
PHYSICAL REVIE& A VOLUME 37, NUMBER 6 MARCH 15, 1988

Relativistic and many-body effects in first-row transition-metal negative ions:
Three Zn bound states

Donald R. Beck
Physics Department, Michigan Technological University, Houghton, Michigan 49931

(Received 16 June 1987)

In this work relativistic and many-body e8'ects in transition-metal ions are treated independently.
For the former, we have written an automated program which provides level-dependent (J) struc-
ture input {for both the electrostatic and the magnetic portion of the Breit operator) to Desclaux's
multiconfigurational Dirac-Fock program. Also, the nonrelativistic treatment of many-body efects
for these atoms via the configuration-interaction (CI) technique has been made much more e%cient,
in part by the removal of unnecessary (through first-order) parents, so as to make computational
costs competitive with those associated with smaller species. %'e predict that all levels of Zn
3d'4s4p' DJ are bound, with the lowest J= —', bound by 0.810 eV and the highest J = —,

'
by 0.511

eV, that Zn 3d' 4s4p'"PJ is bound by 0.169 eV (J = —,') and 0.136 eV (J = —,'), and that Zn

3d' 4p' S3~2 is bound by 0.566 eV. The complete fine structure is given as well as the electric di-

pole oscillator strength for the P~ S' transition. All states are found to consist of at least 90%
pure I.S coupling. Finally, the configuration-interaction program referred to above will soon be
modified to do relativistic CI calculations, thus removing the separability assumption.

I. INTRODUCTION

In the first-row transition metals, situations where both
relativity and many-body efFects are important occur fre-
quently enough so as to be routine. Certainly considera-
tion of the effects of relativity is essential when a 3d elec-
tron is "converted" to 4s or vice versa. Correlation
effects are well known by now to be pervasive throughout
the Periodic Table and are always important when it
comes to electron aSnities. But certain novel features
are added when first-row transition-metal atoms are
considered, relating to the large and varied basis sets
needed (one- and X-electron), the role of the "core," and
the enhanced role of higher-order (triple and quadruple)
excitations.

In this work we focus on negative-ion states of Zn ob-
tained by adding a 4p electron to the nonrelativistic
threshold. Because the additional electron is diffuse
((r )4~ =3.7—5.2 a.u. ) relativistic effects on the electron
affinity (EA) are modest. This is fortunate, because as yet
there is no combined relativistic-correlation theory cap-
able of treating a basis of up to several thousand X-
electron functions, although that is one of the eventual
aims of our project. The relative isolation of the 4p sub-
shell coupled with the terms investigated also serves to
depress the usual importance of higher-order excitations.

For two of the states, Zn P and D, relativity is the
dominant mechanism contributing to the decay of tke
state (the third state Zn 5' also decays by the nonrela-
tivistic electric dipole process). If the lifetime of the state
is long enough, say & l ns, then the state may be regard-
ed as bound in the usual sense. On the other hand, life-
times on the order of lo ' s are characteristic of reso-
nances. Calculations of such lifetimes involve the subtle

interplay of relativistic effects (on wave functions and the
decay Hamiltonian) with those of electron correlation;
moreover, they can be highly J dependent. Relativistic
effects on lifetimes will not be treated in this work; states
will be considered bound when they fall below the thresh-
old of the same symmetry (5, I., and J).

In Sec. II we briefly outline existing many-body theory
in use and present the details of the recent improvements.
In Sec. III we present and analyze the results obtained
from the methods of Sec. II. In Sec. IV the relativistic
formalism is summarized, with a particular focus on the
angular momentum algebraic results. In Sec. V the rela-
tivistic contributions to the electron aSnities are ob-
tained and discussed.

II. NONRKLATIUISTIC MANY-BODY THEORY

%e treat many-body efFects within a perturbation-
directed variational configuration-interaction (CI) frame-
work. ' The zeroth-order function here is the restricted
Hartree-Pock solution 4 obtained from the Froese-Fisher
program. " A first-order correlated wave function is con-
structed by making single and double subshell excitations
into all-open or partly open subshells, consistent with the
contribution surviving in first order. Obviously, this
means the correlating configuration must have the same
total S, I., and parity that 4 does. In tke case of double
excitations such as n;I;n I ~U&, U&& it also means that
the ranges [ ~

l; —1, ~, l;+I, ] and [ ~
I, —I& (,I, +li, ] must

overlap. Here, U indicates the one-electron virtual space.
Any portion of the second-order function (triple and qua-
druple excitations) thought to contribute differentially
significantly (i.e., directly to the EA) would also be added.
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Construction of the correlation configurations obvious-
ly postdates knowledge of the existence of a one-electron
virtual space (VS). Formally, in first order the azimuthal
symmetries of these functions can be cut o8' at 31,„,
~here l,„ is the maximum l appearing in 4; for excita-
tions into two VS's, the rule is based on computational
experience rather than perturbation theory. In the 6rst-
rom transition metals, l & 6. In our approach ' the radi-
al parts of the VS's are represented as a linear combina-
tion of Slater-type orbitals (STO's), with exponents select-
ed by the CI process. Genera11y, it is found that excita-
tions arising from the same subshell(s} can share a com-
mon set of STG's; but how many are needed per I per set~

In the past, two have been found to give about 85% of
the correlation energy. Recent evidence suggests, howev-
er, that 3d pairs' ' and 3p3d pairs require a third,
diffuse, d and f VS to reach this level of accuracy.

