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%e study dNusion of hard-core particles in linear chains ~here disorder arises from two dis-

tinct sources, (1) random bias Selds and (il) random transition rates. In the case of random bias
fields, the step probability to the left and right is randomly chosen to be {1+E)/2 and (1-E)/2
with equal probability. Using Monte Carlo simulations and scaling arguments we Snd that the
mean-square displacement is given by &xt(t)l-fA(c)(int)I~, and the probability density P(x, t)
scales as P(x, t)-&x2(t)& 'tzG(x/&x2{t)&'n). Here c is the concentration of particles; for c~ 0,
&x2(t)) reduces to the Sinai result for nomuteracting particles. We Snd that the scaling function

G(u) has the form G(u) -exp( —u'), with a ~1.5, a value distinctly different from the value for
noninteracting particles (a~i.25) and from the value for zero-bias Seld (a 2). In contrast, in

the case of random transition rates with a power-law distribution, we Snd that the asymptotic be-
havior of &x~(t)l as well as P(x, t) is changed by the hard~re interaction.

In recent years, the problem of diffusion in random
media has received much interest (see, e.g., Refs. 1-3).
In oneMimensional systems, due to the presence of disor-
der, difiusion in general is anomalously slow and depends
on the type of disorder. If, for example, random bias
fields are applied on each site where the bias is taken to be
+E or -E with equal probability, then diffusion is loga-
rithmically slow4 and the mean-square displacement is

proportional to (lnt)4. Similar behavior was found for
diffusion in random structures such as random combs and
percolation systems at criticality under the infiuence of a
constant bias field. If random transition rates with a
power-law distribution instead of random fields are con-
sidered, then (x (t)& is characterized by a power law in

time.
Essentially, all these studies are for systems where the

diffusing particles are noninteracting. This assumption is
not justified if one considers real particles with "excluded
volume, "especially for one dimension. Here, particles not
only cannot occupy the same site in the chain, but they
cannot even pass by each other. For this reason, Fick's
law is changed from (x (t)&-t to (x (t)&-t' z on intro-
ducing simple hard~re interactions. '~'3 It is known
that this change in the diffusion properties of tagged parti-
cles can lead to strong effects in related problems, e.g.,
when considering trapping of diffusing particles by ran-
dom sinks '"'

In this communication we study the infiuence of hard-
core interaction on the diffusion of particles in linear
chains, in the presence of random bias fields. This bias is
taken to be +E or —E on each site with same probability.
Using Monte Carlo simulations and scaling arguments we
find that, asymptotically, the form of the distribution
function P(x,t) is changed by the hard~re interaction,
but the asymptotic behavior of &x2& remains unchanged
(except for a concentrationMependent amplitude). In
contrast, if instead of random bias fields random transi-
tion rates with power-law distribution are taken, then also

the asymptotic power-law behavior of (x (t)& is changed
by the hard-core interaction.

First, we consider the case of random bias fields.
Hard~re particles of concentration c are distributed
along the chain. A particle at site i has the probability
py (I+Et)/2 to step to the right (if the site to the right
is empty) and the probability p- (I -Et)/2 to step to
the left (if the left site is empty). Here, E; can accept the
values +E or -E with equal probability. If a neighbor
site is occupied by another particle, the particle cannot
move to that site. To simulate the diffusive process of
tagged particles, particles are selected at random and
moved to a nearest-neighbor site according to the above
probabilities. If this site is already occupied, the move is
rejected. After each trial, the time t is incremented by
1/N, where N is the number of hard-core particles in the
chain. We have recorded the displacement of each parti-
cle as a function of t, and by averaging over all particles
we obtain (x'& and P(x, t).

The simulations have been carried out for E 0.8 and
several values of concentration c. We have studied chains
of 20000 sites with periodic boundary conditions, aver-
aged over up to 50 configurations, and considered up to
80000 time steps. Figure 1(a) shows the mean-square
displacement of a tagged particle on the chain for several
values of c. For large t, (x (t)&' " is proportional to lnt,
showing that the asymptotic time dependence is the same
as for noninteracting particles, i.e.,

(x (t)&-lA(c)lnt)s .

The hard~re interaction does not change the power of
lnt, but rather changes the prefactor A(c). Figure 1(b)
shows the dependence of A(c) on concentration c. For
small concentrations (c (0.2) A(c) is nearly constant,
while A (c) drops sharply for large c.

Next consider the distribution function P(x, t), the
probability to find the particle at time t at distance x from
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FIG. 2. Plot of the scaling function G(u) from Eq. (2) vs

u x/R for difFerent values of c, x, and t; c 0.2, t 20000
(x) c 02 t 40000 (0) c 0.5, t 5000 (&) c 0.5,
t 10000 (0); c 0.5, t 20000 (0);c 0.7, t 20000 (&).
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FIG. 1. (a) Plot of (x1& vs lnt for the concentrations c 0.1

(0), 0.2 (o), 0.5 (&), 0.7 (0), and 0.8 (a). (b) Plot of A (c) vs
c. A(c) are the values of the slopes in Fig. 1(a). t is in units of
1 N.

