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%'e show that a representation-independent, spectrum-generating algebra for the Coulomb prob-
lem in an angular momentum basis can be obtained by quantizing two complex, time-dependent,
classical vectors, D, =F,+i G, and D,*. The approach is based on an analogy with a treatment of
the isotropic harmonic oscillator [A. J. Bracken and H. I. Leemon, J. Math. Phys. 21, 2170 (1980}],
and on work in which classical constants of the motion were quantized to yield shift operators for
angular momentum in the Coulomb problem [O. L. de Lange and R. E. Raab, Phys. Rev. A 34,
1650 {1986)].By construction F, and G, are orthogonal to the orbital angular momentum L, their
moduli have equal, constant magnitude, and they rotate about L. In this construction we use A,
(the Laplace-Runge-Lenz vector) and A, XL as basis vectors. F, and G, contain an undetermined
phase factor exp';i5). D, and D, are quantized by requiring that the resulting operators should be
shift operators for energy and angular momentum in the bound-state kets

~

nlm ). This determines
the operators 5+ corresponding to the classical phase factors exp(ki5). In the coordinate and
momentum representations of wave mechanics respectively, b —are the dilatation operators for
coordinate-space and momentum-space wave functions. The shift operators can be factorized to
yield 20 abstract operators. Apart from their dependence on 5+ and constants of the motion, ten of
these are linear in p, eight are linear in r, and two are quadratic in r. Apart from 5, these opera-
tors can be linearized by replacing constants of the motion with their eigenvalues: In the coordinate
and momentum representations of wave mechanics they are first-order differential operators. The
shift operators are part of a Hermitian basis for a spectrum-generating algebra which is shown to be
So(2,1)+SO~3,2).

I. INTRODUCTION

Recently we presented an algebraic treatment of shift
operators for angular momentum in the Coulomb prob-
lem. ' These operators were derived as quantum-
mechanical analogs of certain classical constants of the
motion. The purpose of this paper is twofold. Firstly, we
extend our previous work to obtain a representation-
independent, spectrum-generating algebra for the
Coulomb problem in an angular momentum basis.
Secondly, the formulation is devised to bring out the
analogy with a related problem, namely, an algebraic
treatment of the three-dimensional, isotropic harmonic
oscillator (hereafter referred to as the oscillator) in an an-
gular momentum basis.

Lie algebras for the Coulomb and the oscillator prob-
lems, and the relationship between these systems, have
been the subject of numerous studies (see, for example,
Kramer and Moshinsky, McIntosh, Englefield,
Wybourne, and the references therein). Recently,
Bracken and Leemon have presented an algebraic for-
mulation for the harmonic oscillator in an angular
momentum basis. This formulation enabled them to
identify a previously unrecognized spectrum-generating
algebra for the oscillator, namely, SO(2, 1)eSO(3,2)
[=Sp(2,R)SSp(4,R)]. Their results complement earlier
work, for example, the identification of the Lie algebra
Sp(6,8 } as a spectrum-generating algebra for the oscilla-
tor in the basis H, ,Hz, H3 (H; =a a;, where a; are the
boson annihilation operators). In Ref. 7, basis operators

for a spectrum-generating algebra are derived using the
boson operators and the dimension operator. In Appen-
dix A we show that these basis operators can also be con-
structed by quantizing certain classical vectors for the os-
cillator. These vectors are orthogonal to the orbital an-
gular momentum I.=r)&p, their moduli have equal, con-
stant magnitude and they rotate about l. with + times
the angular frequency of the oscillator. The basis opera-
tors derived in this way contain, as factors, several opera-
tors which are related to difkrential operators obtained
by the so-called factorization method for solving the
Sturm-Liouville equation.

In this paper we show that a similar analysis can be
carried out for the Coulomb problem. In Sec. II we sum-
marize and discuss some previous results. In Sec. III we
derive two complex, time-dependent classical vectors for
the Coulomb potential [F, and G„Eqs. (33) and (34)].
By construction, F, and G, are orthogonal to L [Eqs.
(25) and (26)], their moduli have equal, constant magni-
tude [Eq. (32)], and they rotate about L [Eq. (35)]. F,
and G, contain an undetermined phase factor exp(i5).
This method of construction is essentially the same as
that for the oscillator (Appendix A). However, the re-
sulting vectors F, and G, are more complicated than
those for the oscillator. In Sec. IV we consider the quant-
ization of the vectors 0, =F, +i G, and 0,*. By requir-
ing that the resulting vector operators should be shift
operators for energy and angular momentum in the
bound-state kets