Previously ' we constructed the X-electron
symmetry-adapted functions (SAF's) from Slater deter-
minants following the method of Schaeffer and Harris'
by diagonalizing a linear combination of S and E ma-
trices. The presence of open d subshells often has the
consequence that a single correlation configuration can
have 100 SAF's associated with it, as mell as —1500
Slater determinants. Problems of this size, however, can-
not be conveniently handled by diagonalization due to
the large matrix setup costs and the lack of a dependable
multiroot ( —100) diagonalizer.

Recently' we revived the Bartlett-Condon-Beck
method (BCB), originally due to Bartlett, ' which breaks
the con6guration into two parts so that each part can be
treated conventionally' (e.g., Ref. 17 combined with
step-up and step-down operators to maintain phase} and
then reassembled at essentially no cost. ' For "large"
cases (100-200 determinants, a few SAF's) where the two
methods could be compared, the BCB method was two
orders of magnitude faster. For the transition metals, we
have found it necessary, at times, to break the initial
con6guration into three parts' in order to reduce the
complexities of each part, and simultaneously restrict'
the subcouplings to those which interact with the
zeroth-order (e.g., Hartree-Fock) vector (otherwise we
would have -100 SAF's}.

This removes only part of the bottleneck, however. To
illustrate, in lighter species one may have —50-75
configurations with 2 —3 SAF's, on average (and on aver-
age fewer than 100 determinants). In transition-metal
ions those 50—75 configurations may have 50 SAF's
(400—500 determinants on average), leading to an energy
matrix of size 2500-3750. If we could find some way to
reduce greatly the number of SAF's we would no longer
have a computational bottleneck.

Frequently, a first-order wave function is suf6cient; the
primary characteristic of such a wave function is that the
correlated SAF must have a nonzero matrix element with
the zeroth-order function. But, as has been noted by
Bunge for energies, and us for oscillator strengths, ' the
minimum number of SAF's (i.e., the smallest number of
survivors, under all possible orthonormal mappings} may
be very much less than the total. For energy, this
minimum is equal to the number of independent radial

integrals appearing in the first-order matrix element
[N.B. in the case of single subshell excitations which
preserve symmetry, there is only one composite integral
(see, e.g. , Ref. 22) representing core-valence and one-body
effects; if there is a symmetry change, there are no core-
valence or one-body integrals]. To illustrate, suppose the
zeroth-order function is 3d 4s4p D', and the excitation
3d ~4pU& is of interest. There are 63 surviving SAP's
but only two independent radial integrals: R '

(3d3d;4@V&) and R (3d3d;4@V&). Thus one could reduce
the SAF's from 63 to 2, and in fact, this has now been ful-

ly automated in an algorithm we call R.EDUcE. In the
problems discussed here, this reduces the energy matrix
from over 1000 SAF's (not very manageable) to under
100. Obviously, all or part of the first-order function may
serve as a reference function if necessary, but the gains
would not be as striking then.

The above reduction eliminates all higher-order SAF's,
which is entirely consistent with much of our earlier
work, ' where we used subparentalization to remove
SAF's not interacting with the zeroth-order vector. Here
the validity was checked for Zn by running the all-SAF
case for 3d ~V&+ V& and comparing it to the reduced
result. For these con6gurations, which dominate the
correlation function, the loss in energy is only 0.029 mil-
lihartree (entirely tolerable in the present context). We
note however that significant contributions, at least in
terms of coe5cients, from higher-order SAF's are not to-
tally unknown, as Bunge's work on Li and ours on
Be illustrates.

Higher-order effects associated with con6gurations re-
lated to the Hartree-Fock one through triple and quadru-
ple excitations were not investigated here. In Cu 3d' 4s
and Cu 3d' 4s the only higher-order effects of this type
found to be differentially important to date were 3d 4s
excitations in Cu, with contributions near 0.2 eV. In
Zn such e6'ects should be more strongly suppressed due
to the reduction in differential valence-shell correlation.

In larger problems, over 90% of the computational
time is spent setting up the energy matrix element struc-
ture (each matrix element is represented as a linear com-
bination of radial integrals). For each determinant, the
bulk of the spin orbitals are packed into the bits of a sin-
gle word, with the remainder (VS's) stored in individual
byte-sized words. In a comparison of determinants,
which begins with the outermost spin orbitals, the bit
portions involve only a linear process. This approach
seems to offer a good compromise between determinant
storage needs and comparison speeds. Presently, about
the same amount of time is required to evaluate the sur-
vivors (typically 3—5 % of the total for large problems) as
to compare all determinants whose con6gurations in-
teract I,'with a con6gurational pretest imposed). The ma-
jor future improvement in this area will be to generate a
"configurational" structure table (or "Rydberg series
table" ) as in Ref. 22, which would allow use of any ap-
propriate existing energy matrix element structure. To i1-

lustrate simply: If there were three two-ejectron
cop, figurations 1s,2s,3s, 'S, one need explicitly develop
only two out of six energy matrix element structures, e.g. ,
(ls

~

H
~

ls ) and (ls ~H
~

2s ). All other structures,
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TABLE I. Energy contributions to electron aSnity {EA)of Zn 3d'4s4p' D'.

