
PHYSICAL REVIE% A VOLUME 37, NUMBER 5 MARCH 1, 1988

Crossover from fractal lattice to Euclidean lattice for the residual entropy
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How thermodynamic properties of fractal objects cross over to the corresponding thermodynamic
properties of nonfractal "Euclidean"' objects is an open question of considerable recent interest. %e
study how the ground-state entropy o of the Ising antiferromagnet on a family of two-dimensional
fractals "crosses over" to the ground-state entropy of a triangular lattice. The fractal family studied
is a generalization of the simple Sierpinski gasket. %e find that o varies smoothly with a parameter
b (which labels each member of the fractal family) and approaches for large b the value

os,„„,——0.33324272. . . calculated by Baxter and Tsang for the hard-hexagon problem on the tri-
angular lattice and confIrmed by Baxter to be an exact value.

I. INTRODUCTION

How the laws of physics are modified when the sub-
strate is fractal instead of Euclidean is a topic of tremen-
dous current interest. Far less is known about the related
question of how physical laws on fractal substrates "cross
over" to know laws on translationally invariant Euclide-
an lattices. For example, the density of states p(to) varies

d, —1
as co ', where d, is the spectral dimension. Recently
Borjan et al, ' calculated d, exactly for a sequence of
fractal objects that generalize the Sierpinski gasket. They
found that the difFerence between the exact value d, =2
for a Euclidean lattice and the exact values for d, for the
fractal family is asymptotically a logarithimic function of
b. Here b=2, 3, . . . indexes the fractal objects in such a
fashion that b =2 is the Sierpinski gasket and b = ao is a
wedge of the triangular lattice.

The ground states of the Ising antiferromagnet have
been studied by many authors. For example, Brooks and
Domb considered the square lattice with antiferromag-
netic nearest-neighbor (NN) coupling J. They noted that
when the magnetic field 0 is decreased to a critical value
0, =4J, suddenly there is more than a single config-
uration with lowest energy. Hence there should be a
nonzero entropy at the absolute-zero temperature T, and
the Nernst theorem or the "third law" of thermodynami-
cal should fail. More recently, such nonzero ground-state
entropies have attracted attention in connection with
their relevance for models of spin glasses.

Most of the studies are concerned with the Ising model
situated on translationally invariant lattices. However, it
is becoming clear that there are many objects in nature
that can be modeled by fractal lattices. Fractal lattices
lack translation invariance but are characterized by dila-
tion invariance. Thus it should be interesting to find
ground-state properties of the Ising model situated on
fractal lattices and to study the detailed relations that ex-
ist between a given physical quantity on a fractal 1attice
and the same quantity on a regular Euclidean lattice.
One step in this direction is to study the subtle "cross-
over" from a fractal to a Euclidean lattice. To this end,
we here study ground-state degeneracy of the Ising anti-
ferromagnet situated on a family of fractal lattices. The
first member (b =2) of the family is the two-dimensional
Sierpinski gasket while the last member (b = ao ) is a "60'
wedge" of the ordinary triangular lattice. Each member
of the family can be generated by a generator G(b),
where b is an integer that runs from 2 to infinity. Each
G(b) is an equilateral triangle (Fig. 1) that contains b
identical smaller triangles of unit side length, of which
only the upward oriented are physically present. The
fractal lattice is generated in the limit n ~ ac of an itera-
tive process shown in Fig. 1. Stage 2 is obtained by en-
larging the generator ("stage 1")by a factor b in linear di-
mension, filling the upward-pointing triangles with the
stage-1 lattice and leaving the downward triangles empty.
Stage (n + 1) is created from stage n in the same fashion.
Growing a fractal this way assures its invariance under
scale transformations or "self-similarity. " The fractal di-
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b=Z

wise the ground-state energy would increase). The degen-
eracy of the ground states is accompanied by nonzero re-
sidual entropies. It is the aim of the present paper to cal-
culate and study these entropies.

In Sec. II we present our findings for the b =2 case. In
Sec. III we analyze the case of fractals with b & 3, while
in Secs. IV and V we present a summary discussion of the
results and pertinent conclusions.