~

nlm ), we are able to determine
quantum-mechanical analogs 0+— of 0, and 0,'. 0—
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contain operators 5—[Eq. (77)] which correspond to the
classical phase factors exp(+i5). In the coordinate repre-
sentation of wave mechanics, 6—+ are the well-known
"scaling" or "dilatation" operators for coordinate-space
wave functions. In the corresponding analysis for the os-
cillator, b, —can be set equal to 1 [Eq. (A15)]. D—can be
expressed as products of operators which, apart from
their dependence on 5—and constants of the motion (H
and L ), are linear in p [Eqs. (107) and (108)]. We also
derive, by a similar procedure, operators D — [Eqs. (81)
and (82)] which consist of factors that are either linear in
r [Eq. (17)] or quadratic in r [Eqs. (99) and (100)], apart
from their dependence on 6— and constants of the
motion. Thus we obtain the 20 abstract operators U —,
V—,R —,P +, Q -,-and g +- (Sec. IV). If in these operators
we replace constants of the motion with their eigenval-
ues, we obtain 20 operators which are linear in either p or
r [Eqs. (109)—(112)]. The operators derived in Sec. IV
are used in Sec. V to construct a Hermitian basis for a
spectrum-generating algebra for the Coulomb problem.
This algebra, SO(2, 1)&SO(3,2), fulfills a similar role to
that for the oscillator in Ref. 7.

II. SHIFT OPERATORS FOR ANGULAR MOMENTUM
IN THE COULOMB PROBLEM

We summarize and discuss some previous results, to-
gether with modifications which are used in this paper.

In the angular momentum basis the set of commuting
observables is the Hamiltonian

H =(2M) 'p —kr

L and L,„and the normalized common eigenvectors are
denoted by

~

nlm ). In the following we assume bound
states with energy

E= —fi (2Ma n )

where a =Pi (Mk) ' is the Bohr radius if k =e (4m.eo)
For the classical motion of a particle in the Coulomb

potential, the Laplace-Runge-Lenz vector

A, =(Mk) 'LX p+r 'r

S
i

nlm )=(l+—,')
i

nlm ) . (10)

In Refs. 1 and 2, A+iB— are derived as quantum-
mechanical analogs of C,—+ by requiring that the resulting
operators be shift operators for angular momentum. The
factor S+—,

' in Eq. (6) has been included to ensure that the
coefficients in Eq. (11) below do not involve indeterminate
forms. We note that 8+—,unlike A, are not Hermitian.
Although Herrnitian forms for 8 can be derived, ' Eq.
(8) is adequate for our purposes.

The two vector operators C+— yield the six shift opera-
tions

C&
—

~

nlm ) =ai,. (I,m)P (n, l) —
~
n, 1+1,m +k ), (11)

where k =+1 or 0, C+, ——C +iC, Co =C„and

ao (l, m) =[(l —m +—,
'+

—,
' )(l +m + —,

'+
—,
' )]'i

a+, (l, m) = + [(l+m+ —,
'+

—,
' )(l+m + —,

'+
—,
' )]'

a —i(l, m) =+[(1+ m + —,'+ —,
' )(l + m + —,

'+ —', )]'~2

I
' 1/2l+ —,

l3+(n, l)=-, [1 n'—(l + —,'+-,' )']
+2—

(13)

(14)

(15)

Equations (11)—(15) can be obtained from Eqs. (10), (11),
(28), and (29), of Ref. 1, after noting the difFerent choice
of basis kets used here (see Appendix B).

The operators C+—defined by Eqs. (6)—(9) are compli-
cated: Apart from their dependence on L, they are
quadratic functions of the momentum operator p and
they are also nonlinear functions of the position operator
r. Simpler structures for C—can be obtained by suitable
factorizations. These are'

and

(g —2L2+ 1 )1/2
4

A is the Pauli-Lenz operator. " 5 is equal to one half the
dimension operator it is a Hermitian integral operator
which satisfies the eigenvalue equation

is a constant of the motion. ' A, is orthogonal to L and
' 1/2

2HL
2

(4)

is equal to the eccentricity e of the orbit. From the con-
served classical vectors

C =+i 'A aV J' —+
2

where

U+—=+ir 'r X L+fir 'r(S+ —,
' ),

8 —+ =+ir 'r.p(S+—,
'

) —A 'L r '+fia

(17)

(18)

(19)

C =(1+iLx)A, ,

we construct the vector operators'

(5)
V*=+ip 'pxL+&p 'p(S+ —,'), (20)

P =+i A 'p 'r p(—p 2MH)+p '—(p +2MH)(S+ —,
'

)

C+—= ( A+i 8")(S+—,
' ), — +2p '(p 2MH) . — (21)

where

A= —,'h a(LXp —pXL)+r 'r,
B+—= AXL[h(S+-,')]

=[r 'rXL+A' apL ][A'(S+—,
' )] (8)

Apart from their dependence on constants of the motion,
U —and 8 —are linear in p, while V—and P—+ are linear in
r. For the purpose of operating on eigenkets, the factors
in C—can be linearized by replacing H and L with their
eigen values. Thus

(22)
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C —
~

nlm ) =+i ,'A —aVtP—~t
~

nlm ),
2—MH(r+ ,'k—H ') +(r p) = —,'M—k H ' l—. . (29)

This suggests the ansstz
(23

where U&—,R&"—, VI, and P„& are given by Eqs. (18)—(21)
with L, 5, and H replaced by fi 1(l + 1), 1+—,', and E, re-

spectively. In the coordinate representation of wave
mechanics, U&* snd RI-+ are first-order differential opera-
tors which sct on the angular and radial parts, respective-
ly, of the coordinate-space wave function. In the momen-
tum representation of wave mechanics VI and I'„+& are the
corresponding first-order difFerential operators for the
momentum-space wave function. For additional discus-
sion of these operators see Ref. 13.