Energy contribution type'

RHF
X-shell correlation
c(3d,4p)
c(3d,4s)
c(3p,4p)
c.(3d,3d )"
Nonrelativistic (total)
Relativistic (J=9/2)

—1777.423 94
—26.62
—23.01
—15.68
—2.93

—319.80

Threshold
3d 4s4p 'D

—1777.403 70
—16.08
—21.58
—19.26
—2.46

—318.71

Contribution
to EA (eV)

+ 0.551
+ 0.287
+ 0.039
—0.097
+ 0.013
+ 0.0297
+ 0.818
+ 0.810

"'RHF energy units are hartrees. The remainder are millihartree.
"Includes single excitations from 3d —0.005915 a.u. from Zn and —0.005 7395 a.u. from Zn.

e.g. , ( ls
~

H
~

3s ), could be obtained from these 2
through a change of principal quantum number (the ex-
istence of more than one SAF per configuration just com-
plicates the programming).

III. NONRKLATIVISTIC RESULTS

During our survey of energetically low-lying potential-
ly bound states of transition-metal negative ions carried
out at the restricted Hartree-Fock (RHF) level, " three
possible bound state candidates were uncovered in Zn
3d' 4s4p P, 3d' 4p S', and 3d 4s4p D'. [Electron
aSnities obtained using the RHF approximation were
0.018, 0.149, and 0.551 eV, respectively (see Tables I and
II)]. These are analogous to states we studied~4 2s in Mg
and Be, the first of which was also examined by Bunge
e~ ah. "

The X-shell correlation was obtained from a radial
basis of two optimized Slater-type orbitals for each l
(I &5). The form of the correlation was that allowed by
first-order perturbation theory (single and double subshell
excitations from the RHF configurations). As shown in

Tables I and II, the difFerential contribution to the elec-
tron afFinity ranges from + 0.2 to + 0.3 eV; contribu-
tions from /~ 3 were minimal.

Excitations from the 3d, 4p, and 31,4s subshells in the
presence of N-shell correlation were then included, with
the existing radial set augmented with a third set of opti-
mized STO's (I &4). Since many configurations gave rise
to a large number of parents (e.g. , 3d4p~UIUI+i in D
has 63 parents for I & 1), the REDUcE algorithm was em-
ployed. The net difFerential correlation from these is only
+ 0.039 eV. The D wave function had, at this stage, 194

SAF's and took about 5.5 CPU h on a VAX 11/750 to
construct; the D' had 157 SAF's and took 3.5 h of CPU
time.

%e have chosen to explore the role of the core by ex-
amining the contribution of pair excitation from the 3d
subshell for D' and its threshold, D. A separate run
(RHF+ 3d ~) was done using a 2STO-I basis (I &4)
with a diffuse d and f added. Using the REDUcE algo-
rithm we find (Table I) a contribution of about 8.70 eV to
each state, with the contribution to the EA being (Table
I) only about +0.03 eV. For Cu and Cu we find that
the 3d contribution to the EA is about + 0.5 eV, with
the contribution to each state being close to —,

' of that

TABLE II. Energy contributions to the electron aSnities (EA) of Zn 4p' 53&2 and Zn 4s4p' PJ.

Energy contribution type'

RHF
X-shell correlation
c(3d,4p)
Relativity
Total

4p 3 4+4

—1777.554 248
—19.17
—29.11

Threshold
4p2 3P

—1777.548 770
—7.17

—24. 16

Contribution to EA (eV)

+ 0.149
+ 0.328
+ 0.135
—0.046

0.566

RHF
X-shell correlation
c.(3d,4s +4p)
Total, nonrelativistic
Other
Total, ~ith relativity (J =1/2)

4s4p I'J

—1777.751 66
—14.15
—33.97

4s4p I'0

—1777.751 000
—5.83

—35.11

+ 0.018
+ 0.226
—0.031
+ 0.213
+ 0.150
+ 0.169

'The nonrelativistic restricted Hartree-Fock energy is in hartrees; the remaining contributions are in
Inillihartree.
Reference 26.
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from Zn and Zn, which mould be predicted' by group
theory, if radial transferability was exact, and second-
and higher-order emects could be neglected. In Cu and
Cu we also found the 3p3d pairs to contribute about
+ 0.05 eV to the EA.

These findings demonstrate that 3d excitations make
marginal contributions to the Zn EA and suggest that
deeper core contributions may be ignored for Zn D and
Zn D, The di6'erence between Cu and Cu and Zn and
Zn is likely ascribable to the relative isolation of the 4p
subshell in Zn, Zn, compared to the 4s subshell in Cu
and Cu.

In Cu and Cu, essentially al1 the triple and quadruple
excitations found to be important contributors to the EA
were of the type 3d 4s ~4P xy and 3d4s ~4P z, where
x, y, and z were VS's. Obviously, these are present in
Cu and not in Cu; they also involve a strong "internal"
correlation. In Zn there are no equivalent excitations
possible; the largest valence-shell correlations are associ-
ated with bivirtualio excitations, generally weaker than
internal ones, and partially canceled by similar threshold
excitations. For these reasons we expect triple and qua-
druple excitation contributions to the EA to be
suppressed as compared to Cu, Cu, where they contrib-
ute about 0.2 eV; we chose not to include such effects
here. Since Zn 5 and I' are expected to behave simi-
larly with respect to their thresholds, no further core or
higher excitations were examined for them either.

