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We demonstrate a new form of interferometry which is independent of Maxwell’s equations and
measures optical frequency differences rather than wavelength ratios. Stable laser and electro-
optic FM sideband techniques make a direct measurement of the mode spacing of a high finesse
cavity with subhertz precision (0.4 Hz rms) over a 50-THz region. Experiments indicate errors
below 10 ~!° over a 50-THz bandwidth and that improvements of several orders of magnitude are
possible. New variables for interferometry simplify the use of multilayer dielectric mirrors and

are directly measurable in situ.

Precision interferometry plays an important role in op-
tical fundamental constant experiments. All current mea-
surements of the Rydberg in hydrogen,'~* for example,
use an interferometer to measure atomic transition fre-
quencies relative to an I»-stabilized He-Ne laser frequen-
cy standard. Current interferometric techniques®~’ derive
their precision from the close agreement of the experimen-
tal apparatus with the predictions of Maxwell’s equations
[see Eq. (3) belowl. Systematic errors arise from imper-
fect knowledge of cavity parameters required by the
theory, for example, the radius of curvature or reflection
phase shift of the mirrors. Such systematic effects limit
the accuracy of present techniques to ~3x10 ~!!. Ulti-
mately optical heterodyne and frequency synthesis tech-
niques® may replace interferometry, but at present they
are so difficult that they have been used only for the cali-
bration of a few laser frequency standards.

In this Rapid Communication we demonstrate a new
form of interferometry which is independent of Maxwell’s
equations and consequently free of the systematic errors
mentioned above. It utilizes recently developed stable
laser, heterodyne, and FM sideband techniques®~'* to
directly measure the frequency-dependent mode spacing
of an interferometer with subhertz precision. In practice,
its accuracy is limited only by the precision with which a
fringe center can be found and it appears capable of
several orders of magnitude better accuracy than current
techniques. Unlike previous interferometers, it measures
absolute optical frequency differences rather than wave-
length ratios and can be calibrated relative to the primary
time standard. This can lead, for example, to direct mea-
surements of the Rydberg constant, independent of any
optical frequency standard.

Our technique is made possible by the development of
tunable lasers with linewidths O(1 Hz) by Hall and colla-
borators.>!' A direct measurement of the effective
optical-mode spacing of an interferometer can be achieved
by locking two such lasers to adjacent longitudinal orders
and measuring their heterodyne beat on a frequency
counter. By tuning the lasers across the frequency range
of interest and recording the beat note as a function of op-
tical frequency f, the frequency-dependent optical-mode
spacing o(f) can be directly determined. Differences of
many THz, for example between the Nth mode at f(N)
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and the Mth at f(M), can then be calculated by summing
the measured spacings of all the modes between N and M,
as given by the trivial identity
M—1
fM)—f(N) -KZNG(K) , a)
where o(K)=f(K+1)—f(K). Despite its simplicity,
Eq. (1) has not played a key role in previous precision
work because the available resolution (~1 MHz) did not
permit direct measurements of o with useful accuracy.
Our use of Eq. (1) is basically different from previous
work because our subhertz resolution permits precise,
theory-independent measurements of the effective optical
mode spacing. We can, therefore, treat the interferometer
as a “black box” resonator whose mode spacings are re-
peatable and slowly varying but which need not agree with
any theory. Equation (1), which is an identity, can then
be used to compute the relative mode frequencies over a
broad range without systematic error. By directly
measuring o(f) we empirically calibrate the cavity
without the need to understand its internal structure.
Tunable lasers with linewidths <1 Hz have been
developed by Hall and collaborators using FM sideband
techniques first applied to optics by Drever and Hall® and
independently by Bjorklund.'® Hall and co-workers have
previously measured the beats of stable lasers locked to
adjacent orders of the same cavity,!! primarily to study
stabilization techniques. This technique, while optimum
for some applications, is difficult to realize since it re-
quires locking and tuning two independent lasers with
~1-Hz precision over a broad range. We have developed
an alternative method, dual frequency modulation
(DFM),!? which resonates electro-optic FM sidebands,
rather than separate lasers, with adjacent orders of the in-
terferometer (see Fig. 1). Its primary advantage is that it
cancels laser jitter and locking errors from the mode spac-
ing measurement so that subhertz precision in o can be
achieved with a single laser of ~ 100 Hz stability. Modu-
lation techniques have previously been applied to inter-
ferometry by Bay, Luther, and White in a measurement
of the speed of light.!> The DFM method differs from the
above work of Hall, Bjorklund, and Bay in that it senses
the intermodulation products of two sequential electro-
optic phase modulators.!?> Cutler has developed a
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FIG. 1. Dual-frequency-modulation apparatus for electroni-
cally measuring the optical-mode spacing o(f) (see Ref. 12).
FM sidebands at f3 lock the tunable dye laser to the Nth order
of the cavity while the f; sidebands at 4096 MHz simultaneous-
ly resonate with the N+13 and N — 13 orders of the 315-MHz
cavity. The mode spacing is measured by adjusting the f syn-
thesizer so that the “o error signal” vanishes; then o(f) = f1/13.
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different double-frequency modulation technique for the
same purpose.'* A variant of DFM, in which one side-
band is generated by quantum noise rather than by a
modulator, has also been used to observe squeezed states
of light in fibers. !°