To explain our result for the mean-square displacement
we make use of the fact that the random field problem can
be mappeds onto a diffusion problem with random transi-
tion rates IV, which are chosen from the distribution

P(IP')- 1

W(inIP') '

its starting point at x 0. A simple scaling form for
P(x,t) 18

P(x, t) -P(O, t)G (2)

where G(tt) 1 at tt 0. The probability of return to the
origin P(O, t) is proportional to (xz(t)& '+ asymptotical-
ly. This scaling form has been found useful to describe
the case of noninteracting particles, where asymptotically
G(u) -exp(- tt') with a 1.25. 's For zero-bias field, on
the other hand, P(x, t ) is Gaussian in x (Refs. 10 and 11)
and u 2. To test the scahng ansatz and to determine the
asymptotic behavior of the scaling function we have plot-
ted in Fi . 2, -In[P(x, t)/P(O, t)] as a function of
x/(x (t)&

' 2, on a double logarithmic scale. The data col-
lapse, obtained for several concentrations and x and t
values, supports Eq. (2) and the slope determines the ex-
ponent a. For intermediate tt values the slope is close to
the value of noninteracting particles, a 1.25, while for
larger u values the slope is a 1.5. We have also per-
formed calculations of In[P(x, t)/P(O, t)l as a function of
u x/(x2(t)&'~s for zero-bias fields and several concentra-
tions and found an excellent data collapse. The slope of—lnG (u ) approached u 2 already at small values of u.

In order to find the asymptotic behavior of (x (t)& we fol-
low scaling arguments similar to that used by Harder,
Havtin, and Bunde'7 in the context of diffusion on fractals
with a singular waiting-time distribution. Due to the
hard-core interaction, the mean-squared range

(x 2(t)& of a tagged particle scales with the numb:r of
steps N as

(4)

The effect of the distribution (3) is to provide additional
random delays. After N steps, the elapsed time t is

t-Nt,
where t is the average time the particle spends in one site.
Thc average t1mc ls

R I ~ 1

t -—g -, dS' P(8') .
g-1 8

Here IY is the minimum transition rate encountered by
the particle when travelin~ the distance R. From (3) we
obtain ' 8';,-exp(-R I ). From (3) and (5) we find
that asymptotically t -exp(R '~2) and hence t 1Vt
-R exp(R' ). This yields asymptotically R-(lnt), in
agreement with our numerical finding.
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Next we consider the effect of hard-core interaction on
the diffusion of a tagged particle when the transition rates
follow a power-law distribution,

P(W)—,y& 1 . (7)

For noninteracting particles, R —r for y ~ 0 and
R2-t2(' ")i( " for y&0. ' For deriving R for interact-
ing particles we follow the procedure outlined above, Eqs.
(4)-(6). For the power-law distribution, W;„

and hence, from (6), j R" (i &) for y&0
and r const for @~0. Using (4) and (5) we obtain
R -t, wh er e2/d

(4-3y)/(l-y), y&0;
~w 4 (0 (8)

To test the prediction of Eq. (8), we carried out exten-
sive Monte Carlo simulations for two concentrations of
hard-core particles, c 0.1 and c 0.2, for threedifferent
values of y, y 0, y, and 3 . For obtaining Rs, we have
studied chains of 10000 sites with periodic boundary con-
ditions. We averaged up to 40 configurations for each
case. Equation (8) predicts 2/d 2, ~s, and 3, respec-
tively, for the choices y 0, 2, and ~&, independent of the
value of c. From the slopes of data such as those shown in

Fig. 3, we find 2/d 0.49~0.02(y 0), 0.39+0.03
(y 2 ), and 0.31+0.03(y 3 ), in substantial agree-
ment with the prediction.

In summary, then, we have discussed the influence of
hard-core interactions on the diffusion of tagged particles
in linear chains with random fields and random transition
rates. We have found that in the case of a power-law dis-
tribution of transition rates the asymptotic time behavior
of the mean-square displacement changed as a result of
the hard-core interaction, while it did not change for the
case of random fields (which is equivalent to a logarithmic
distribution of transition rates). In this case, only loga-
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FIG. 3. Log-log plot of 82 against t for several values of the
parameter y. Note that the slopes depend on y but not on the
concentrations c of hard-core particles, c 0.1 (0) and c 0.2
(e).
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rithmic corrections to the logarithmic time dependence of
&x~(t)) occur as a result of the hard-core interaction
which do not affect the leading asymptotic behavior. The
reason for this difference is that the time delays due to the
hard-core interaction are negligible compared with the
time delays due to the random fields, while for random
transition rates both types of delays are of the same order
of magnitude as long as y is not too close to 1. For y 1,
the time delays due to the interactions are also negligible.
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