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Direct evidence for the suppression of period doubling in the bouncing-ball model
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Direct experimental evidence for the suppression of period doubling by near-resonant perturba-
tions is presented. The phenomenon is analyzed with use of the dissipative standard map approxi-
mation. Experimental results are compared with their numerically simulated counterparts.

Due to its mechanical, laboratory-scale construction,
the bouncing-ball model makes one of the simplest phys-
ical objects in which some of the spectacular phenomena
which appear in the nonlinear dynamical systems on
their period-doubling route to chaos can be directly ob-
served.!® The period-doubling cascade itself,* the vir-
tual Hopf phenomenon,’~’ and the noise-sensitive hys-
teresis loops®~!! are a few examples.

Recently, the model has been exploited!* to provide
experimental evidence for another, somewhat counterin-
tuitive phenomenon described by Bryant and Wiesen-
feld.'* As argued by the latter authors, a periodic per-
turbation of a near-resonant frequency v, ~v,/2 (where
vy is the frequency of the mode in question below its
period-doubling point) should always suppress the onset
of period doubling. Applying a digital data acquisition
system, Wiesenfeld and Tufillaro'? analyzed the behavior
of the bouncing ball in presence of the near-resonant
perturbation (added to the signal driving the collision
surface) and provided a quantitative evidence for the 2
power law describing the dependence of the bifurcation
shift on the amplitude of the perturbation (see Fig. 8 in
Ref. 12). Though extensive, the Wiesenfeld-Tufillaro re-
port seems to lack a clear illustration of the suppression
phenomenon itself. It is the aim of this paper to present
a series of storage oscilloscope recordings which would
fill in the gap providing at the same time an evidence for
another prediction of the Bryant-Weisenfeld theory:
“...decreasing detuning enhances the suppression of
period doubling.” Since our report is supplementary to
the extensive Ref. 12 we omit all technical details con-
cerning the construction of the apparatus; basically it
was the same as that described in our earlier papers.’
The only essential detail change in some of the presented
experiments was the ball itself. Aiming at increasing the
dissipation, we replaced the ball with a light but stiff
plastic rod fixed elastically at one end and left free to
bounce with its other end on the surface of a lens at-
tached to the loudspeaker’s membrane. In all reported
experiments we observed the first period-doubling point
AV located on the bifurcation tree of the M‘" mode of
the bouncing ball (rod). While in this mode, the ball
moves in a 1:1 resonance with the collision surface.

The nonlinearity parameter, amplitude 4 of the sur-
face vibration, was always swept down through the A"
bifurcation point. This choice results from our recent
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study,'® where we demonstrated that bifurcation dia-
grams recorded at the up sweeps of the nonlinearity pa-
rameter display extreme sensitivity to noise which leads
to a considerable scatter of their shape. The sweep-
down versions of the bifurcation diagram do not display
this instability.

(b)

FIG. 1. Suppression of period doubling by near-resonant
perturbations as observed within the bifurcation diagram of the
M mode of the bouncing-ball model (high dissipation case).
Phases 8, of collisions between the ball (rod) and the vibrating
surface were plotted vs the amplitude of the ac signal driving
the loudspeaker’s membrane. The amplitude of the perturba-
tion was the same for recordings (a), (b), and (c). Diagram (d)
was recorded in the absence of the perturbation. The frequen-
¢y v, /vy was equal to 0.470, 0.482, and 0.495. The nonlineari-
ty parameter, i.e., the amplitude of the surface vibration 4,
was swept down. v,=76 Hz.
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Fig. 1 presents a qualitative portrait of the suppression
phenomenon. To make the shift of the bifurcation point
well visible, we added to the three diagrams (a)-(c),
recorded in the presence of near-resonant perturbations,
the fourth one (d), obtained in absence of such a pertur-
bation. Note that the bifurcation shift is largest within
the diagram (c) obtained for the smallest detuning.