To explore the accuracy of this technique we have mea-
sured the effective optical mode spacing o(f) of a pre-
cision interferometer at 149 frequencies over a 48 THz re-
gion around 473 THz (633 nm) (see Fig. 2). The cavity'¢
used ultra-low-loss spherical mirrors of 50-cm radius
spaced 47 cm apart in a high vacuum and had a linewidth
full width at half maximum (FWHM) of 13.9 kHz and a
finesse of 22700. For each measurement the dye-laser
frequency was set with a commercial wavemeter and the
/1 synthesizer in Fig. 1 was adjusted so that the “o error
signal” vanished, indicating that f)=130(f). The data
were taken in three overlapping runs with different dyes;
48 points with DCM, 82 points with Rhodamine-B, and
19 points with Rhodamine-6G. The data fit a parabola
(solid line) o(f) =oo—k(f—f.)?, where the best fit
values are oo=o(f.) =315, 101, 749.75 +0.2 Hz,
k=4.9+0.4x10"% Hz/(THz)? and the coating center
frequency f. =476.7 £ 0.6 THz. The rms deviation of the
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FIG. 2. A plot of 149 measurements of the optical-mode spacing o(f) over 48 THz around the mirror center frequency f.. Note
that o(f) has zero slope at f. and varies quadratically by less than 40 Hz from its central value of 315, 101, 749.8 Hz. (Triangles
stand for DCM dye, dots stand for Rh B, and diamonds stand for Rh 6G.) The rms deviation of the data from the parabola is ~0.4
Hz, indicating that the apparatus of Fig. 1 measures o(f) with subhertz precision.
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149 points from the parabola is 0.4 Hz per point. The
quality of the fit indicates first that the DFM apparatus
has achieved subhertz precision in o over a 50-THz inter-
val and second that these mirrors lead to a mode spacing
that is so slowly varying that the frequency of any mode in
this range may be interpolated with negligible error.

Substituting this quadratic fit into Eq. (1) and approxi-
mating the sum by an integral, we find

fM)—f(N)=0o(M —N)— 5 kod(M—N)*, (2)

where we have assumed for simplicity that f(N)~f..
Equation (2) calibrates the relative frequencies of all cavi-
ty modes over a 50 THz region with an accuracy limited
only by the errors placed on o and k by the data of Fig. 2.
The *0.2 Hz error in oy contributes a maximum error of
only 16 kHz for a & 25 THz frequency difference. Simi-
larly, the + 8% error on k creates a 55 kHz uncertainty at
+ 25 THz, but this drops as the third power of the fre-
quency difference. These errors are less than the current
72 kHz uncertainty in the I, stabilized He-Ne optical fre-
quency standard.?

