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Calculation of liquid-crystal Frank constants by computer simulation
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%e present the Srst calculations, by computer simulation, of the Frank elastic constants of a
liquid crystal composed of freely rotating and translating molecules. Extensive calculations are
performed for hard prolate ellipsoids at a single density, and for hard spherocylinders at three

densities. For elhpsoids, the resulting Frank constants are of the same order of magnitude as

those found experimentally, and in the expected ratios. For spherocybnders, elastic constants in-

crease rapidly with density. Existing density functional theories are only moderately successful in

predicting elastic constants.

In recent years, significant progress has been made in

the computer simulation of liquid crystals. Monte Carlo
simulations have shown that molecules modeled by
sufftciently oblate or prolate hard ellipsoids of revolution
will form a nematic liquid crystal in addition to a normal
fiuid. ' 3 Systems of oriented spherocylinders exhibit
nematic, smectic, and columnar phases, ~ while sphero-
cylinders with rotational freedom form isotropic, nematic,
and smectic fluids. 5 Recently, molecules interacting
through the continu'ous Gay-Berne-Pechukas ("modified
Gaussian overlap" )-type of potential have been shown to
form a nematic phase. s

Clearly, it is currently feasible to simulate equilibrium
liquidwrystalline phases for simple model systems. This
gives us the opportunity to compute physical properties of
liquid crystals that play a central role in theories of the
liquid-crystalline state. For example, we recently reported
the observation of the divergence of the collective rotation
time in the isotropic phase of a system of prolate hard el-
lipsoids, on approach to the isotropic-nematic transition.
In the present paper, we turn our attention to the nematic
phase itself, and report the first measurements by comput-
er simulation of the Frank elastic constants. We examine
these quantities for a system of hard ellipsoids at a state
point in the nematic region. We also study the nematic
phase of a hard spherocylinder system at three different
densities: In this case two of the elastic constants are ex-
pected to diverge at the nematic-smectic transition.

The 6rst system we have studied consists of 144 hard el-
lipsoids of revolution, each with a symmetry axis of length
2a, perpendicular axes of length 2b, and axial ratio
ajb 3. The second system consists of 576 hard sphero-
cylinders of diameter D, distance I.between the centers of
the spherical caps, and I./D 5. Both systems were en-
closed in cuboidal simulation boxes with periodic bound-

ary conditions applied. In both cases we used a collision-
by-collision molecular&ynamics simulation method which
has been described in earlier work. ' The molecules are
treated as rigid hard bodies of unit mass, with zero mo-
ment of inertia about the symmetry axis and perpendicu-
lar moments of inertia chosen to be consistent with uni-

form mass distribution through the body. Dynamically,
they behave as hnear rotors, with the angular velocity al-
ways perpendicular to the symmetry axis. Free fiight,
with constant linear and angular velocities, occurs be-
tween impulsive collisions. The collision dynamics are
completely determined by conservation of linear and an-
gular momentum and energy, and by the conditions of
hardness and smoothness (i.e., the collisional impulse acts
along the normal to the surfaces in contact). The pro-
gram was written to vectorize easily on a CYBER-205
supercomputer. It generated typically 10s collisions per
hour of central-processing-unit time for the ellipsoid sys-
tem, and about 3x10» collisions per hour for the larger
spherocylinder system at the densities studied. Further
technical details will be given in a future publication. For
the purposes of calculating the static properties investigat-
ed here, Monte Carlo simulation would also have been an
appropriate method of generating configurations. We
note that we have demonstrated directly, by observing
molecular diffusio, that all the state points studied here
are fiuids.

In the following, we measure the degree of nematic or-
dering by the quantity S -2Ay where Xp is the middle
eigenvalue of the ordering matrix g, defined by9'

Q,tt —~ r e;~~p- t b,it, a,P x,y, z .