In Ref. 1 we attempted to obtain an invarisnce algebra
by modifying the operators C* so that the factors P—are
removed from Eq. (11). While this procedure is satisfac-
tory for kets with 1 ~ n —1 in Eq. (11), some of the com-
mutation relations of the Lie algebra SO(3,2) discussed in
Ref. 1 are not satisfied when C sct on kets with
I =n —1. %e show below that this difhculty can be
avoided by including shift operators for energy in the
basis operators: SO(3,2) is then obtained as a subalgebra
of a spectrum-generating algebra (Sec. V).

III. CLASSICAL VECTORS

f=( 2M—H)' (r + —'kH ')

'2
Mk 2HL+1+ =L. 'e'(1 —e ') —',

where e is the eccentricity of the orbit. From Eqs. (25),
(26), (30), and (31),

F, =[( 2MH—)' (r + ,'kH '—)A, +(r p)B, ]e' (33)

G, =[—(r p) A, +( 2MH)'—~ (r + —,'kH ')B, ]e'

(34)

From the time derivative of Eqs. (27), (33), (34), and with
drldt =(Mr) 'r p and d(r p) jdt =2H+kr ', it fol-

lows that

g =r"p

[The alternative choice for the relative sign of f and g
leads to X= —ray, X instead of Eq. (35) below. ] From
Eqs. (28)—(31) and (4),

X=coxX, (35)
In this section we derive complex, time-dependent,

classical vectors for the Coulomb potential which are
suitable for constructing quantum-mechanical basis
operators of a spectrum-generating algebra. By analogy
with the oscillator (Appendix A), we require that the
moduli of these vectors should (i) be orthogonal to L, (ii)
rotate about L, and (iii) have constant, equal magnitude.
For the oscillator the construction of the appropriate vec-
tors is straightforward (Appendix A); for the Coulomb
potential the procedure is less obvious.

From the discussion in Sec. II it is clearly desirable to
have the I.aplace-Runge-Lenz vector A, and an orthogo-
nal vector,

appear as variables in the time-dependent vectors, Thus
we choose ihe constants of the motion A, and 8, as
"basis vectors, "and de6ne

F, =(f A, +gB, )e'

G, =F, XL=( —g A, +fB, )e'

where 6, f, and g are real functions of r and p. Let X
denote the modulus

) =( —2MH) (M k) (37)

(38)

where T is the period of the motion. For the oscillator,
the difference between adjacent energy levels is A

' times
the constant angular frequency of the oscillator. For the
Coulomb potential, the difference between adjacent levels
1S

E„+i E„=A'(M k) '( —2ME„)3i—(39)

where

ca=( —2MH)' (Mr) 'L . (36)
Thus the moduli of the complex vectors F, and G, have
constant, equal magnitude and rotate with angular veloci-
ty co.

The corresponding analysis of the oscillator is similar
though less involved [Appendix A, Eqs. (Al) —(A5)]. For
the oscillator, it turns out that a phase factor in F, and
G, is unnecessary (Appendix A); for the Coulomb poten-
tial this phase factor is essential (Sec. IV). Whereas the
vectors F, snd G, for the oscillator rotate with the angu-
lar velocity of the particle, the corresponding angular ve-
locity for the Coulomb problem difFers from that of the
particle and is not constant [Eq. (36)]. Its average value
can be calculated with the aid of' the virial theorem:

Then

(27) if n ~~ l. If (co„) denotes the value of ( co) when H =E„
in Eq. (37), it is evident that

will be constant if f +g is constant. From Eq. (1) and
the relation p =r [L +(r p) ], we have the identity

A(co„)=E„+, E„—
when n &&1.

Define

(40)
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D, =F,+iG, .

Then Eqs. (33) and (34) yield

(41)

(42)

Q
—= +ir pb +—Aa 'rb, Y —

A—b—,*Z

Here Ã —and Z —are constants of the motion: They are
functions only of

and

D,'=Q, C,

N =Aa -'( —2MH)-'",

such that as Pi~0,
(43)

(51)

where

Q, =[+ir p+( —2MH)' (r + ,'kH —')]e—' (44)

F-

Z —~S.
(52)

and C,—are given in Eq. (5). The factors in square brack-
ets in Eq. (44) are linear in p and nonlinear in r, apart
from their dependence on H. In view of the comments in
Sec. II, it is also desirable to obtain alternatives to Eqs.
(42)—(44) in which these factors are linear in r and non-
linear in p. This can be achieved by using Eq. (1) to elim-
inate r in favor of p in Eq. (30), and proceeding as be-
fore. This yields the desired vectors

D Q+C+

The operators 6- correspond to the phase factors in Eq.
(44); 5- and their classical hmits are calculated below
[Eqs. (77) and (78)]. In writing down Eq. (50) we have
adopted a specific ordering of operators: Functions of
the HamHtonian are placed to the right, followed by 5—.
This ordering simplifies the subsequent calculations.