Using the correlated (N-shell) results for Zn P and
Zn S', we obtain an oscillator strength of 0.323 (length)
and 0.287 (velocity) for the P~ S' transition using the
theoretical energy. If we use the experimental energy
for the thresholds (J=0~J =0) and the final theoretical
estimate for the electron affinities [J= —,

' to J = —,'], the

length result becomes 0.342 and the velocity 0.272. For
comparison, the RHF results (theoretical energy) are
0.401 (length) and 0.208 (velocity). Throu hout, the
efFects of nonorthonormality have been treated ' exactly.

Jzf n~m ™4'num (2)

where k =P( I+o"(), and cr is the IX ' Pauli matrix.
As is usual, we seek to reduce matrix elements between

these determinants (or linear combinations of them) to
linear combinations of one- and two-particle radial in-
tegrals. One can do this directly by applying the Slater-
Condon rules (the spinors form an orthonormal set) and
then performing the angular integrations.

It is for this last area that the work of Grant is so im-
portant; in particular, two of his papers. ' For us, the
most important difrerence between the two lies in which
representation is emphasized: uncoupled or coupled.
Although there are many advocates of coupled represen-
tations [nonrelativistically and relativistically], we find
them not overly useful due to (1) the great variety of
configurations encountered, (2) the need to keep all, or
nearly all, couplings except in special cases like those dis-
cussed for REDUCE, and (3) the algebraic and program-
ming complexiti. es introduced.

The spinors are represented as

P„„(r) X„(Q,s)
4nrm iQ (r) X (Q s) (3)

electron problem, while the fourth is the Coulomb repul-
sion. The last two terms constitute the Breit Hamiltoni-
an, of which the first is called the magnetic and the
second the retardation contribution; these represent ap-
proximate two-particle relativistic corrections. %e gen-
erate a zeroth-order function using the 6rst four opera-
tors (i.e., without the Breit corrections) and an approxi-
mate wave function which is a linear combination of
determinants whose elements are spinors, (()„„(r). The
one-electron spinors satisfy the following eigenvalue
equations:

IV. RKI.ATIVISTIC THEORY

A good sampling of relativistic theory and how it is ap-
plied to atoms may be found in recent conference
proceedings. ' %e follow current practice and take as
a relativistic Hamiltonian for N electrons,

H„,= g [ca; p;+P;c +V~(r, )]+ g r,,
'

—a cz.l J (a; p;)(a, p, ) r"

(? &j)

a and P are Dirac 4)&4 matrices, c is the speed of light,
and Vz is the electron-nuclear potential, which if point-
like would be —Z/r, -. Vz can also be obtained by a
finite proton-charge distribution, which is either a con-
stant (our choice) or given by the Fermi distribution.
(For binding energies of innermost electrons, quantum-
electrodynamical eff'ects can be significant. ) The first
three terms represent the Dirac Hamiltoman for the one-

Since P and Q do not depend on m, we are using a "re-
stricted" form of the theory.

We write

1

2

X =( —1)' ' &2g +1
m, m, —m

???(, f??

X &(,(&)i) (s) . (4)

These are like Grant's Eqs. (3) and (4), except our X
differs in phase due the differing order of coupling s and I.
The ( ) is a Wigner 3j symbol.

Since v = —(j + —,
' )a with

+1 when /=j ——,
'

when I =j+—'

we see that

I X =I(I +1)X,
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but that X, has a di6'erent eigenvalue. Also, in Eq.
(3), P will turn out to be the "major" component (i.e.,
larger for electronlike solutions) and Q the "minor" com-
ponent.

%'e And the "overlap" integral given by

( n /rm
~

n '/r'm ' ) =5„,5 ~ f dr (P„+„,,+Q„„Q„., ) .

A. One- and tao-particle energy matrix elements

The angular integrations can be performed using re-
sults found in standard textbooks such as Edmonds and
techniques discussed in Ref. 37.

Radial orthonormality is imposed later. Of the Arst three
operators in H„,~, only ca-p requires some effort to evalu-
ate. Since its reduction is well known (e.g. , Sec. 6.2 of
Ref. 32), we quote the result,

(n/rm
~

c/x. p+pc + VN(r)1
~

n'a'm') =I( n/rm, n'a' m')

=5„„5 c Q„„+-ao d K K
Q..

+c (P„g„„Q„—„Q„„)+Vtv(r)(P„g„„+Q„„Q„„)

This may be compared to Grant's Eq. (6.17) for the diagonal case. The above expression contains the rest energy,
which in these units (a.u. ) is c f o dr(P„.„P„„~Q„„Q„„)5„„andis sometimes removed.

The electrostatic matrix element may be evaluated by expressing r ]2' as sums of products of one-electron functions
using the spherical harmonic addition theorem, with the result that

( 1 )n b /r b m b ( 2 )
I r» '

l
n, &,m. ( 1 )n d ~d m ~ ( 2 ) &

m + fPlb, m + md
m, -m,

(j m 'j m )d (jdmd', jbmb )P (n z nbzb, 'n z n&zd )

(9)

where

i
d'(jm; j'm') = &(2j +1)(2j'+1)(—1)/+/ + +'~2

2 2

(10)

even if g~g't+j+j'
odd if a =a',

(n /r nb/rb, 'n /c Knd)=df "
dr& f "«2, +, [P. . (1)P...,(1)+Q. ~ (1)Q.

x[P„,.(2)P„.(2)+Q„„(2)Q„.(2)],

hi h ay be compared to Grant's3~ Eqs. ('7. 11) [a sum over v should be present], (7.12), (6.2), and (6.5). As has b
noted, two symmetries exist:

d'(J'm ',Jm ) =( —1) + d'(gm; J'm ') (12a)

d'(j, —m; j', —m')= —(1)/+/ +'d'(jm; j'm') . (12b)

