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Phase conjugation via multiple gratings in photorefractive crystals
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%e consider phase conjugation via degenerate four-wave mixing in pkotorefractive crystals
when more than one grating mechanism is operative. A method for exact solution of the steady-
state wave equations which include pump depletion is presented. It is discovered that equal-
strength multigrating operation does not aHow signal amph6cation.

Phase conjugation is now a mature subject of enough
importance to flnd its way to textbooks, ' special mono-
graphs, review papers, 3 and Physics Today. Its impor-
tance is certain to grow even further in view of its poten-
tial or realized applicabihty in various branches of non-
linear optics. ' The basic principles of phase conjugation
are well understood, and the differences between theoreti-
cal predictions and experimental results are ever decreas-
ing. On the theoretical side, after an initial flurry of pa-
pers on the fundamentals and simple linearized theo-
ries, 2 5 people have settled now on evaluation of the more
subtle effects and a more complete theory, such as the one
which includes pump depletion, s absorption, and
different wave-mixing mechanisms.

The problem with a more complete treatment is that it
makes the theory strongly nonlinear, and consequently
difftcult to handle analytically. Completely analytical
treatments do not seem to be feasible, and use of some
numerics is unavoidable. In our method (denoted exact
rather than analytic) an effort is made to reduce numerics
to a minimum, and to relate different quantities analyti-
cally. Thus we present an exact analysis of phase conju-
gation via steady-state degenerate four-wave mixing
(4WM) in photorefractive crystals when more than one
volume grating is operative.

Our goal is rather limited. We will not be concerned
with the physics of the conjugation process in any way,
but with the solution of a system of coupled wave equa-
tions, s widely accepted to correctly represent this process
in photorefractive dynamic media. At the end we will
compare our results for multiple gratings with the known
results when one grating is predominant.

The starting point is the following set of equations in
the slowly varying amplitude approximation for the pump
beams A 1 and A2, the signal A4, and its conjugate As, all
plane waves. '
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where the prime denotes differentiation in the propagation
z direction, and the asterisk denotes complex conjugation.
I represents the total intensity, I PIAJ I, while y's

represent different complex coupling constants, in princi-
ple, of the form y in exp(i8), where n's are material pa-
rameters (real numbers), and 8's give the spatial phase
shift between the refractive-index gratings and the light
interference pattern. Subscripts T,R,P,S stand for
different grating mechanisms, i.e., different ways in which
light beams can combine to build intensity interference
patterns at allowed k vectors.

The assumed interaction geometry is the standard
4WM arrangement, in which two counterpropagating
laser pumps illuminate the photorefractive crystal situated
between the planes z 0 and z d. From the side of the
pump 1, and tilted for a small angle comes the signal A4,
and out of the medium, in the same direction, goes the
phase conjugate A3. The transmission grating is written
by the interference fringes of the signal 4 with the pump
1, and by the phase conjugate 3 and the pump 2, which
are also k matched. The corresponding wave-mixing term
in the wave equations is AT A tA4 +Az A3. Analogous-
ly for the reflection grating, which is written by the beams
4 and 2, and 3 and 1, the wave-mixing term is
AR A tA 3 +A 2 A 4. The P and S terms stand for the
counterpropagating two-wave contributions, the flrst one
A tAz coming from the pumps, and the second one A3A4
coming from the signal and its conjugate.