The accuracy of Eq. (2) is limited almost entirely by
the precision with which the center of a cavity resonance
can be found. Since we have not used Maxwell’s equa-
tions and have made no assumptions about the internal
structure of the cavity, the usual systematic errors due to
mirror phase shift and diffraction do not arise. Simple
methods exist for improving the resolution, and conse-
quently the accuracy, of our technique by several orders of
magnitude. First, since resolution is proportional to cavity
linewidth, it can be improved by factors of 10~100 simply
by using longer cavities. Second, the heterodyne beat fre-
quency can also be increased by factors of 10-100. 1 Hz
locking accuracy at a 100 GHz beat frequency corre-
sponds to 5% 10 ~!3 accuracy over a 50 THz region. Ap-
plying both approaches simultaneously yields improve-
ments of 102-104, so that interferometry might ultimately
be limited only by the accuracy of the cesium beam stan-
dard itself. Another advantage of our technique is that it
calibrates the interferometer without perturbing it. In the
previous method of virtual mirrors,>® the cavity must be
disassembled and realigned at two different mirror separa-
tions to cancel mirror phase shift. Thus, its accuracy is
limited by the repeatability of a complex alignment pro-
cedure.

Optical frequency differences measured using Eq. (1)
are incoherent; all information about the relative phase is
lost. In the sense they differ from direct synthesis® and
heterodyne methods.

We now discuss interferometer theory to show how the
parabolic variation of the mode spacing observed in Fig. 2
arises from the phase shift of multilayer dielectric mirrors.
This theory does not influence the accuracy of the above
measurements, but has other applications. For example,
absolute optical frequency measurements using the DFM
technique become possible if the mirror phase shift and
diffraction correction are known. The method of virtual
mirrors>¢ can benefit from better understanding of mirror
phase shift. Also, in applications where less than the ulti-
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mate accuracy is required, understanding interferometer
behavior can greatly simplify the apparatus. Lichten’ has
recently reviewed interferometry with multilayer dielec-
tric mirrors. Mirror phase shift has been calculated by
numerically modeling the transmission spectrum and
compared to experiments on short cavities. He has also
derived an expression for the mode spacing in terms of
these experimental and theoretical phase shifts and shown
that its variation is small.

Our own approach to the theory is to define new vari-
ables and expand them in a power series in frequency.
Applying Maxwell’s equations to an interferometer yields
the well-known relation®

f(N)-i[N—m—QJ , (3)

n n

where L is the mechanical distance between the mirror’s
surfaces, N is the longitudinal order, ¢p is the diffraction
phase shift, and ¢(f) is the mirror phase shift. All previ-
ous forms of interferometry depend for their accuracy on
the apparatus obeying Eq. (3). This is limited in part by
the use of the variables L and ¢(f), which are defined rel-
ative to the mirrors mechanical surfaces. We, therefore,
transform Eq. (3) to eliminate the distinction between
where the spacer L ends and the mirror surface begins and
express f(N) only in terms of directly and accurately
measurable optical quantities. We multiply both numera-
tor and denominator of Eq. (3) by 1+ (c/22L)3¢/8f and
derive a new interferometer relation

90

/4

, 4)

SN =s(f) [N—ﬁ‘i”fl _

where ¢/2L is replaced by an effective optical mode spac-
ing

c
SO = L e/meelar )

and ¢(f) replaced by
#o(f) =9(f) — 90 (6)

of -

Equation (5) has been given previously'” but Eqgs. (4) and
(6) are new. Equation (5) represents the spacing between
adjacent cavity modes as influenced by mirror phase shift.
A detailed analysis of the DFM signal shows that to
0(10 ~'2) and in the absence of other perturbations s(f)
in Eq. (5) is equal to the empirical o(f) measured by the
heterodyne technique. For the remainder of this paper we
will not distinguish between s and o. Equation (4) per-
mits a precise in situ measurement of the transformed
phase shift ¢y defined by Eq. (6). By resonanting the cavi-
ty with an optical frequency standard so that f(N) is
known, ¢o is measured once o, N, and ¢p are deter-
mined.'® Such a technique cannot be used with conven-
tional variables using Eq. (3) because L cannot be mea-
sured directly. Physically ¢ is the phase shift at an
effective plane of reflection defined by o(f) and may be
an inherently more precise quantity than ¢.