For the general magnetic two-particle integral, the result we desire follows immediately by insertion of the expansion of
r, 2 and direct evaluation of the one-particle integrals. %'e obtain
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ngK~ m~ ( 1 )nbKbmb(2)
—Ai A2

II Ic M (()llgKgltlg(2))

+1
( —1) ' ' g g [H, H3R, +H2H4R2 H—, H4R3 H—~H3R4]j,

q= —1p&0

where the di8'erent 0's are expressed in terms of the general angular momentum coeScient,

l p I'
h~(ljm;1'j 'm')= v 3(2j+1)(2j'+1)(21+1)(21'+1)

x
m, = —1/2

rn m —m —m m +q —q —m +m —mS S S

1 p

i??I —P?l —q q J?2 —Pl q +Pl —M —q +~

Here„

H& =hq~(l j m;1 j m ),
H2 =h~(l,j,m„l;j,m, ),
H3 hq(lbjbm——b&ld'j qmd )

H4 =h, (lb Jbmb, ld jdmd ),
for which I* signifies the l of the minor component.

The general radial integral is

RQ(il;jm)= I I dr ds P„„(r)Q„„(r)

h ~( 1
'j'm ', lj m ) =h ~ ( lj m;1j''m '

) .

These allow us to require q &0 and m ~0. We have the
single radial symmetry

RQ(il; jm) =RQ(li;mj ) . (20)

We plan to discuss retardation algebra in a later paper.
Generally, retardation eFects are 10% of the magnetic
ones; here, at most, we will be concerned with the aver-
age retardation energy which has been adequately dis-
cussed by Grant.

h~ (1j —m;1'j ', —m')

=(—1)'+'+~+I+'h~(ljm 1j''rn'')

R, =Rbr(ab;cd), R, =R~~(ad;cb),

R2=Rbr(cd;a6), Rq Rgcb;ad) ——.

These equations are closely related to Grant's Eqs. (36)
and (37). In our opinion, this form of the result is most
easily programmed, as it has the lowest-order nj symbols
(3j), without an increase in the number of summations
present. This form can also be easily stored and
recovered when required.

The various restrictions on p, q, and m, follow from
the properties of 3j symbols. From Eq. (14) we have

i
1 —1'

i &P &1+1',
i.e.,

P =
/

1 —1' f, /

1 —1'
/
+2, . . . , 1+1',

/m, +q
/

=-,',
[
—q —m, +m'

/

&1',

/q+m —m'f &p,

/m —m, [
&1.

We also have the symmetries

B. Formation of W-electron angular momentum eigenstates

As in the nonrelativistic case, ' we will expand our
approximate X-electron wave function in eigenstates of
angular momentum. This naturally leads to the introduc-
tion of the configuration, which relativistically is ex-
pressed in terms of the occupancies q of the relativistic
subshells nlj Here 1 is. to be associated with the major
component. A subshell is closed if q =2j + 1, i.e., all pos-
sible values of m are present. The necessity of having
the radial functions depend on j is the cause of much of
the additional complication associated with relativistic
treatments.

Since the total energy is independent of M, we fix its
value at +J. We then create all determinants associated
with the chosen configuration; eigenstates of J are
developed by setting up the J matrix and diagonalizing
it. Since the one- and two-particle matrix elements need-
ed to do this are straightforward results of angular
momentum theory, they will not be given here. Often
there may be more than one eigenvector; these may be
distinguished by requiring that a subshell or group of
subshells be eigenstates of j operators which operate
only in the subspace of their spinors, and this process
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and wish to find the eigenvalues

g a, j, (j, +1),
i=1

where the o:, are constants chosen to ensure the eigenval-
ues are distinct (ai ——2. 5 X 10, az ——50, a3 ——1 often work
well for M=3) and i= 1 always corresponds to the full

group. The benefits of creating parents, which we have
done nonrelativistically as well, ' include simplified
analyses of the final results, simplified oft'-diagonal matrix
element structure, and the possibility of discarding cer-
tain eigenvectors, if desired. It may perhaps appear that
we have returned to the coupled representation (e.g., Ref.
32)—but this imposes a particular coupling, whereas our
process allows the user to determine any coupling, in-
cluding none (uncoupled representation), at the time that
the calculation is done.

As an illustration, let us consider the real problem of
Zn 3d 4s4p "D",&2. The designation of L and 5 is, of
course, approximate, so we ignore it for the moment. Let
us restrict ourselves to the zeroth-order configuration,
which is just used to label the state. Since the closed sub-
shells make no contribution to angular momentum ma-
trices, we need focus only on the specified open subshells.
If we take into account relativity and specify the J's of
the various subcouplings where necessary, the following
relativistic configurations contribute to the above state:

a 4 5 3(') d 3nd snSinp 3/z

4 5 2
( ii ) d 3/2d 5/2S1/2P 1/2P 3/2

(ui) (d",/zd', /zS, /z)(2)[p, /zp3/2(2)](3/2),

( d 3 /2d 5 /2S 1/2 ) ( 2 )[p, /zp 3 /2 ( 2 ) ]'( 5 /2 ),
(v) (d 3/zd s/2S1/2)(3)[P1/2P 3/2(2)](5/2»

(v') d 3/zd s/2Si/2 )(2)P 3n

) (d 3/2d 5/2S1/2 )(2)P 1/2P3/2

(viii) (d 3/zd s/zS1/z )(2)[P inP3/2(2)](3/2),

('") (dsndsnSin)(2) I pi/zp3n(2) I
(~/2)

(") (d 3/zd s nS i/z )( 1 )p 3/z

("') (d 3nd6s/2S in )(1)p inp3n

) ( d 3/zd 5/2S 1/2 ) ( 1 )[P 1/2P 3/2 (o ) ]( 1 /2 )

(xii ) (d 3/zd 5/2S, /2 )(1)[p1/zp 3/2 (2)](3/2) .