Aiming to obtain quantitative results concerning the
dependence of the bifurcation shift on the detuning, we
performed a series of experiments in which the frequen-
cy of the perturbation was changed in a regular manner
(see Fig. 2). Looking at some of the recorded diagrams
one may have some doubts whether the shifted bifurca-
tion should be located at the point where the period-
doubled branches start to protrude from the trunk of the
M mode, or at the point where they are seen really to
separate. A close look at diagram (b), where v, /v, was
fixed close to the £ commensurability point, removes the

FIG. 2. Experimental (left) and numerical (right) bifurcation
diagrams of the M'"" mode of the bouncing-ball model record-
ed in the presence of near-resonant perturbations (high dissipa-
tion case). In the experimental bifurcation diagrams the ampli-
tude of the perturbation was the same in all experimental runs.
The frequency v, /v, was equal to 0.583, 0.568, 0.557, 0.543,
0.530, 0.517, and 0.508 for runs marked as (a)-(g), respectively.
The nonlinearity parameter was swept down. v,=77 Hz. In
the numerical bifurcation diagrams the simulation was based
on the dissipative standard map approximation, Egs. (1), to
which a periodic perturbation of frequency v, and amplitude €
was added. €=0.015 for all of the simulation runs while the
frequency v, /v, was equal to 0.584, 0.571 (g%), 0.559, 0.546,
0.533 (=8/15), 0.521, and 0.508 for runs marked as (a)-(g), re-
spectively. k=0.15.

o~ 10

123

£ ]

5 60

z 5% 1

£ %7 .

£ v

- ]

= 307 "

“» E

5 -

B .

= 10 4

>

: 1 n

a 0 v T T = v = T T
0,00 0,02 0,04 0,06 0,08 0,10

detuning

FIG. 3. Shift A A4 of the period-doubling bifurcation induced
by periodic perturbation vs the detuning. Experimental data
plotted in the figure were obtained from analysis of recordings
shown in Fig. 2.

doubts. Obviously, the period-doubling
breaking takes place at the former localization.

The shifts of the bifurcation point recorded in Fig. 2
were measured and plotted versus the detuning. Figure
3 presents the dependence. Clearly, the above-
mentioned prediction of the Bryant-Wiesenfeld theory
has been confirmed.

Recordings presented in Figs. 1 and 2 were obtained
in experiments on the strongly dissipative bouncing rod
version of the model. What happens when one changes
the plastic rod for a highly elastic steel ball is shown in
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FIG. 4. Experimental (left) and numerical (right) bifurcation
diagrams of the M'"" mode of the bouncing-ball model record-
ed in presence of near-resonant perturbations (low dissipation
case). In the experimental bifurcation diagrams the amplitude
of the periodic perturbation was the same for all of the record-
ed diagrams. The nonlinearity parameter was swept down. In
the numerical bifurcation diagram simulation procedure was
the same as for Fig. 2. €=0.013. The frequency v, /v, was
equal to 0.540, 0.488, 0.436, 0.384, 0.332, and 0.280 for runs
marked (a)-(f), respectively. k =0.85.
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FIG. 5. Suppression of period doubling in the M‘" mode of
the bouncing-ball model as seen in the experiments in which, at
a fixed value of the nonlinearity parameter A4*, the amplitude
of the periodic perturbation was swept linearly up (high dissi-
pation case). The frequency v, /v, was equal to 0.504, 0.491,
0.478, 0.465, 0.452, 0.439, 0.427, 0.418, and 0.405 for record-
ings (a)-(i), respectively. vy=77 Hz. Note that in recordings
(e)-(h) the increasing perturbation amplitude first suppresses
the period doubling and squeezes the systems motion to a nar-
row region and then forces it to expand suddenly. In recording
(i) the perturbation frequency was fixed close to the 2 commen-

surability point.

Fig. 4. Weak damping makes the virtual Hopf
phenomenon to appear, i.e., the response of the system
to the periodic perturbation displays resonances located
both below and above the period doubling point A"
As long as the resonant peaks are located far from 4",
the bifurcation point remains practically intact. If, how-
ever, the peaks start to overlap at v,/vy— 1, the dia-
gram becomes significantly distorted and the bifurcation
point shifts up.

Apart from the experimental diagrams Figs. 2 and 4
present their numerically simulated counterparts. The
simulations were based on the dissipative standard map
approximation of the ball’s dynamics,

v,=kv;_,+Asin®, , (1a)
é,—+1=éi+vi (modzn) > (lb)

where O, denotes phases of the ball-surface collisions.