From Eqs. (48), (49), and (11), D will be shift opera-
tors for angular momentum provided

[L; Q']=o

D,"=Q;C, ,

where

Q,+- =[+ir p+2Mk ( —2MH)'"(p' —2MH)

—Mk ( —2MH)-'"]e'-' (47)

IV. QPKRATQRS

%'e wish to convert the classical vectors D„D,', D„
and D,*, obtained in Sec. III, into quantum-mechanical
shift operators for energy and angular momentum. Al-

though the classical vectors involve undetermined phase
factors, we shall see that Eqs. (42)—(47) contain sufficient
information to make possible the desired quantizations.

Consider first D, and D,'. From Eqs. (42) —(44) we

construct the operators

and C,* are given in Eq. (5).
Equations (44) and (47) contain unknown phase factors,

for example, those of F, and G, [Eqs. (25) and (26)].
Also, it is clear that in the above D, and D, are deter-
mined only to within a factor which is a constant of the
motion. These undetermined quantities could be
specified by consideration of a noninvariance algebra for
the classical motion. ' However, Eqs. (42) -(47) are
suScient for our purposes: The operators corresponding
to the phase factors in Eqs. (44) and (47) can be deter-
mined by requiring that quantization of D, and D,
should yield shift operators for energy [see Sec. IV]; simi-

larly, the role of any constant factor in D, and D, is best
seen in the algebra of quantum-mechanical analogs of
these vectors [see Sec. &].

and hence

[L, , b-]=0 .

Apart from their dependence on r and p, 6—may also de-
pend explicitly on H, L, and I, Because the latter do
not commute with r and p, it is advantageous to define
operators 6„-I which are independent of H, L, and L„
and which satisfy

b „*(
~

nlm ) = b,
+

~

nlm ) .

For convenience of notation we denote 6„—I by 6„+—.The
effect of Q

—+ on
~

nlm ) is the same as that of the operator

Q„—=+ir ph„+Aa 'rh—„Y„AA„+Z„—— —

[H, + ir.p+Aa 'rN ' —A'N]

=+A' (Ma) 'r '[+ ir.p+A'a 'rN

A(N+1)]N— (58)

The operators 6„—,F„—,Z„—,and 6+—are determined belo~
by requiring that D+—,and hence Q+-, be shift operators
for energy.

A clue on how to proceed is provided by considering
an obvious operator analog of the factor in square brack-
ets in Eq. (44), namely, +ir p+Aa 'rN ' . AN It is- .
straightforward to show that

Thus for

where C—are given by Eqs. (6)—(9), and T„=+ir p+Aa 'rn —' —A(n+ I ), (59)
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it follows from Eq. (58) that

[H, T„]~

nlm )=+fi (Man) 'r 'T„~ nlm ) . (60)

Q„—can be expressed in terms of T„

Q„—=5„T„—+—[b,„,r ]—A'a '6„"rn —' ~ iria 'r b,„Y„—
fib—„[Z—„—(n—+1)] .

From Eqs. (60}, (61},and the commutator

where E„ is given by Eq. (2), and

(62)

& a } '+i[~ r'P] —&a ~ — ~ +~ «[Y'*—(n+1) ']—fib, *[Z+——(nial)]
n+1

+ A' (Ma) '(n +1) ' b, „+———
T

~„' +(2M)-' p'a+—
2

A„p T„—. (64)

In Eq. (64) we have added and subtracted fia 'rb, „(n-
+1} '. In Eqs. (61), (63), and (64), n ~ 1 in Q„and Q

Qi is considered separately below. From Eq. (63), Q„—
will be shift operators for energy if 0 =0. By inspec-
tion, each of the quantities in square brackets in Eq. (64)
will be zero if

Unitary operators which satisfy Eq. {65)are

iA r p~3/2

Thus15, 16

'k

(76)

b ~F(r, p) =F n n+ j.
r, p (65) (r p —-', imari)"[ln(1+% ')]"' . (77)

+=(n+—1) We note that, as assumed, 5—satisfy Eq. (55), and in the
classical limit b, reduce to the phase factors

Z„—=n+1 .
b., =exp[+i ( 2MH)' —(Mk) 'r p] . (78)

Thus from Eqs. (61) and (57)

Q„—=b „*T„

= +i r pb „+iria 'rh„+(n—+1) ' —iris', „——(n+1)

are shift operators for energy provided 5„* satisfies Eq.
(65). For the special case of Q, ,

Q i = Ti =ir'p+AQ r

has the desired efkct,

Q;iioo)=0.
[Equation (71} follows from' R+

~

100)=0 and Eq.
(19).] From Eqs. (50) and (69),

Q
—=+ir ph +iria 'rb, (X—+1) ' —A'b, +—(%+1),—(72}

provided Q does not act on
~
100), m which case

The operators Q„—and Q
—have been derived before.