(22)

There are a number of important points connected
with the above: (1) a single nonrelativistic configuration
has exploded to 13 relativistic ones, (2) the numbers in
parentheses give the value of J imposed on the
subconfiguration (obviously, the choice of subcouplings is
not unique), (3) our interest in the zeroth order is in the

may be done simultaneously, i.e., we set up the matrix for
the operator,

M A,

Ij l

linear combination of the 13 couplings which gives the
lowest energy, (4) if the result were pure I.S, couplings
(iv), (v), (ix), and (xii) would not be present, and (5) just as
in the nonrelativistic case, not all values of J are possible
for equivalent electrons (nlj )~ G. rant gives us a list of
the allo~ed values in his Table II. One way to derive
these is to look at the normalization integral for a J
eigenvector. Judd gives us such wave functions [Eqs.
(1.20) and (3.1)] for groups of two and three electrons.
Using this, we find the general conditions

J even (23)

for two electrons, and

J]2 j J
—(2J12+1) '+2( —1) ' . . '~0 (24)

for three electrons, where J,z &2j and is even. The I I in

(24) is a Wigner 6j symbol. Using (24) we can show
J&3j, 3j —I, 3j —2, 3j —4, and 1/2. These results are
all consistent with Grant's Table II. We note that Eq.
(24) is not capable of predicting how many survivors
there are for each (j,J) pair due to linear dependencies
associated with Eq. (3.1) of Judd.

(~ j 2+p i 2+y Sz) (25)

where a;, p;, and y; are constants chosen to separate the
eigenvalues. Frequently we only want an l,S eigenval-
ue for the whole group; this can be achieved with

p, =y, =0, i & 1. The matrix elements have been
set up by using I =j—s since (X, I

S X, ~ )
=(S+X, IX ~ ) we need only know how S+ and S,
operate on X, . This can be easily deduced from Eq. (4).

C. Interactions of one electron and a closed subshell

Extending the work of Grant to the oA'-diagonal case,
we introduce the core-valence energy g&v,

gcv —— y„(i (1)a (2)
I g12(1 —

&12 )
I

i'( l )a (2) ),
a &core

where the sum is over spinors a belonging to closed sub-
shells only (Zj, +1 of them for each subshell), and where
for the electrostatic operator we obtain

Formation of approximate E,Sz eigenstates

It would be useful to generate approximate E,S
eigenstates solely from angular momentum theory. This
would provide estimates for the weights of the relativistic
configurations as input for such procedures as the
multiconfiguration Dirac-Fock procedure (MCDF), and
provide a valuable way of analyzing the results. Since
purely angular momentum treatments require no
knowledge of the radial functions, we must eliminate this
dependence from the exact problem. We do so by setting
all minor components to zero, and assume the major
components are independent of j. With these conditions
(cf. Bessis et al. ) we diagonalize the matrix associated
with the operator
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Ji
gcv(c)=&„„&~, ~,X (2Jg+I) R (n;&;ng&g~n;&;n/1&g }—X

. 2
A A

t

(closed)

Jw
R (n, lr,'n „II„.n„a„..n,'lr, )

f

2

(26)

Here,
~

1, —1„~ & I & 1;+1„ in steps of 2 and 1 refers to the major component; we must also satisfy

~ j, —j„~ & I &j, +j„ in steps of 1. We can see that from an angular viewpoint, gcv(e) behaves as a one-particle opera-
tor and also that the oA-diagonal result is the logical extension of the diagonal case available from Grant. ' We ob-
tain for the magnetic core-valence contributions,

T

JI. Ja
gcv(M)=&m m, ~„,„,, g (2ja+1}g & ~

O
[Rk(ia;ai')+Rtlr(ai';ia)]

ff It JJ

(c]osed)

+I ~& I RQ(ii', aa)+I I'. . I,RQ(aa;ii')
I Q l JIja I

(27a)

+ Ij —(]/2)5

l J p (2j+3) J+1
(j+1} r~

j+1 l J p (2j —1) J
1

2
J

1 0
'2

J
(27b)

a, =a„J;+J,+p even

a;&II„j;+j,+p odd .

For the diagonal case, this reduces to Grant's result
with the overall sign corrected [as implied by his Eq.
(8.34)] if one makes use of the symmetry relation derived
here: I ~~.(a)=I I.zz(

—a') for a'=ll (j+j'+p is then
even} and the radial symmetry GQ*'( A, B)
=6@+'(B,A), where GQ+'( A, B)=RQ(AA; BB}and

Gg '(A, B) =RQ(BB;AA).
One of the few independent checks of relativistic re-

sults involves examining the results in the nonrelativistic
limit. Formally, we can do this by setting the minor com-
ponents equal to zero and taking the major components
to be independent of j (see the work of Huang et a/. ' for
possible computational problems in taking nonrelativistic
limits).

