.918(7) 1.828(7) 1.500(7)
3d(3—)%3p(3+4) 1.354(7) 1.139(8) 2.308(8) 3.346(8) 4.513(8) 4.450(8)
3d(3—)*3p(24)! 1.679(6) 2.492(7) 5.652(7) 3.245(7) 7.309(6) 7.180(4)
3d(3—)-3p(2+4)? 2.432(7) 3.014(8) 8.658(8) 1.604(9) 2.31709) 2.24009)
3d(3—)%3p(24 )} 1.974(6) 4.538(6) 5.103(6) 5.706(7) 1.144(8) 1.420(8)
3d( 3—)-3p(34) 9.198(4) 1.747(7) 9.885(7) 2.106(8) 2.976(8) 2.540(8)

d(3—)-3p(2+)" 4.250(6) 5.658(7) 9.639(7) 1.100(8) 1.036(8) 1.010(8)
d(3—)° 3p(2+)2 2.936(6) 7.954(6) 2.589(5) 1.940(7) 4.304(7) 6.450(7)
d(3—)-3p(2+)° 3.555(7) 3.654(8) 9.899(8) 1.773(9) 2.576(9) 2.520(9)
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TABLE V. (Continued).

Transition rate (sec™!)

Transition Ne1l Nan Mg 111 Al1v Siv Sive
3d(2—)-3p(1+4)! 2.390(7) 1.297(8) 7.600(8) 1.308(9) 1.802(9) 1.790(9)
3d(2—)-3p(3+) 1.742(6) 8.282(6) 2.972(7) 4.850(7) 6.631(7) 7.710(7)
3d(2—)-3p2+)! 5.549(5) 2.504(7) 1.112(7) 1.895(7) 3.115(7) 4.000(7)
3d(2—)-3p(14)? 1.780(6) 8.408(6) 9.853(6) 1.803(7) 3.220(7) 3.180(7)
3d(2—)-3p(2+)? 1.437(7) 1.158(8) 2.032(8) 3.714(8) 5.630(8) 6.420(8)
3d(2—)-3p(14 ) 9.816(5) 1.874(7) 3.686(7) 5.837(7) 7.573(7) 8.690(7)
3d(2—)'-3p(2+)? 3.277(6) 1.079(8) 2.017(8) 2.988(8) 3.580(8) 2.750(8)
3d(2—)-3p(14)* 9.696(5) 7.251(6) 1.378(7) 3.804(7) 5.972(7) 4.440(7)
3d(2—)%-3p(1+4)! 5.858(4) 3.005(4) 8.830(4) 1.842(5) 3.622(5) 2.640(5)
3d(2—)%3p(3+) 1.030(6) 9.034(6) 1.900(7) 3.045(7) 4.284(7) 4.320(7)
3d(2—)%3p(2+)! 1.448(7) 1.405(8) 3.450(8) 5.825(8) 8.283(8) 8.330(8)
3d(2—)%-3p(1+4)? 1.972(7) 2.511(8) 7.926(8) 1.477(9) 2.114(9) 2.100(9)
3d(2—)%-3p(2+)? 1.566(5) 2.458(5) 8.652(4) 5.309(4) 6.567(5) 2.650(5)
3d(2—)-3p(1+4 ) 4.976(6) 4.446(7) 4.387(7) 2.609(7) 1.110(7) 1.420(7)
3d(2—)2-3p(2+)} 1.135(6) 8.606(6) 9.452(6) 6.578(6) 3.864(6) 2.850(6)
3d(2—)%3p(14)* 0.0 5.431(4) 1.780(3) 1.168(5) 6.416(5) 1.220(6)
3d(2—)*3p(1+4)! 8.806(5) 5.894(4) 7.209(5) 1.410(6) 1.848(6) 4.590(5)
3d(2—)-3p(3+4) 0.0 1.275(6) 4.801(6) 9.837(6) 1.526(7) 2.380(7)
3d(2—)-3p(2+) 3.908(5) 1.238(6) 1.839(7) 5.678(7) 1.080(8) 1.450(8)
3d(2—)3-3p(1+4)? 9.173(6) 1.116(8) 1.471(8) 1.388(8) 1.206(8) 1.750(8)
3d(2—)-3p(2+)? 1.136(6) 9.423(6) 3.618(7) 5.493(7) 5.540(7) 8.780(6)
3d(2—)-3p(1+4 )} 2.331(7) 2.767(8) 8.221(8) 1.546(9) 2.295(9) 2.240(9)
3d(2—)-3p(2+)° 6.179(6) 4.878(7) 1.559(8) 2.972(8) 4.252(8) 3.870(8)
3d(2—)-3p(14+)* 2.815(6) 8.868(4) 1.028(6) 3.331(6) 2.131(6) 4.830(5)