When written in the form of intensities and the relative
phase, Eqs. (1) become
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where AJ ~I~exp(i&J) and p tt4+p3-4z-4t. In Eqs.
(2) it is assumed that all gratings are shifted by the same
amount 8 with respect to the light interference pattern. In
a moment we will restrict our attention to the most in-
teresting case of photorefractive crystals, in which 8 tr/2.
Further, we will only consider the case of exact phase con-
jugation p 0 (or p tr, depending on the experimental
setup). In this case Eq. (2e) is trivially satisfled, and
drops out of the picture. We are left with the four equa-
tions for the energy transfer,

IEI 21t(12np+Itntt —E4nr )+2JItIzI3Iq(nn —nt ),
(3a)

ferential equations of their own:
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which, of course are not independent of Eqs. (4), but can
be used to further simplify the problem. In fact, ft is also
a simple function of vt, ft/fthm (v2/v~) ~z", and there-
fore, so is ut [(vt+Et, )2+f~q(v2/v2d) ~"]'~ . Half of
the variables are then represented in terms of v2. There
remain two equations to be solved: for uz and vq, or for uz
and fz. These variables can also be represented in terms
of v2, and the most convenient choice is u2 v2coshw and

f2 vzsinhw. The equations to be solved become
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with split boundary conditions: It and 14 are given on the
z 0 face, and lz and 13 0 on the z d face of the crys-
tal. These equations reduce to the familiar case of the
transmission geometry when ntt 0, and to the
reflection geometry when nr 0, and when, as usual,
the two-wave terms are neglected. Our aim here is to in-

vestigate exactly the opposite case when the transmitive
and the reflective gratings contribute about equally, and
when the two-wave terms cannot be neglected. Conse-
quently we will set ntt nr nWO and ns np mWO;
this simplifled problem is still amenable to analytical
treatment. The general case ntt &nr &0, ns &np&0 will be
treated numerically in a subsequent publication.

In the next step a set of new variables is introduced:
ut It+It vt 12 It u2 If+13 v2 14 13. When
Eqs. (3) are written in terms of these new variables, it is
seen that vt and v2 are simply related: vt vt+h, where

vtg —v~ is a constant evaluated at z d. The
remaining three equations have the form

where now all variables are scaled with respect to
v2d 14d, i.e., v v2/v~, u ut/v~, and f ft/v2d. The
total intensity is thus i u+vcoshw. Unfortunately,
these two equations cannot be separated. As long as m WO

this set cannot be solved analytically. Numerical solution
has to be performed, and the results are given and ana-
lyzed below. When m 0 the integration is easy, and
proceeds as follows.

First, note that Eq. (6a) can be integrated formally for
arbitrary value of m:

Inv+„,",b,(, cohs(wx)-2 (nz-d),
1 x+6 +a x

where b b'av~, a ftd/v~, and b-m/n. Function w(v)
is to be evaluated from the other equation, or from a com-
bination of the both. In fact, for m 0 the two equations
can be divided, yielding

) al v+6+(a —c)(u+a)
c v+6+ (a+c)(u+a) (7b)

up to an integration constant. Here c (a +b )' . In
general the quadrature in Eq. (7a) cannot be expressed in
terms of simple functions. However, its numerical evalua-
tion is quite simple, and its tabulation or graphical repre-
sentation is easy.

With hindsight (cf. Fig. 1), we also note that w is nearly
a linear function in z over a wide range of experimentally
accessible parameters:

where ft ut —vt 41t12 and fzz u j—v2 41314 are
some auxiliary functions. These functions obey dif-

2na
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The cumbersome quadrature is then avoided, as Eq. (7b)
immediately defines v(z). This completes the solution
procedure.

The choice of variables in Eqs. (6) is made so as to con-
vert the original split-boundary value problem into an
easier initial value problem. The initial values are given
on the z d face, vd 1, wd 0, and the integration is per-
formed backwards to z 0. The boundary value nature of
the problem, however, is still retained in the explicit
dependence of the parameters a and b on the missing
boundary values:
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where C2 l~ is given, and l1q and I~ are to be evalu-
ated. The evaluation can be performed in more than one

way, and we opted here for a simple shooting procedure
that is easy to implement numerically. In the method the
missing boundary values are estimated at z d, and the
equations are integrated backwards to z 0, where the
solution should equal the prescribed boundary values.
The condition for equality gives a set of nonlinear equa-
tions for the estimated values, which is solved by Newton's
method. A new set of improved estimates is thus ob-
tained, and the procedure is iterated.