Let us make such a comparison for the average ener-

gy, which can be obtained from gcv by taking i '=i and
multiplying Eqs. (26) and (27) by 2j;+1, yielding Eqs.
(8.33) and (8.34) of Grant [aftel tile slgll correction Is
made to (8.34)]. We have tabulated the average electro-
static energy per closed shell pair in Table III.

Let us consider the nonrelativistic limit for a pair of
equivalent p electrons. For a closed subshell„—,'(2) of the
electrons are in pl/3 and —', (4) in p3/2. Thus we wish to

—,', [—,'(2X 1)g,„(p,/2, pl/, )+-,'(4X 3)g,„(p3/2 p3/2)
+(4X2)g,„(p)/, ,p3/, )], and let p, /, ~p3/, ~p where
there are 15 pairs of electrons in all. %e obtain

—,', (1+6+8)F,(p,p)+ —,', ( ——,', —
—,'„)F'(p,p)

which agrees with Slater's nonrelativistic result. In the
last equation the relation G "(a,a) =F"(a,a) was used.

D. Future theoretical developments

The relativistic formalism has been automated in a
code called RELCOR. This sets up all the angular momen-
tum eigenstates and produces relativistic energy matrix
element "structure tables. " %e are now combining this
with routines which will do the required radial integra-
tions, and these routines will then be used to perform rel-
ativistic configuration-interaction (RCI) calculations.
Development of the algebra and programming of the re-
tardation operator is also underway.

Although the Zn states can be considered simple, we
have seen that there are a considerable number of
configurations associated with just the zeroth-order func-
tion. Based on our experience with Mn, it is probable
that zeroth-order functions of more than 100
configurations will become routine. Problems of this size
were clearly not originally anticipated. The "correlat-
ing configurations" wi11 involve an even larger X-electron
basis, and it seems clear that something like the relativis-
tic equivalent of REDUCE will have to be included from
the beginning.
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TABLE III. Average electrostatic energy for a pair of spinors, g,„.
Equivalent electrons'

P 3/2

d3/,

d, /2

F, (s,s)
Fc (p 1 rz&p 1/2 ~

Fc(P3/z~P3/z ~
—

15 Fc (P3/z P3/2 ~
0 2

Fc (d3/z, d )/2 ) ——F, (d3/z, d3/~ )

Fc (d5/z~d5/2 ~ 175 Fc (d5/z~d5/2 ~ 105 Fc (d5/2~d5/2 ~

'See Eq. (11).

ss

SP1/2

SP 3/2

sd 3/2

Sd 5/2
I

P 1 /2P 1/2

P l /2P3/2

pl/zd

p 1 /2d5/2
I

P3/zP 3/z

p 3/2d 3/2

3/zd 5/2

Nonequivalent electrons

F, (s,s') ——,
' 6, (ss')

F (Sp 1 /Z ~
—

6 Gc (»p 1/Z ~

F,'(sp3/2 ~
——,'G,'(s p3/z ~

Fc (»3rz ~
——Gc (sd ~/2 ~

F0{s,d5/2 ) ——,'0 6, (sd»z )

Fc (p 1 rz ~p 1/2 ~
—

2 Gc p 1 /2 ~p 1/

Fc (p1/z~p3/2 ~ 10 Gc (p 1 rz&p3/2
0 1 2

Fc (p 1/2 s d 3/2 ~ 6 Gc (p 1/2 &d 3/2 ~

Fc (P 1 rz ~d 5 rz ~ 14 Gc (P1/»
Fc (p3/2 &p 3/2 ~ 4 Gc (p3/2~p 3/2 ~ zp Gc (p3/z~p3/2 ~

Fc (p3/z~d3/2 ) ~ Gc (p3/z~d3/2 ~ 140

Fc (p3/zd5/2 ~ 10 Gc (p3/2 ~d5/2 ~ 35 c (p3/z ~ds/2 j

Fc ( d 3/2 &
d 5/2 ~ 70 Gc ( d 3/2 ~ d 5/2 j 21 Gc ( d 3/2 &

d 5/2 ~

F,"(a,b) =8 "(ab;ab)'
G,"(a,b) =R ~(aa; bb)

V. APPLICATIONS OF REX.ATIVISTIC THEORY

In this work relativistic efFects are treated by perform-
ing MCDF calculations with the zeroth-order function,
which is taken to be the relativistic configurations gen-
erated from the single nonrelativistic configuration used
to label the state. For all calculations the correct (i.e.,
nonaverage) electrostatic energy was used, and the use of
the correct magnetic Breit energy was investigated, Our
automated program is capable of producing correct
(level-dependent) magnetic structure. The Breit contribu-
tion, which included the average retardation energy,
was usually evaluated after the zeroth-order wave func-
tion was obtained, using first-order perturbation theory.
However, we did explore the use of the average Breit en-
ergy during the energy matrix diagonalization, i.e., dur-
ing determination of the configurational coefficients.

In addition to modifying the MCDF program to car-
ry out the above procedure, we made three other
changes. (i) Self-consistency thresholds [TEsTE and TEs-
TY in subroutine tNMUAT] were reduced by an order of
magnitude, so that the two ways of computing the total
energy yielded results agreeing to within 10 a.u. (ii)
Due to the large numbers ( & 100) of nonaverage
Coulomb integrals, the %RE array was overAowing in
subroutine I.IRFGR. %'e stopped incrementing it once it
approached the integer size limits (all values above 2 are
lndlstlngulshable). (111) In our copy of the MCDP code
there was an error in subroutine MUATCo associated with
the test for identical non-average electrostatic F and 6 in-
tegrals. %'e removed +XFG from both IJL,ME argu-
ments. This problem was detected by comparing the to-

tal energy (without the Breit contribution) to the CI ei-
genvalue (last iteration); they should agree.