3d(2—)*3p(1+)" 7.275(6) 3.498(7) 2.790(7) 2.783(7) 2.873(7) 3.430(7)
3d(2—)%3p(3+) 9.401(4) 1.224(6) 2.194(7) 4.479(7) 6.516(7) 4.990(7)
3d(2—)*3p(2+)! 6.226(5) 3.388(7) 9.910(7) 1.915(8) 2.577(8) 2.150(8)
3d(2—)*-3p(14)? 2.861(6) 1.372(7) 4.578(7) 7.851(7) 9.731(7) 6.450(7)
3d(2—)*3p(2+)? 1.211(6) 6.301(7) 1.743(8) 3.240(8) 4.741(8) 4.210(8)
3d(2—)-3p(1+)° 5.043(6) 6.414(4) 6.163(5) 2.991(6) 3.817(6) 1.180(5)
3d(2—)*3p(2+)° 1.643(6) 6.553(6) 5.889(6) 1.194(7) 3.466(7) 1.140(8)
3d(2—)%3p(14)* 2.560(7) 2.950(8) 8.152(8) 1.447(9) 2.090(9) 2.060(9)
3d(1—)-3p(14)! 3.132(7) b 8.705(8) 1.501(9) 2.099(9) 2.130(9)
3d(1—)"-3p(2+)" 9.855(5) b 4.298(7) 7.599(7) 1.105(8) 1.290(8)
3d(1—)-3p(14)? 5.041(4) b 1.960(6) 4.090(6) 8.863(6) 9.150(6)
3d(1—)"-3p(24)? 4.632(6) b 8.083(7) 1.533(8) 2.333(8) 2.580(8)
3d(1—)-3p(1+)? 9.187(3) b 2.192(7) 3.913(7) 5.291(7) 7.220(7)
3d(1—)"-3p(2+ )} 1.262(6) b 8.866(7) 1.288(8) 1.494(8) 1.130(8)
3d(1-)'-3p(0+)! 3.562(6) b 8.182(7) 1.431(8) 1.947(8) 1.810(8)
3d(1—)-3p(14)* 4.129(6) b 8.279(7) 1.241(8) 1.529(8) 1.240(8)
3d(1—)"-3p(0+)? 1.418(6) b 5.781(5) 3.219(5) 2.069(5) 2.360(4)
3d(1—)%3p(1+) 3.165(6) b 8.025(5) 3.126(6) 3.956(6) 5.090(6)
3d(1—)%-3p(24)! 2.747(6) b 6.232(7) 1.377(8) 2.050(8) 2.050(8)
3d(1—)%-3p(1+4)? 1.201(7) b 3.176(8) 7.025(8) 1.097(9) 1.060(9)
3d(1—)*-3p(2+)? 4.761(5) b 2.593(5) 5.991(6) 1.564(7) 1.360(7)
3d(1—)%-3p(1+)° 6.396(6) b 2.369(8) 2.196(8) 1.731(8) 1.450(8)
3d(1—-)%3p(2+ )} 6.616(5) b 5.004(6) 2.779(6) 5.279(5) 1.060(3)
3d(1—)%3p(0+ )" 4.670(6) b 3.182(8) 7.982(8) 1.250(9) 1.280(9)
3d(1—)%3p(14+)* 6.902(4) b 1.853(7) 1.379(8) 2.688(8) 2.850(8)
3d(1—)%3p(0+)? 4.822(6) b 7.857(7) 4.612(7) 2.927(7) 2.470(6)
3d(1—)-3p(1+)! 2.606(6) b 5.889(6) 2.225(6) 4.148(5) 4.220(4)
3d(1—)-3p(2+)! 4.348(5) b 1.692(7) 7.027(6) 2.640(6) 7.860(3)
3d(1—)3-3p(1+4)? 3.573(6) b 5.572(7) 5.231(6) 8.499(6) 2.370(7)
3d(1—)-3p(2+4)? 2.540(5) b 1.914(7) 3.020(7) 3.384(7) 3.600(7)
3d(1—)-3p(1+)° 3.015(6) b 1.635(8) 5.525(8) 1.004(9) 9.310(8)
3d(1—)-3p(2+ ) 6.985(5) b 5.730(6) 1.548(7) 2.435(7) 3.980(7)
3d(1—)-3p(0+)’ 1.286(7) b 2.161(8) 1.520(8) 1.160(8) 6.740(7)
3d(1—)>3p(1+4)* 9.498(6) b 3.241(8) 5.074(8) 7.003(8) 7.590(8)
3d(1—)>-3p(0+ )2 5.876(6) b 1.634(8) 3.790(8) 5.900(8) 1.550(8)
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TABLE V. (Continued).