II. THE b =2 CASE (SIERPINSKI GASKET)

A. The maximum critical SeM H,

Qg$

A

0 2

FIG. 1. Growth of the fractal lattice with (a) b =2 (the

Sierpinski gasket), (b) b =3, and (c) b =4. The first stage (n = 1)
is termed the generator and it is designated G(2). The complete
fractal lattice is obtained in the limit n ~ ao. For b &2, there

are two kinds of sites (0); some have four nearest neighbors and

others have six.

mension 6ff depends monotonically on b, and is seen by
inspection from Fig. 1 to be simply

df ——ln[b(b+1)/2]/lnb .

Note from (1) that df crosses over from its value for a
fractal object to its value of 2 for a triangular wedge with
the form df ——2—A /lnb, where A =ln2.

%e focus on the ground-state degeneracy in the max-
imum critical field H, of an Ising antiferromagnet. The
Harniltonian is

&=J g ss, Hgs, . —
(ij ) i

The 6rst sum is over all NN pairs of spins; s;,s; are the
conventional Ising-spin variables (s, =21} interacting
with a positive coupling constant J & 0 in a magnetic field

H. Since H, depends on the number of nearest neighbors
that a site of the lattice under study may have (see, for in-

stance, the work of Hajdkovic and Milo4evic }, the first
member of our class di8'ers from all the other members.
As can be seen in Fig. 1(a), each site of the Sierpinski gas-
ket (b =2) has four nearest neighbors (except for the
three "apex sites, "which always have two nearest neigh-

bors), whereas in the case of fractals with b & 3 some sites
have six and some have four nearest neighbors [see Fig.
1(b)]. Consequently H, =4J and 6J in the case b=2 and

b & 3, respectively.
For values of H larger than the critical value H„ the

system orders ferrornognetically at temperature T =0 At.
8„the ground-state energy of a system is highly degen-
erate in such a way that a large number of spins can be
oriented against the field, provided their nearest neigh-
bors remain parallel to the field (in the case b &3 only
spins with six nearest neighbors can be Sipped, or other-

Consider the generator of the Sierpinski gasket (Fig. 2).
There are six spins, whose orientations we denote by + 1

(spin up) and —1 (spin down). If H=oo, then the
lowest-energy configuration or "ground state" is the
configuration with all six spins oriented up [(Fig. 2(a)].
Since s;=+1 for i=1,2, . . . , 6 and there are nine nm

pairs of spins, from (2) we see that its energy is

E =(S—4)J —(5—1)H, . (3b)

From comparison of (3a) and (3b) we see that if H, =4J
then the energy of all four configurations is —15J, so that
we may that this energy level is the fourfold degenerate
ground state of the b =2 generator. This will lead to a
macroscopic ground-state degeneracy of the entire fractal
object.

8. Renormalixation from stage n to stage n + 1

The key feature of the family of fractals studied in this

paper is that it remains only to discover the rule by which
the entropy of stage n =2 arises from that of stage n =1.
Then since we have a self-similar exact fractal, we know
the general rule whereby stage n +1 arises from stage n,
and the problem is solved in general. For the sake of
specificity, we derive this transformation from n =1 to
n =2. The general case n to (n +1) is then the same.
%e begin by introducing four quantities 0; that are the
degeneracies of the n = 1 case when its apex spins are in

FIG. 2. (a) T=O ground-state configuration of a stage-n= 1

Sierpinski gasket for magnetic field H above the critical field 0, .
(b) The additional three configurations that become degenerate

in ground-state energy with the configuration of {a) when

8=0,=4J.

E=+9J—6H .

Now decrease H from ao. The lowest-energy
configuration remains the same until H reaches a critical
value H, for which the three configurations of Fig. 2(b)
have the same energy. The energy of these thI ee
configurations is
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one of the four possible configurations. Thus we define

Q, —=degeneracy for apex configuration {+++),
eight configurations of Fig. 3(a) contributes a term Qi.
Thus the total degeneracy of all possible configurations of
the n =2 stage with apex spins all oriented upward is

simply

Q2—=degeneracy for apex configuration {++—j, 0', =0,+30,02+30203+03 . (5a)

Qi:—degeneracy for apex configuration {+ ——I,
(4c)

Figure 3(b) shows the eight configurations of corner
spins contributing to the degeneracy of the stage n =2
when the apex spins are in the configuration {++—I.
From Fig. 3(b) —3(d) we see that

Qua=degeneracy for apex configuration {———
I .