We now show that s and ¢¢ are independent of frequen-
cy to first order near the coating center frequency f. by
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expanding ¢(f) in a power series about f. and retaining
terms up to third order. We define the ith derivative of
o(f) at f. to be a;. Expressing s(f) and ¢o(f) in terms of
the a; gives

- £ , )]
s 2L+ (c/m)ay+ 5 (f — £.)%a;]
2 (f_fc) }

¢0(f)-(a0—fcal)_%:ifc(f_fc)z[1+ 3 7.

(®

where a;=0 since ¢(f) is odd about f.. Thus, s and ¢o
are quadratic functions of frequency near f. with zero
slope at f.. The large dispersion of multilayer dielectric
mirrors (a; term) changes the effective optical length of
the cavity, and is absorbed into s, but does not lead to a
frequency-dependent mode spacing. Only the third
derivative a3 leads to a frequency dependence. For
definiteness we assume that the multilayer consists of a
large number of quarter wave elements of index ny and n;
and that the first and last layers are of ny. In this case ag
and g, have been calculated analytically!® and have the
values ap=n and a; =n/[f.(ng —n;)]. Substituting into
Eq. (6) we find

——1——} . ©)

¢o(fe) 75[1 ng—ny

The above theory agrees with our experimental results
and shows how they may be extrapolated to longer and
more accurate cavities. Using Eq. (7) one can show that
the quadratic parameter k =o¢a;/r. We have numerical-
ly evaluated a3 for nominal values of ny and n; and find
k=3.7x10~2 Hz/(THz)? only 25% below experiment.
This relation also shows how the parabola scales with cav-
ity length: k~1/L2 Thus, the mode spacing of a 10 m
cavity varies by only 75 mHz over a 25 THz range.
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Such a cavity would have a linewidth FWHM ~500 Hz
and could compare frequencies with errors close to 10 ~'2,
given the present DFM apparatus.

Another application of the theory is to show how pre-
cision in the 10 ~° range may easily be reached without
stable lasers or the DFM method. This is similar to previ-
ous work of Lichten’ except that we use new variables and
a single calibration constant, rather than numerical mod-
eling. The variation of o(f) may be ignored at the 10 ~°
level and 6(f) ~o0¢. oo may then be determined using an
ordinary laser frequency standard at frequency f; and Eq.
(4). The unknowns ¢¢ and ¢p form a new calibration con-
stant C= —o¢o(po+¢p)/n and the desired oy is given by
oo=(f; —C)/M. The cavity resonance frequencies f(IV)
then obey the simple relation f(V) =Ng¢+C.

We have observed no aging of C (or of k and f.) while
the mirrors were continuously held in a vacuum for 420
days. An I,-stabilized He-Ne laser!® was used to measure
S(N) and o was measured by DFM. On 2 January 1986,
C=226.3%+0.5 MHz while on 27 February 1987,
C=2259+0.2 MHz This implies an aging rate
<2x10~'%/day.

In conclusion, we have shown how heterodyne measure-
ments of cavity modes with stable lasers can yield a new
form of interferometry which is independent of the sys-
tematic errors which limit the current virtual mirror tech-
nique. Interferometers can be empirically calibrated as
“black box™ resonators with an accuracy limited only by
how precisely lasers can be locked to their resonances.
The method is scalable to the 10 ~!? precision needed by
the next generation of optical fundamental. constant ex-
periments.
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