Schrodinger' obtained recurrence relations for the radial
part of the coordinate-space wave functions in spherical
coordinates. By including the "scaling operators" 5„*
and generalizing Schrodinger s di6'erential forms, Mus-
to' obtained the abstract operators Eqs. (68) and (72). A
similar treatment, based on recurrence relations for
coordinate-space wave functions in parabolic coordinates,
has been given by Pratt and Jordan. '

For the vector operators D*, Eqs. (48), (49), (11), and
(74) yield

D„+
~

nlm)

=aq+(l, m)P+(n ~ l, l}y+(n, l)
~

n + 1,1-+I, +m. k )

(79)

Q =ir p+A'a 'r .

From Eqs. {54)and (63) the shift operations are

Q
—

~

nlm ) =y —(n, l)
~

n+l, l, m ) .

(73)
DI, inlm)

=uk (l, m)P (n, l)y (n, l —1)
~

n —l, l —l, m +k ),
(80)

If 6„—are unitary, it is shown in Appendix C that
' 1/2

j (n, I)=fi — [n (n+1) l(l ~1)]—(75)

where the coefficients are given by Eqs. (12)—(15) and
(75).

Next, we quantize the vectors D, and D; [Eqs.
(45)—(47)]. We write
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{81) It is apparent from Eq. (88) that

[L; Q. ]=o

(82) Thus for

(93)

where C- are given by Eqs. (6)—(9) and Q
+ are to be ob-

tained by quantizing Q,—[Eq. (47)]. This latter quantiza-
tion is more difficult than that of Q,

=' because of the term
containing (p —2MH) ' in Q,+—. Therefore, rather than
determining Q

— directly, we first derive operators Q „+-

which are independent of H, and which satisfy

Q „+—=b,„T„——

where b „—is given by Eq. (76), and

T „*=+i r.p+ 2' a (p —2ME) '(n +- 1 }n —irin,

Q „—
~

nlm ) =Q
—"

~

nlm ) . (83) Eqs. (86}and (93) yield

To construct Q „- we replace the classical Hamiltonian in

Eq. (47) with the eigenvalue E and quantize. The factors
in square brackets in Eq. (47) will yield operators which
are linear in r. For analyzing the shift properties of such
operators we know that it is convenient to use
Hylleraas's form of the energy eigenvalue equation, narne-

ly
18

g+
~

nlm & =y ~(n, i)
~

n+l, l, m & . (96)

Q, i
100)=0. (97)

The coefficients in Eq. (96) are evaluated in Appendix C:

For the special case of Q, , it is shown in Appendix C
that Q, =T, has the desired effect,

A„
i
nlm ) =4k"a '

i
nlm ),

where

A„=r'(p —2ME) —2ih'p r(p —2ME)

y
—'(n, l) =A

y (1,0)=0 .

[n (n+1)—l (1+1)]n+1

' ]/2

(98)

+4iii (p' —2ME), (85)

and E is given by Eq. (2). Thus, Q „—will be shift opera-
tors for energy if

A„+,Q „-
i
nlm ) =4'"a Q „—

~

nlm ) . (86)

(87)

This result and Eq. (47) suggest that we consider

Q,—', =b, „—[+ir p+2A a (p —2ME) 'I'„* fiZ „—], —

where b, „- are given by Eq. (76), and I'„-" and Z „- are
functions only of n. %'ith the aid of the commutators

[A„,r p]= 2iiriA„[1+4ME—(p 2ME) ']-
+8% ME[r p —iiii]

and

[A. (p —2ME) l

4i hr p+8R ME(p— 2ME) ' 2', —(90)—
and Eq. (87), we find that Eq. (88) will satisfy Eq. (86) if

In Eq. (86), n & 1 in the lowering operation; Q, is treat-
ed separately below. An indication of how to proceed is
provided by considering the eFect of A„+] on 6„. Using
Eqs. (65) and (85), it is straightforward to show that

'2

n+1

The classical limit of T „—is equal to the factor in square
brackets in Eq. (47).

Q „+— correspond to abstract operators Q -+. To obtain
the latter we cannot simply replace the eigenvalue E with
H in Eq. (94) because H does not commute with r and p.
Instead, we use Eqs. (C13) and (C19) to eliminate
(p —2ME) ' in Eq. (94), then we rearrange operators us-

ing Eq. (65) and replace E with H, and n with ¹ This
yields

provided Q does not act on
~

100), in which case

Q = ,'fi 'p r + —,'A'a r +—irp+ 'fi—(100)

and Q ~

100)=0. In Eq. (99), 6—are given by Eq. (77).
The eff'ect of Q

— on
~

nlm ) is the same as that of Q „—,

namely,

Q
-'

~

nlm ) =y (n, l)
I

n+—l, l, m ), (101)

where y
—(n, l) are given by Eq. (98).