As seen from the figures, the approximation works
very well. An extensive numerical study we performed
indicates that in the vicinity of the period-doubling bi-
furcation point

AMV=2[(1+k)P+(1—k)*M%)2 )

the phase of every second collision, as calculated accord-
ing to map (1), behaves like a point mass located in a po-
tential well—single below the bifurcation point and dou-
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FIG. 6. Numerically simulated bifurcation diagrams of the
M"Y mode of the bouncing ball in the presence of the near-
resonant perturbation (low dissipation case). In diagrams
(a)-(g) the perturbation frequency v, /v, was equal to, respec-
tively, 0.584, 0.571, 0.559, 0.546, 0.533, 0.521, and 0.508. Per-
turbation amplitude e=1.6X 102, k =0.85.

ble above it. In this representation the near-resonant
perturbation added to map (1) is seen as an external
force oscillating at the beat frequency Av=v, —v,/2.
An effective viscosity present within the well depends on
the restitution factor k; see Eq. (1a). For k =1 the mod-
el is nearly conservative and its motion, in presence of a
slowly oscillating external force, may become very com-
plex. In this case one observes strong departures from
the simple scenario of the suppression phenomenon de-
scribed in Ref. 12 (See Figs. 5 and 6). However, no
matter what k, there is always such a neighborhood of
the bifurcation point (A{",A{"’+8), in which the frequen-
cies of the local extrema of the effective potential well
are so low that (at constant viscosity) the system be-
comes overdamped and the Bryant-Wiesenfeld descrip-
tion recovers its validity.!* Obviously, for small & the
barrier between the local minima of the double well is
very low and the suppression phenomenon occurs at
small amplitudes of the periodic perturbation.
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FIG. 1. Suppression of period doubling by near-resonant
perturbations as observed within the bifurcation diagram of the
M mode of the bouncing-ball model (high dissipation case).
Phases ©, of collisions between the ball (rod) and the vibrating
surface were plotted vs the amplitude of the ac signal driving
the loudspeaker’s membrane. The amplitude of the perturba-
tion was the same for recordings (a), (b), and (c). Diagram (d)
was recorded in the absence of the perturbation. The frequen-
cy v, /vy was equal to 0.470, 0.482, and 0.495. The nonlineari-
ty parameter, i.e., the amplitude of the surface vibration A,
was swept down. v,=76 Hz.
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FIG. 2. Experimental (left) and numerical (right) bifurcation
diagrams of the M'"’ mode of the bouncing-ball model record-
ed in the presence of near-resonant perturbations (high dissipa-
tion case). In the experimental bifurcation diagrams the ampli-
tude of the perturbation was the same in all experimental runs.
The frequency v, /v, was equal to 0.583, 0.568, 0.557, 0.543,
0.530, 0.517, and 0.508 for runs marked as (a)-(g), respectively.
The nonlinearity parameter was swept down. vy=77 Hz. In
the numerical bifurcation diagrams the simulation was based
on the dissipative standard map approximation, Egs. (1), to
which a periodic perturbation of frequency v, and amplitude €
was added. €=0.015 for all of the simulation runs while the
frequency v, /v, was equal to 0.584, 0.571 (g%), 0.559, 0.546,
0.533 (=8/15), 0.521, and 0.508 for runs marked as (a)-(g), re-
spectively. k=0.15.



FIG. 4. Experimental (left) and numerical (right) bifurcation
diagrams of the M'"" mode of the bouncing-ball model record-
ed in presence of near-resonant perturbations (low dissipation
case). In the experimental bifurcation diagrams the amplitude
of the periodic perturbation was the same for all of the record-
ed diagrams. The nonlinearity parameter was swept down. In
the numerical bifurcation diagram simulation procedure was
the same as for Fig. 2. €=0.013. The frequency v, /v, was
equal to 0.540, 0.488, 0.436, 0.384, 0.332, and 0.280 for runs
marked (a)-(f), respectively. k =0.85.



FIG. 5. Suppression of period doubling in the M'" mode of
the bouncing-ball model as seen in the experiments in which, at
a fixed value of the nonlinearity parameter A *, the amplitude
of the periodic perturbation was swept linearly up (high dissi-
pation case). The frequency v, /v, was equal to 0.504, 0.491,
0.478, 0.465, 0.452, 0.439, 0.427, 0.418, and 0.405 for record-
ings (a)-(i), respectively. v;=77 Hz. Note that in recordings
(e)—(h) the increasing perturbation amplitude first suppresses
the period doubling and squeezes the systems motion to a nar-
row region and then forces it to expand suddenly. In recording
(i) the perturbation frequency was fixed close to the % commen-

surability point.
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FIG. 6. Numerically simulated bifurcation diagrams of the
M mode of the bouncing ball in the presence of the near-
resonant perturbation (low dissipation case). In diagrams
(a)-(g) the perturbation frequency v, /v, was equal to, respec-
tively, 0.584, 0.571, 0.559, 0.546, 0.533, 0.521, and 0.508. Per-
turbation amplitude e=1.6x10"% k =0.85.