Transition rate (sec™')

Transition Nel Na1l Mg 1l Al1v Siv Siv?
3d(0—)-3p(14)! 3.958(7) 2.781(8) 9.216(8) 1.590(9) 2.240(9) 2.290(9)
3d(0—)-3p(14)? 4.279(6) 1.076(7) 6.141(7) 1.137(8) 1.778(8) 1.860(8)
3d(0—)-3p(1+4 )} 2.034(6) 3.634(7) 7.542(7) 1.134(8) 1.360(8) 1.770(8)
3d(0—)-3p(1+)* 6.045(6) 8.126(7) 2.193(8) 3.576(8) 4.574(8) 3.770(8)

#Reference 11.
"These values are not calculated; see text.

have discussed earlier, we would expect the results to be
at least of comparable quality since correlation effects are
generally of less importance.

Bhatia et al.'! have recently published a large set of
computed data, including transition rates for more highly
ionized ions in the sequence beginning with Siv. Their
results are also included in Tables IV and V. Their calcu-
lations use the program SUPERSTRUCTURE with a
configuration set that includes only up to n =3 orbitals.
This will, in part, account for differences between the two
sets of results.

More important than small differences in effective or-
bital wave functions is the fact that the mixing
coefficients for the levels are almost certainly rather
different in several cases between the two calculations;
this can have a substantial effect on the transition rates.
We use the 3d(2—) levels of SivV to illustrate. In Table
VI we list our raw and corrected energy splittings along
with those of Ref. 11. Their level splittings are close to
our raw results, as we would expect. In addition, we
given present raw and corrected L-S compositions and
see that for the two higher 3d(2—) levels the raw and
corrected results differ considerably.

In Table VII we give the transition rates from all these
3d(2—) levels, quoting Ref. 11, as well as the present raw
and corrected results. We note two points. One is that
among the “less allowed” rates, the results of Ref. 11 are
generally closer to the present raw results than to the

corrected ones. The other is that there can be substantial
differences between the raw and corrected results. (Of
course there are also many transitions where the
differences are negligible since these are not sensitive to
energy-splitting errors.) It is clearly important to make
the corrections for some transitions.

Finally, we give in Table VIII lifetimes derived from
our Nall transition rates and compare them with recent
observations by Pinnington.!” With one or two excep-
tions, these results are within 10% or so of the observa-
tions. A large number of other observed and computed
results are quoted in Ref. 19 and the reader is referred to
that paper for these other results.