Finally, for the vector operators D"—
, Eqs. (81), (82),

(11),and (101) yield the shift operations

D I+
~

nlm )

=aI+(l, m)P+(n + l, l)y +(n, l)
~
n+ l, l + l, m +k )

Q
—= ,'fi 'p r'6-(%+1—) '+ ,'gaia r b,+(%+1—)—

+ir pb,
" [1+3(%+I)—']+iiiA [3(IV+1) ' —X],
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D„~nlm)

=uk (l, m)P (n, l)y (n, l —1)
~

n —1,1 —l, m+k ),
(103)

where the coefficients are given by Eqs. (12)—(15) and
(98).

In the momentum representation of wave mechanics,
Eqs. (96) and (97) yield the following recurrence relations
for the radial part of the momentum-space wave func-
tion:

H, =(2M) '[p„+)(i 1(l +1)r 2' a—'r ']

and the radial Hylleraas operator'

(113)

Here VI- and P„t are defined in Sec. II, and 6„—and T „—

are given by Eqs. (76) and (95). The operators V( , -P„(,
and T „—are linear functions of r and nonlinear functions
of p: In the momentum representation they are first-
order diNI'erential operators.

R(—,P„(, Q„—,and Q „+—factorize operators related to the
radial Harniltonian

&+ —p —2(n —1) z, , +n —3
~

nl )
po

dp n p+po

A„( ——[r +Pi l(1+1)p ](p —2ME)

—Zi)rip. r(p —2ME)+4(ri (p —2ME) . (114)

(n —1)(n +I +1)n+1 ~

n +1,1), (104)
p» =f' r p —l Af' (115)

d po
2

b,„p — —2(n+1) . . .+n+3
~

nl )
dp &p +po r, =p -'p-r+~Ap -] (116)

(n —1 —1)(n +I)
n —1

' 1/2

~

n —1,1) (n~l),

(105)

are, respectively, the canonical conjugates of r and p. For
RI—

+ and P„—+I these factorizations are given in Ref. 13. For
Q„+—=b,„T„+ and Q

—„—=11.„T„——it is straightforward to
show that

2

p- —4 +4 i10)=0,
dp p +po

(106) Q.'+ i Qn' =2Mr'(Hn -(I/2)+() /z) (117)

where pc=)(ia '. The solution to Eqs. (104)-(106) is the
same as that obtained by other methods (Appendix B).

By using the factorizations (16) for the operators C in

Eqs. (48) and (49), we can write

Q na(Q n*=p (p 2ME} (An, n —()/2)+() n) 4& a

(118)

D+ =Pi aU+R+Q+,

D =i)i aQ U R

(107}

(108)

The connection with the factorization method of
Schrodinger' and Infeld and Hull' is established by tak-
ing the appropriate difkrential forms of the above factor-
izations.

The effect of these operators on
~

nlm ) is the same as
that of U. A SPECTRUM-GENERATING ALGEBRA

a() „T„U,R( (n~l),

(109)

(110)

The shift operators derived above can be modified so
that they form part of a Hermitian basis for a spectrum-
generating algebra. The procedure is standard, and in-
volves multiplication by suitable functions of H and I. .

Define

where UI—and RI+—are defined in Sec. II, and 6„—and T,—

are given by Eqs. (76) and (59). The operators U(—+, R(—,
and T„—are linear functions of p and nonlinear functions
of r; in the coordinate representation they are first-order
difkrential operators.

Similarly, by using the factorizations (17) in Eqs. (81)
and (82), we can show that the effect of D + and D, re-
spectively, on

~

nlm ) is the same as that of

0 +I ——i —,'A a V(+P„+I 6+ T +

D=(NS ') '"D+(Ns -')'"-I-
where S and N are given by Eqs. (9) and (51), and

I =)r(—'
I [N (N + 1)—S'+ -,

' ]

x[1—(S+—,')'(N+1) ']j
The adjoint of D is (Appendix D)

D'=I(NS ') '"D (NS ')'-" .---
From Eqs. (79), (80), and (119)—(121),

D„~ elm ) =ak+(I, m }
~

a., l + l, m +k )

(119)

(120)

(121)

0 10 lT~ aT 1 ~0 P lo
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(127)

The adjoint of Q is (Appendix D)

Q =Jlil '
Q N'

From Eqs. (74), (124), and (126)—(128)

g ~~i~)=~'/2~~+1, l, ~)
and

(128)

(129)

and ak(l, m) are given by Eqs. (12)—(14). From Eqs.
(122), (123), (10), and

(L +iLy) ~

iclm ) =Pi[(1+m)(1+m +1)]
~

ic l m+1)

(125)

it can be shown that ——,'(D+D ), —,'i(D —D ), L, and 5
are a Hermitian basis for the de Sitter algebra SO(3,2). '

Also define

g ~ —1/2g +l1l 1/2J

From Eqs. (102), (103), (137), (139), D and D satisfy Eqs.
(122) and (123). From Eqs. (101), (138), (140), Q and Q
satisfy Eqs. (129) and (130). Thus we are led to the same
spectrum-generating algebra as above.
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APPENDIX A

F, (co)= ( —Mcor X L+pL)e' (A 1)

%'e present a discussion for the oscillator which paral-
lels that for the Coulomb problem in Secs. II—IV. This
derivation is the inverse of that given by Bracken and
Leemon. They used boson operators and the dimension
operator to obtain basis operators for a spectrum-
generating algebra, and showed that in the classical limit
their operators have a simple interpretation.