Here, e; is a umt vector along the axis of molecule i and
b,it is the Kronecker delta. N is the number of molecules.
In a well-defined nematic phase we have S=S' A, +, the
highest eigenvalue of Q; the choice between S and S' is
discussed elsewhere. '

The Frank elastic constants are defined'0" in terms of
the variation of the free-energy density with distortions of
the director field n (r)

P(r) - —,
' fK&(V.n)2+Kz(n Vxn)'+K3[nx(Vxn)]'J .

Kt corresponds to splay deformations, K2 to twist, and K3
to bend. Explicit ensemble-averaged fiuctuation expres-
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sions are available for these quantities. '2 These are sim-

ply expressed in terms of components of the wave-vector-
dependent ordering matrix Q(k):

g,p(k) —g ( T e(~(p ——,
' b,s) exp(ik r), Lad

2

where r~ is the position of molecule i and V is the volume.
The director n (0,0, 1) is taken to define the 3-direction
in a Cartesian system for a region of the acmatic Suid; in
a simulation, n is the eigenvcctor corresponding to the ei-
genvalue X+ of the ordering matrix of Eq. (1). Taking the
wave vector k (k1,0,k3) to lie in the 1-3 plane we have'2

S'zVkg T
E (kl', k))= . . ' -K,k)+K,k), (4)

&g»(k) g»(-k))

E»(ki, k))-=. . -K,k1'+K,k) . (5)
S' VkaT

g»kg» -k&
In principle, at low k, the simulation-accessible E13 and
E23 should be Hnear functions of kf and k). In practice,
at the values of k accessible in a simulation, higherwrder
terms may be nonnegligible; nonetheless, a double-
polynomial fit to the functions E13 and E23 followed by
extraction of the coefilcients of kl and k) at the origin, is
a satisfactory route to the elastic constants. In a nematic
liquid crystal, all the elastic constants adopt finite values.
In a smectic, K2 and K3 should be infinite, ' although it
should be borne in mind that Hqs. (4) and (5) only apply
in the limit of infinite system size.

Now we turn to the simulations. The ellipsoid system
was studied at a single density in the nematic region,

p 0.75p~ where pz E2/Sub z is the close-packed densi-
ty. This state point was prepared in the following way. A
well~uilibrated isotropic Suid system was uniformly
compressed during the course of a molecular&ynamics
simulation, to a density p 0.75p,s, well within the nemat-
ic region. The pressure of the system rapidly equilibrated
at the appropriate value for this density on the nematic
branch of the equation of state, as determined by Monte
Carlo simulation. 3 This took roughly 1400r„where t, is
the mean time between collisions. The acmatic order pa-
rameter responded more slowly, taking roughly 4000t, to
attain a stable value of S=0.7, characteristic of the or-
dered phase. Following equilibration, a production run of
length 75000t, (over 5 & 10s collisions) was undertaken.
During this period, order-parameter fluctuations of order
+20% occurred and the director remained almost con-
stant in space, aHgned with one of the simulation box
axes. Configurations were written to tape for later
analysis.

To determine the Frank constants, we used the pro-
cedure described earHer, based on Eqs. (4) and (5). We
examined all wave vectors k having components equal to
0, 1, or 2 times the minimum values commensurate with
the box sides in each direction. The values at the oriN'n,

E13(0,0) and E23(0,0) were specified as zero rather than
being obtained from the simulation [for a finite-size sys-
tem the simulation values from Eqs. (4) and (5) would be
finite, and expected to vanish as V oo). For all other
values of k1 and k3, E~3 and E23 were calculated from run
averages, and the statistical precision of each data point

k)

0:-
0 6

k)

FIG. 1. Calculation of Frank elastic constants. %e sho~ sec-
tions through the surfaces E~3(ki,k)) and E23(kf, k f ). In each
case we plot the data (points) and polynomial surface fits (lines)
as functions of kf for fixed k3 equal to 0, 1, 2 times the
minimum k3 possible in the simulation box.