IV. CONCLUSIONS

In atomic spectroscopy, energy levels are frequently
well known, with rather high accuracy from observation,
whereas accurate experimental transition rates are much
more difficult to come by. This work takes advantage of
this fact by making use of the former to assist in the cal-
culation of the latter.

The technique can be applied to configuration-
interaction calculations involving any reasonable number
of mixed terms to produce accurate wave functions, pro-
viding always that the observed energies for the mixed
levels of interest are available. Once again the point of
these empirical correction methods is that they provide

TABLE VI. Splittings and L-S compositions for 3d(2—) levels in Siv. Present work designated as
raw or corrected. The second and third entries for the L-S composition of each level are present raw

and corrected results, respectively.

E e E... E,.. L-S compositions (%)
Level (cm™1) ’F D 'D p
3d(2—)! 0 0 95°
0 4 2 94
0 3 2 94
3d(2—)? 4101 4203 4703 84° 6° 9b o°
79 8 12 0
79 8 13 0
3d(2—)° 9302 9343 9803 15° 34° 51° o°
20 32 48 0
21 21 58 0
3d(2—)* 10352 10353 10877 o° 57° 38° 50
0 56 37 6
0 68 26 6

2Reference 11.
"Reference 16.
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TABLE VII. Transition rates for 3d(2—) levels in Si v: comparison of present raw and corrected re-

sults with those of Ref. 11.

Transition rate (sec™')

Transition Other?® Raw Corr
3d(2—)'-3p(14)! 1.790(9) 1.685(9) 1.802(9)
3d(2—)"-3p(3+4) 7.710(7) 6.909(7) 6.631(7)
3d(2—)-3p(24)! 4.000(7) 3.836(7) 3.115(7)
3d(2—)'-3p(1+) 3.180(7) 3.658(7) 3.220(7)
3d(2—)'-3p(2+4)? 6.420(8) 6.280(8) 5.630(8)
3d(2—)-3p(1+)° 8.690(7) 8.536(7) 7.573(7)
3d(2—)"-3p(2+ ) 2.750(8) 3.272(8) 3.580(8)
3d(2—)-3p(14)* 4.440(7) 4.977(7) 5.972(7)
3d(2—)-3p(14)! 2.640(5) 2.532(5) 3.622(5)
3d(2—)%-3p(3+4) 4.320(7) 4.313(7) 4.284(7)
3d(2—)%-3p(2+4)! 8.330(8) 8.318(8) 8.283(8)
3d(2—)%3p(14)? 2.100(9) 2.108(9) 2.114(9)
3d(2—)%-3p(2+)? 2.650(5) 1.322(6) 6.567(5)
3d(2—)%3p(14)° 1.420(7) 5.615(6) 1.110(7)
3d(2—)%-3p(24 ) 2.850(6) 1.479(6) 3.864(6)
3d(2—)%-3p(1+)* 1.220(6) 1.111(6) 6.416(5)
3d(2—)*-3p(14) 4.590(5) 3.642(5) 1.848(6)
3d(2—)*-3p(3+) 2.380(7) 2.413(7) 1.526(7)
3d(2—)3-3p(2+)! 1.450(8) 1.663(8) 1.080(8)
3d(2—)-3p(14)? 1.750(8) 1.216(8) 1.206(8)
3d(2—)*-3p(2+4)? 8.780(6) 1.430(7) 5.540(7)
3d(2—)3-3p(1+4 ) 2.240(9) 2.329(9) 2.295(9)
3d(2—)-3p(2+)° 3.870(8) 3.853(8) 4.252(8)
3d(2—)-3p(14)* 4.830(5) 8.951(5) 2.131(6)
3d(2—)*3p(14)! 3.430(7) 2.486(7) 2.873(7)
3d(2—)*3p(3+) 4.990(7) 5.269(7) 6.516(7)
3d(2—)*3p(24)! 2.150(8) 1.883(8) 2.577(8)
3d(2—)*-3p(1+4)? 6.450(7) 6.658(7) 9.731(7)
3d(2—)*3p(2+)? 4.210(8) 4.822(8) 4.741(8)
3d(2—)*3p(14)° 1.180(5) 1.848(5) 3.817(6)
3d(2—)*3p(2+)° 1.140(8) 1.005(8) 3.466(7)
3d(2—)*-3p(1+)* 2.060(9) 2.128(9) 2.090(9)