For the classical oscillator one can readily write down
two complex vectors which are orthogonal to L, which
have moduli of constant, equal magnitude, and which ro-
tate with angular velocity re=coL,

Q ~lclm ) =(Ic—1)'
~

lc —l, l, m ) . (130) G, (co) =F,(c0) X L=(p XL+McorL)e' (A2)

Let

&1 = -,'(QQ+ Q Q ),
K2 ————,'i(QQ —Q Q'),

K3 ———,'(QQ + —,') .

(131)

(133)

where 5 is a real function of r and p. [Note that because
the Laplace-Runge-Lenz vector A, for the oscillator
does not generalize to a quantum-mechanical operator,
it is not useful to express F, and G, in terms of A, and

A, &&L, as we did for the Coulomb potential in Eqs. (25)
and (26).] Let X(co) denote the modulus

Then from Eqs. (129)—(133),

[K1,E2 ]= ilc' 3, —

[K2,E3 ]= iK, ,

[E3,E, ]=i@2 .

(134)

(136)

X(co)=e 'F, ore 'G, .

It can be verified that

X(co)=co X X(m )

and

X (co)=2M(H+coL)L

(A3)

(A4)

(A5)

Thus Ic:; are a Hermitian basis for the algebra SO(2, 1).
From Eqs. (10), (122), (123), (125), and (129)—(133), K,
commute with 0, D~, L, and S. Thus the spectrum-
generating algebra is SO(2, 1)eSO(3,2).

Similar results can be obtained using the operators 0—
and Q

+—derived in Sec. IV. Define

where H =(2M) 'p + —,'Mco r .
From the vectors

D, (co) =F,(co)+iG, (co)

and D,*{co),we construct the operators

D—(co) = [—Moor ~ L+pE+i(p && L+McorK)]b, — .

D =(XS)'"D+(XS)-'"I (137)

Q + 1 /2Q + le —1 /2J (138)

Here K is a function of L such that as Pi~0,

( L2 )1/2

D '=1(iilS)'"D -(XS)-'"
6—correspond to the phase factors exp(+i 6); apart from
any dependence on r and p, 6—may also depend on con-
stants of the motion. 0—will be vector operators if 6-
are scalars. Thus we assume

Q, J+ 1 /2Q —
l1l

—1 /2 [L;,b, +-]=0 . {A9)
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In {A7) we have adopted a convenient ordering of opera-
tors, with functions of constants of the motion placed to
the right. From (A7) and the commutation relations for r
and p,

(n —I —1)!
(r) =( —1)"

n a (n+I)!

-]y2 .
2f'

[L;,D (~—.)]=ihcjkDk (co),

[L,D—(co)]=+2fiD (co
—)K

2—i%(Mar+i p)(K +fiK —Li)Q —,

[H, D (co)]=Saba)D (co)+[—Moor)(L+pK

+i(p X L+MairK)][H, b,*] .

(A10)

(A11)

(A12)

Xe rl(na—1Lzl+1 r y (g y)
nQ

(p) =(—I )"i'

X(1—z) (1 z)—' T„'+(,(z)1'( (|),$),

and in the momentum representation as
P 1/2

n (n I ——1)!
(n + I)!

From (AI0} and (A11) D* will be shift operators for an-
gular momentum if where

(83)

K'+ AK —1.'=0 . (A13) z=(n p

gaia

)—(n p +Ra z) (84)

The roots of (A13) which have the classical limit (AS) are

K = iri(S+ —' } (A14)

+D (a)) D+( —co)](&+S+-,') {A19)

where X =(irido) 'H —
—,'. Thus, as in Ref. 7, a Hermitian

basis for a spectrum-generating algebra can be obtained
from the vector operators D—+(co) and D —

( —co ).

APPKNMX 8

%e choose basis eigenkets such that

(E, l+li~ A[(E, I ) = —[(2I+1)»(2I+3)]'"
x(E IIIAIIE, I+» .

where S is given by Eq. (9). From (A12), D +—will be shift
operators for energy if [H, 6—]=0. Therefore we take

(A15)

Thus with K =iri(S+ —,') and b, —=1 in (A7), the opera-
tors 0—provide the shift operations

Dk-+(a) )
i
Elm ) =(zk (a))

i
E+Ra), 1+1,m +k },

where k =+1 or 0, D~, =D„+iD», and DO=D, . D—+(~)
are quantum-mechanical analogs of the classical vectors

D„+-(ai)=(I+iLX )F,(~) .