estimated from the distribution of subrun averages. The
points were correspondingly weighted in a least-squares-
fitting routine which used a product of second-order poly-
nomials in the variables k12 and k). The data, and sec-
tions through the fitted surface, are shown in Fig. 1. The
low-k gradients are well defined, and the corresponding
elastic constants are given in Table I. We report reduced
elastic constants Kt K;a/kgT where a3 8ab2, T is the
temperature, and kg is Boltzmann's constant. The es-
timated precision of the final results is obtained by carry-
ing out the above fitting procedure for each subrun in-

dependently, and assuming a normal distribution of the
calculated elastic constants. For comparison, we give in
Table I typical values of K; (with a estimated from the
known approximate molecular dimensions), as measured
experimentally for the nematogens N-(p-methoxy-
benzylidine)-n-butylaniline (MBBA) and para-azoxy-
anisole (PAA), which have similar axial ratios to the ellip-
soids studied here. '0'3 A detailed comparison would be
pointless, in view of the highly idealized model employed
here, but we note that our results are of the correct order
of magnitude and in about the expected ratios, with
K3(bend) & K1(splay) )K2(twist). It would be interest-
ing to compare these results with theoretical predictions.
Unfortunately, there have been few calculations of this
kind for ellipsoids. A density functional approach has
been reported' for the hard-body modification of the
Gaussian overlap potential, which may be a close, but not
exact, representation of hard elhpsoid overlap. '5 Values
read from Fig. 7 of Ref. 14 for the appropriate elongation
and converted into reduced units have been included in

MD
PAA
MBBA
OFT

0.57 (0.03)
1.00
1.10
0.65

0.53 (0.04)
0.63
0.68
0.33

1.94 (0.09)
2.50
1.60
1.23

TABLE I. Elastic constants for ellipsoids. Given are
Eg Ea/AT from molecular dynamics (estimated precision in
parentheses), typical values from experiments on PAA and
MBBA (with a estimated from molecular dimensions), and the
results of density functional thcery (DFT) on a related model
(taken from Ref. 14).
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Table I, and they are quite close to our simulation results.
However, in these calculations a rather lower order pa-
rameter (S 0.5) and density (corresponding to
p =0.61p»v), compared with our simulations, have been
assumed, so these values are probably underestimates:
The leading term is ex ted to be proportional to S2, and
a comparison of K» /S values is much less encouraging.

The spherocylinder system was studied at several densi-
ties in the nematic region. An initial configuration of 576
aligned spherocylinders, at a density p 0.45p»v, produced
by Monte Carlo simulation, was allowed to equilibrate
with the orientational constraint removed, and it formed a
phase with order parameter S=0.33. (Similarly equili-
brated systems at lower densities all formed an isotropic
fiuid). Following this, a further molecular-dynamics
equilibration run of length 2100t, was carried out. This
was followed by a production run of 5000t, . A higher
density configuration, p 0.5psu, S=0.73, was generated
by uniform compression, followed by equilibration and
production runs of similar length to the above, and the
same procedure repeated to obtain data at p 0.569pcc»,
S=0.91. Further compression resulted in spontaneous
ordering to form a stable smectic phase at p =0.6p~. As
in the ellipsoid case, the order parameters and director
orientations remained nearly constant.

The calculation of Frank constants proceeded in the
same way as that for ellipsoids. For the spherocylinder
systems, the deficiencies of much shorter runs are partly
offset by the greater range of small k vectors accessible in
the larger simulation box. We used the lowest 15 accessi-
ble k~ values. Along the 3&irection, however, the choice
was very limited by incipient smectic ordering at the
higher densities. A peak develops in the structure factor
at k3 3 times the minimum commensurate with the box,
and we considered only k3 values less than this in the
fitting routine. This, in turn, affccts the precision with
which we can determine K3, and the confidence we may
place in the results for this quantity. The fitting process
was identical to that employed for ellipsoids, except that a
linear functional form was adopted in the k) variable.
The results in reduced units K» K»D/kt»T are summa-
rized in Table II. Values of K; /S2 are plotted as func-