2Reference 11.

an efficient method of correcting the unsatisfactory as-
pect of the level wave function, namely, the mixing
coefficients, while leaving reasonably accurate orbitals
and term wave functions unchanged. Alternatively, one
can also, in principle, construct accurately mixed-level
wave functions with accurate energy splittings by using a
very large CI calculation. However this may be expen-
sive, and if the level functions are required for other pur-
poses, such as in subsequent scattering or photoionization
calculations, computer resources may not be readily
available for the scale of calculation required. Simpler,
empirically corrected wave functions may be better suited
to such a situation.
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APPENDIX A

In this appendix we summarize details pertaining to
the 5X 5 matrix eigenvalue inversion problem. This same

approach applies to higher dimensions though, of course,
the algebra is more complicated. In the following, we
work in the physical basis and denote the diagonal matrix
elements by H; and the off-diagonal elements by 6,;. The
secular equation can be written in terms of the eigenval-
ues A; or in terms of the elements of the Hamiltonian ma-
trix H as

(A=ADA—=ADA—ADA—A)A—A5)=0, (A1)
Det(H —AI)=0 . (A2)

Expanding these and equating coefficients of like
powers of A we obtain the following five equations:

SH=SA, (A3)
S HH;= 3 (A +85), (A4)

SHHH, —368H+H+H,)

= 3 (AAA, —28,8,8,), (AS)
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TABLE VIII. Lifetimes of 3p and 3d levels in NaII: compar-
ison of present corrected results with observed values.

Lifetime (nsec)

Level Calculated Observed®
3p(3+) 4.40 4.98+0.15
3p(24)! 4.45 5.34+0.20
3p(24)? 4.45 4.59+0.20
3p(2+)° 4.02 4.20%0.15
3p(14)! 6.44 6.20+0.24
3p(14)? 4.41
3p(1+4 ) 4.43 4.84+0.20
3p(14)* 3.99
3p(0+)'! 3.71 3.76+0.15
3p(0+)? 2.13
3d(4—) 2.14 2.7+0.3
3d(3—)! 2.26 2.6+0.3
3d(3—)? 2.25 2.9+0.4
3d(3—)} 2.24
3d(2—)! 2.37 3.0+0.4
3d(2—)? 2.20
3d2-) 223 2.1+0.3
3d(2—-)* 2.23
4s(2—) 2.28 2.4+0.4

“Reference 19.

S HHHH — 3 8,(HH+HH,+H,H,)
= 2 (Ssjﬁil—f—)\.,)\.jkk}\.[)'— 2 5,-j5ik5,j8,k ’
DetH:}\,l}\.2A.3A.4A5 .

(A6)
(A7)

Obvious restrictions apply to the foregoing summations
along the lines i < j, etc. to ensure that a given term ap-
pears only once in a given sum.

We seek to solve these equations for the diagonal ele-
ments H; in terms of the observed eigenvalues A; and the
off-diagonal elements §;;, all of which are assumed to be
accurately known.

There are up to 5! solution sets {H;} to these equa-
tions. We will not go into a detailed discussion of their
solution. Simplifications are possible and they can then
be solved numerically using Newton’s method. An im-
portant practical matter can be mentioned usefully, how-
ever. This concerns the related questions of choosing
good starting estimates for the H;, in order to obtain con-
vergence and selecting the desired physical solution from
the 5! possible ones. We seek the intersection of five hy-
persurfaces unless we attempt a messy and perhaps not
very rewarding algebraic reduction of the equations to
yield a lower-dimension problem. We have no graphical
aid, as we had in previously published work, to show us
where the intersection points lie, but the following ap-
proach has been found to work very effectively.