The shift operators A, and v derived in Ref. 7 are relat-
ed to 0

A, =i(4Mi(! ai) ' D (co)(N+S+ —,
'

)
' S

(A18)

v= —(2&2M(}i co) '[D+( —ai) D (co)

Here FI is a spherical harmonic and L„'+I'
&

is an asso-

ciated Laguerre polynomial, defined as in Ref. 12 (pp. 69
and 345, respectively); T„'+I', i is a Gegenbauer polyno-

mial, defined as in Ref. 24 (p. 782}. In (82) a factor
( —1)" ' has been included following Biedenharn and
Louck. ' {f„i is the Fourier transform of 1I„i . ~ With
the aid of the factorizations (16)—(21), it is straightfor-
ward to verify that (82) and (83) satisfy Eqs. (11)—(15).
The radial parts of the momentum-space wave functions
(83) are also solutions to the linear equations (104)—(106}.

APPENDIX C

In the calculations below we require the expectation
values

(Cl)

(r ) = —,azn(i[5n —31(I+1)+1],

(r p) =3iiri,

(rr p) =ika[3n' i{1+I)]—.

(These results can be proved using the hypervirial
theorem. )

We wish to evaluate the coefficients y
— in Eq. (74).

From Eqs. (74) and (68),

if b, „— are unitary. Multiplying out the product in (C5)
and using the identity

L =r p —(r p) +iirir. p,

This choice is the same as that in Ref. 12 (p. 344), but

differs from that in Ref. 1 and Ref. 23 (p. 145).
These eigenkets appear in the coordinate representa-

tion as

I
1'

~

'=(+2& (an) 'r —A' I(I+1) 2ikr p- .

+& ( +nI)( +n))2. (C7)
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From (C7), (Cl), and (C3) we obtain Eq. (75). [The choice
of phase factor in Eq. (75) is consistent with that made in

Appendix B.] Equation (C7) is valid also for n = 1, and is
consistent with Eq. (71).

To evaluate the coefficients y
—in Eqs. (96) and (101),

we start with

~ y
—

~

=(r p f—i 1(1+ I )+iri n (n +3) —2ifir p.

—2 (2n + 5)(p —2ME)
0 n

+1+4 — (n +2)(p —2ME) ) .
a4 n4

(C9}

(CS)

where T„—are given by Eq. {95). Multiplying out the
product in (CS) and using (C6), we find

To calculate the expectation values of (p —2ME) ' and

(p —2ME) in (C9), we use Hylleraas's equation (84).
Let 0 be some operator. Multiplication of Eq. (84) with

(p —2ME) 'Q yields

{p —2ME} fI
~
nlm }=-,'iri 'a'(p' —2ME)-'Q[r'(p' —2ME)' —2iiiip r(p' —2ME)+4k'(p' —2ME)]

~

nlm ) . (C10)

(i) With 0= 1 in (C10) and using the commutators

[r, (p —2ME) ]=Sinai(p —2ME)p r

—20iri'(p' —2ME) —16iri'ME

[p r, p' —2ME]=2iirip',

We 6Ild

(1 n)(p ——2ME) '
~

nlm }

(C 1 1)

(C12)

[ i' '(p—r)(p' —2ME)+2p']
~

100)=0 . (C17)

Multiplying (C17) on the left with (p' —2ME) ' and us-
ing (C12) yields

[ir p+4fi a (p —2ME) ' —iii]
~

100)=0, (C18)

which is Eq. (97). From (C13), with n =1, and (C18),

(p —2ME) '
~

100)

=(24i}i ) 'a [p r +A a r +12iri ] ~
100),

(C19)

a [(p 2ME)r + 6—i fir p+6iri ] ~

nlm ) .

(C13)

From (C13), (I), (C 1), and (C3),

(1 n)—{(p —2ME) ') = ,'fi a [3n —1(l —+1)—3] .

(C14)

which is used to eliminate (p —2ME) ' from Eq. (97).

APPENDIX D

We verify that (121) is the adjoint of (119). From Eqs.
(121) and (79)

( n '1'm '
j D,

~

n 1m ) = [(1—m + 1 )(1 +m + 1 ) ] '

(ii) Similarly, by taking 0=p r and 0 =(p —2ME)
in (C10), and using (C 1)—(C4),

From (123) and (80)

+ ~n', n q-1~1', 1+1~m'm (D 1)

(1 n)((p ——2ME) )

a n [5n —31(l + 1)—5] . (C15)
(nlm

~
D,

~

n'1' m}=[(1'—m')(1'+m')]'~

x~„„,&, (

~+ ~100)=0, (C16}

where P+ is given by Eq. (21}. From Eqs. {C16)and (21)

Substituting Eqs. (1), (Cl) —(C3), (C14), and (C15) in (C9),
we obtain the first of Eqs. (98). [The choice of phase fac-
tor in Eqs. (98) is consistent with that made in Appendix
B.]

Next we prove Eq. (97). It is straightforward to show
that"

Take the complex conjugate of (D2):

(«m
I D, I

n'1 m' }*=[(1+I —m)(1+1+m)]'"
+ ~ n'„n + ]~I', I + 1 ~ rye

'
pyg

=( '1n' m~D,
~

nlm ), (D3)

using (D 1). Similarly for the other components of D and
D, and for Eqs. (137)—(140).
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