In Figs. 1-5 we present some of our results, illustrating
the solution method and depicting some of the interesting
features which characterize the multigrating 4WM opera-
tion in photorefractive crystals. In Fig. 1 a typical form of
the functions v and w for a set of n, rn values is shown, and
in Fig. 2 the corresponding intensities are plotted. Each
such graph defines a value of the intensity reflectivity on
the z 0 face of the crystal, and many such values are col-
lected and plotted in Figs. 3 and 4 as functions of the

pump intensity ratio r I~/I1o.
One striking feature is immediately apparent in Figs. 3

FIG. 2. Intensities of the four beams corresponding to the
functions v and ~ from Fig. 1, and for the same values of n and
m. It is seen that the probe I4, and its phase conjugate I3 are lit-
tle sensitive to the variations in m, in contrast to the pumps.

nR=-10.0

I l

nT =-1QQ

/'

and 4—saturation of the reflectivity at p 1.0 for strong n
coupling. This feature is characteristic of the equal
strength multigrating operation, and is easy to under-
stand. For a high value of n (or rather nd), the depletion
of the probe is efllcient, and its value at z d is small.
Then the equations and boundary conditions for I3 and 14
are equivalent, making them practically indistinguishable
and forcing the reflectivity to unity. In turn I& and 12 be-

~ ~ o ~ ~ ~ ~~ ~ 0 ~ n =-10.0

6-
V(z)
H(z)

-2 -~R= -3.16

n=- 3.16

nR =-1.0

y nT =-1.0

0--
0 0. 2 0.3

-4

FIG. 1. Functions v(z) and w(z) for n —~10=—3.16,
and for a set of values for m. Solid lines are for m 0, dashed
lines for m —103= —4.64, and dotted lines for m~4. 64.
All numbers are given in units of cm '. The dashed line for ~

lies very close to the solid line for v and therefore is not plotted.

FIG. 3. Intensity rcficctlvlty p Iyl/I~ as a function of thc
pump ratio r I~/I~s for m 0. The solid curves represent the
multigrating operation, the dashed represent the pure transmis-
sion grating, and the dotted the pure reaction grating. All the
values for n, ny, and n~ are given in cm
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FIG. 5. Re8ectivity surface as a function of the pump ratio r
and the probe ratio q lest(l&s+Irs). The probe ratio docs not
aFect saturation of the refiectivity appreciably. Here n 10
cm ' and m 2cm

FIG. 4. Display of the effect of m on the reNectivity, for
diNerent values of n. The sohd lines are for m 0, the dashed
for m -4.64, and the dotted for m 4.64. The saturation of
the re8ectivity at p 1 is clearly visible. In both this Sture and

Fig. 3 the probe intensity is kept Sxed at I4o 0.6I&o.

come strongly m dependent (and n independent), being
simply constant if m 0. In general, 13 and I4 are less
sensitive to the variations in m, and It and I2 are less sen-
sitive to the variations in n Conseq.uently, functions o and
w are only a little sensitive to the variations in m, and a
good first guess are the expressions for m 0.

In Fig. 5 the effect of the probe ratio q Isej(Its+ I~)
on the refiectivity is depicted. It is seen that this effect is
not very pronounced, consisting in a slight upshift in the
middle of the refiectivity curve, and a slight downshift in

the wings.
In summary, we presented a method for the exact solu-

tion of the equal strength multigrating 4WM operation in
photorefractive crystals. Such an operation is advanta-
geous for small couplings (nd up to 1) and equal pumps,
but it should be avoided for strong couplings (nd~10),
since it does not allow signal amplification. In order to
achieve refiectivities larger than 1 it is better to operate in

the single grating unequal pumps regime. Our solution
also allows the treatment of the opposite strength
ntt -nr operation, but this situation should also be
avoided, since it makes the equation for lz homogeneous.
Because of the boundary conditions the phase conjugate
signal is then absent.
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