We seek the solution set {H;} for the physical {A,]
with the {8;} remaining fixed throughout the calcula-
tion. The problem is that a multidimensional Newton’s
method calculation will converge only if the starting esti-
mates for the H; are reasonably good. We achieve this by

1883

moving in a sequence of, say, five or ten steps from the
raw, calculated set of A; to the observed set, using as a
starting estimate at each step the exact solution of the
previous step; and, of course, the point is that we have
the exact raw solution as the zeroth step to begin the pro-
cedure. In practice, after the first step, we improve con-
vergence markedly by using as starting estimates for the
H,; linear extrapolations of the previous iterations. By
this process of “numerical continuation,” under the
(unproved) assumption that no other solution set is near-
by so that one accidently converges in error to that
wrong solution, we solve the starting estimate-
convergence problem and predict rather than require as
input the Landé g factors g; .

APPENDIX B

In this appendix we give some technical details con-
cerning the corrections made to the actual code in use
under various circumstances. This includes some discus-
sion on correcting the Breit-Pauli matrix in the more gen-
eral case when there is more than one strongly mixed
term for a given SLII subspace.

Hitherto, in Appendix A, we have implicitly used the
physical nonrelativistic terms that are coupled by the
magnetic interactions as basis set. In practice one is like-
ly to be computing in the algebraic basis of terms from
the various configurations. A JII block of the Breit-Pauli
matrix has, in this algebraic basis, a much larger dimen-
sion than 5X5, say, reflecting the fact that there is in
general a number of correlation terms.

In the frequently occurring case where each SLII sub-
space of the JII space contains only one strongly coupled
term of physical interest, each H; correction is achieved
by applying a common shift to all the diagonal elements
of the corresponding SLII block of the Breit-Pauli ma-
trix. This will appear as a special case of the analysis
later in this appendix. If there is more than one strongly
coupled term from a given SLII block, this procedure
would result in the same correction of the terms in the
same block, whereas the corrections will be different, in
general. For example, we recall that in NaII the 3d and
4s terms in the 3P block are strongly mixed but do not
share a common correction so one cannot apply a com-
mon shift to the diagonal elements of the 3P block in the
algebraic basis.

The following discussion shows how the corrections
are handled where there are several terms in a given
block and where the code uses the algebraic basis of
terms from the various configurations, as in the case of
SUPERSTRUCTURE. We designate the Breit-Pauli matrix
in the physical basis by H and in the algebraic basis by
H* and designate the matrix whose columns are the
eigenvectors of the nonrelativistic Hamiltonian by V.
The connection is then simply

H4=VHVT. (B1)
Correcting for the observed eigenvalue input means a
shift in the diagonal elements of H:

H—-H-+te€, (B2)
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where €;;=8,;¢; are the calculated diagonal element
corrections and §;; is the Kroenecker symbol. The effect
in the algebraic basis in which the calculation is actually
performed is to shift all the elements of the Hamiltonian
matrix in general according to

H*—-H*+E, (B3)

where E=VeVT or, in terms of components, E
=€ VyVy.

There are simplifications under various circumstances.
One that is always present is that the matrix V is block
diagonal, having components in only one SLII subspace
of a given JII space. Consequently, the algebraic correc-
tion matrix E is also block diagonal. Also, if only one
vector of a given SLII subspace is of physical interest and
strongly coupled to the other subspaces of interest, we

ij

can shift all energies of the corresponding SLII block of
H by a common amount €. Then using the fact that V is
an orthogonal matrix, E;; =€8,; is the common correction
shift for the diagonal elements in the algebraic basis, as
we noted earlier in this appendix.

On the other hand, if several vectors in a given block
are strongly mixed in the level of interest, they will, in
general, have different nonzero shifts and the full correc-
tion expression (B3) is to be used to adjust all the ele-
ments of the corresponding block of H4. For example, in
a given subspace, we might have three nonzero correc-
tions €,, €5, and €, for terms of physical interest. In this
case, the correction to the Breit-Pauli matrix in the alge-
braic basis is given by

Ej=€dViaViatesVigVipte,Viy Vi,

(a,B,y not summed) . (B4)
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