In Table IV we present our results for the fine structure
of the Zn states. All calculations were done at the
zeroth-order level with the MCDF code; only the aver-
age Breit contribution was used, and it was always added
after the wave functions were completely determined.
Several things are evident: (1) All fine-structure levels are
bound (compare to Tables I and II), (2) the retardation
contributions are tiny and even the average Breit contri-
butions are of marginal importance (also, see below), and
(3) all states are fairly pure ()90%). Here we have
defined the purity to be the overlap integral between the
perfect I.-S eigenvector (see Sec. IVB) and the MCDP

eigenvector. It is possible, of course, to analyze what I.S
couplings other than the dominant one appear. For ex-
ample, the MCDF, "6B'

9/2 solution is an admixture of
D, G(2), F(2), and G(1). The amount of each I.S

species present could also be obtained from overlap in-
tegrals. The relative lifetimes might be assumed propor-
tional to 1/[I —(purity)], as the denominator is a mea-
sure of the % admixture of open channels. On this basis„
for Zn D, J=9/2 would be thought to have the longest
lifetime and J=3/2 the shortest. However, as noted ear-
lier, lifetimes may involve many-body and relativistic
efFects, and so one should be cautious about pursuing the
argument too far. For reference, the D4 threshold was
found to be 97.89/o pure, with a 1.7% F4 admixture.
The Po involves only one relativistic configuration in
zeroth order, and so it is 100% pure.

Included in Table IV is the fine structure for Zn
4p PJ. %"e predict the position of the J=2 level, which
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TABLE IV. Fine structure {via MCDF) and LS purity of Zn states.

LS
6Do

6DP

6De

6Do

6Do

4P
4p
4P
45'
3p

3p

9/2
7/2
5/2
3/2
1/2
1/2
3/2
5/2,

3/2
0

Magnetic

0.0
—0.003
—0.008
—0.014
—0.020

0.0
—0.0002
—0.0006

0.0

Fine structure (eV)
Retardation

0.0
—0.0007
—0.0019
—0.0030
—0.0046

0.0
—0.00001
—0.00003

0.0

Total

0.0
0.103
0.165
0.240
0.300
0.0
0.0127
0.0326
0.0
0.0
0.0
0.0237
0.0271'
0 0639'

I.S purity (%)

99.993
91.84
90.83
89.92
97.86
99.9904
99.9989
99.9949
99.976
99.910

appears to be unknown. As can be scen, the position of
the J=1 level is in reasonable agreement with experi-
rnent. ~ To the extent that fine structure can be ascribed
to a single-particle operator (i.e., the low-Z Pauli approx-
irnation is not useless; see Blume and %'atson for a for-
mal analysis within the low-Z Pauli approximation and
Condon and Shortley for exceptions where two-particle
eff'ects play a major role), improvements will be mainly
associated with single excitations of the zeroth-order
function. If these behave as they do nonrelativistically, a
good first-order correlation function involving single and
pair excitations from core subshells will be required. Pro-
duction of such results for systems of this size present a
signi6cant computational challenge.

For Zn D9&2 the effec of using the correct magnetic
Breit structure was explored; the result was that the total
energy was 0.0015 eV more negative. This may seem in-
consistent with the results of Cheng et a/. for
1s'2s'2p con6gurations, but is quite reasonable if it is
realized that both involve just R~ from the open sub-
shells and that for Zn, such integrals with 3d, 4s, and 4p
arguments are individually about 10 a.u. in magnitude.
Explicit calculation demonstrates that this is also the case
for Zn P. Since the integrsls were found to be individ-
ually so small, nonsversge effects were ignored for sll
other levels.

Because of the closeness of the 3d 4s4p D and F at
the RHF level (the F is 0.217 eV higher) we had some
concern that differential magnetic Breit effects could have
a signi6csnt effect in determining MCDF zeroth-order
wave functions snd energies. To account approximately
for this we decided to allow average magnetic Hreit
effects to appear in the CI matrix. Nonaverage effects
were excluded because of their absolute smallness, and we

did not feel that any correction would be large enough to
warrant inclusion of the Breit terms directly in the
MCDF equations. Corrections to the diagonal matrix
element due to the addition of the Breit correction
ranged from —4.2% to + 15% (i.e., this is the effect on
diagonal energy differences between adjacent
configurations). However, the largest corrections oc-
curred for small oF-diagonal matrix elements (which have
no average Breit contribution, and so remain unchanged).
The net result on the total energy is an increase of
2.5)&10 eV; for D9&2 the effect was a rise of 5.4X10
eV. Although in this case the effect was negligible, it
probably should continue to be analyzed in future calcu-
lations whenever there are "nearby" con6gurations or
eigenstates.

Finally, while the reduction of the number of relativis-
tic con6gurstions in the zeroth order by, e.g., restricting
the subcouplings to those accessible nonrelativistically
prior to the MCDF calculation may seem attractive, it
msy not allow for full departure from I.S coupling even
at the zeroth-order level. Instead, our approach is to
"re-dimension'* the algorithms to handle all possible cou-
plings.
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