0.450
0.500
0.569

0.05 (0.009)
0.37 (0.11)
2.O6 (O.26)

0.04 (o.oog)
0.26 (0.03)
l.oo (o.o9)

0.07 (0.01)
0.49 (0.05)
0.67 (0.14)

tions of S and compared with theoretical predictions' '
in Fig. 2. (No agreement between theory and simulation
can be obtained by comparing states of the same density. )
It can be seen that all the elastic constants increase
dramatically with increasing density (and S), and, if any-
thing, the growth in K1 is more pronounced than that in

K2 and K3. There is at best moderate agreement between
theory and simulation for K1 and K2. For K3, the situa-
tion is worse: We do not see the expected rise, much more
rapid than St, that is predicted as S increases. We recall,
however, that our K3 values are the most suspect, due to
the limitations mentioned earlier. We should also men-
tion that the very low values of all the elastic constants at
p/p, & 0.45 are consistent with this state point being very
close to the isotropic-nematic transition: Indeed, much
longer simulation runs might reveal the nematic phase to
be only metastable at this density.

The nematic-smectic transition occurs quite close to the
highestdensity studied here. If the nematic-smectic tran-
sition is a continuous one, as seems likely given the high
degree of nematic ordering at this density, K2 and K3
should diverge while K1 remains well behaved. We can-
not see this in our results. Quite possibly the "critical'"
divergence of K2 and K3 is inhibited in a simulation box of
this size as the relevant correlation lengths become large
approaching the phase transition. It is not surprising,
though, that we see a general increase in orientational ri-
gidity of the system. The most dramatic effect we observe
is in K~, and this may be due to the increased importance
of coupling between splay deformations and density fiuc-
tuations in this tightly packed system. '

TABLE II. Elastic constants for spherocylinders.
E» EC»D/ksT from molecular dynamics (estimated precision in
parentheses) at three densities.

P/P»e

I

0.5
1

1.0
I

0.5
I

1.0 0.5
1

1.0

FIG. 2. Frank elastic constants for spherocylinders. We plot K» lS, E2 /S, and E3 /S as functions of S and compare with
theoretical predictions in the same reduced units based on data from the following: Ref. 16, L/D 5 (solid line); Ref. 16, L/D
(long dashes); Ref. 17, L/D ~ (short dashes).



MICHAEL P. ALLEN AND DAAN FRENKEL

In conclusion, we have calculated by computer simula-

tion, for the first time, the Frank elastic constants of
nematic liquidwrystal phases with rotational and transla-
tional degrees of freedom. The results are encouraging, in

that the simple hard ellipsoid and spherocylinder models
give elastic constants of the correct order of magnitude
and in the expected ratios. There are some caveats howev-

er. The tendency of the director to align with the simula-
tion box axes suggests that periodic boundary conditions
play some role in the formation of the ordered phase.
Further simulations, using different system sizes and
boundary conditions, are in progress to test this. For
spherocylinders, in view of the run lengths employed, our
results must be regarded as prehminary. We observe that
the elastic constants increase with density. However, we
cannot claim to see critical divergence near the nematic-
smectic transition: This could only be observed for system
sizes large compared with the smectic correlation length.
This does not prevent us from comparing our results with
theories which also neglect such pretransitional behavior.
It seems that thus far density functional theories are only
moderately succeLsful at predicting elastic constants. In

view of the prediction that hard repulsive interactions and
attractive forces both contribute significantly to the values
of elastic constants, ' detailed comparslon with experi-
ment is premature. Nonetheless, there is every possibility
of extending computer simulations to more realistic in-
teraction models. It is clear that calculation of elastic
constants with an accuracy comparable to experimental
measurements (5-10%) requires rather long runs (of or-
der 104t,) and large system sizes (of order 103 mole-
cules), but that this is within the capacity of current
supercomputers.
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