(4d)

Our goal is to calculate the relations between Q, and
the corresponding quantities 0, for the stage n =2. To
accomplish this systematically, we refer to Fig. 3, which
shows the four configurations of apex spins of the stage
n =2. For each of these four configurations there are
2 = 8 configurations of the three spins that form the
corners of the downward-oriented empty triangle. Thus
Fig. 3(a) shows the eight configurations of "corner spins"
corresponding to the configuration I + + + I of apex
spins. Clearly the degeneracy 0', is the sum of the degen-
eracies of each of these eight configurations.

From the definition (4a) we see that the first
configuration contributes a degeneracy 0& since all three
corner spins are + 1. Similarly, from the definitions (4a)
and (4b) we see that the next 3 configurations of Fig. 3(a)
each contribute a term Q(Q2. From (4b) and (4c) the next
three configurations contribute 0203 awhile the last of the

0)02+2010203+20203+ 0204+ 0304+02 ~

(5b)

03——0(02+20203+ 2020304+ Q )03+03Q4+ 03,

(5c)

Q4 ——Qi2+ 3Q2Qs+ 3QiQ~+ Q4 . (5d)

Note that the sum of the coeScients in each of the rela-
tions (5) is equal to 8. The degeneracy relations (5) have
the same structure as the renormalization-group equa-
tions for the conditional partition functions derived by
Luscombe and Desai. This is a consequence of the self-
similar structure of the Sierpinski gasket.

The recursion relations (5} can be applied iteratively
since the same relations apply to transformation from
any stage n to the next stage n + 1. The dimensionless re-
sidual entropy per spin cr(b) is defined, for b =2, by

+ — + + + + + + + +
.r + + * ~ +-- ——

~A~A~
+ +

+

+ +

A, A~

—3A~A,'
+

— ~ A~~A„--

FIG. 3. Stage-n =2 finite-size fractal lattice (b=2) with the apex spins being fixed, whereas the three apex spins of the three interi-
or stage-n = 1 finite-size lattices assume all possible states; calculation of (a) 0'„, (b} Qz, (c) 0', , and (d} 04 given by Eqs. (5).
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Qi(n =1}=4, Qi(n =1)=2,
Qi(n =1)=1, Q4(n =1)=1 .

(7)

Equation (7) follows by inspection from Fig. 1. We find,
after 18 iterative applications of (5) that,

o ( 2) =0.384 309 53 (8)

regardless of which of the four quantities (Q, , Qz, Q3 Q4)
we use in evaluating o (2). If we want to refine o(2) to a
higher accuracy, we should perform further iterations of
(5). In other words, the eight numerals given in (8)
remain unchanged after the 18th iteration.

Note that the value found for o(2) lies between the
lower bound o I

——0.321 887 6 snd the upper bound
0 „=0.402 359 5 predicted by Hajdukovic and Milo4evic
for systems with coordination number z=4. For b &3,
we shall see that the residual entropies cr(b) will, up to a
certain large value of b, remain below the lower bound
cr& ——0.2970631 predicted for systems with z=6. This
should not be surprising since the fractsls with b & 3 have
an appreciable number of sites with z =4 (besides those
with z =6), which are such that spins situated on them
are constrained to stay parallel to the critical field

(H, =6J). Because they have two different coordination
numbers, fractals with b & 3 have a smaller degree of the
ground-state degeneracy in the maximum critical field.

IB. THECASEbo 3

%e have already noticed in Secs. I and II that the max-

imum critical field for fractals with b & 3 is H, =6J and

that the corresponding ground-state degeneracy stems

from allowing an arbitrary number of spins with six
nearest neighbors to be either parallel or antiparallel to
the field (while their nearest neighbors must stay parallel
to the field). In a generator G (b) there can be altogether

(9)

spins which are so positioned that each of them has six

nearest neighbors. Henceforth we shall call them the
bulk spins. It is important to observe that spins at apexes
of a finite-size fractsl lattice and their nearest neighbors,
as well as the spins on the edges of the lattice, are not the
bulk spins [Figs. 1(b) and 1(c)]. Thus the edge spins stay
parallel to the field and thereby the ground-state degen-

eracy of a finite-size structure can be represented by a sin-

gle quantity (instead of the four that were used in the case
b =2). Let Q and Q' be degrees of degeneracy at stage n

and (n +1), respectively. Our goal is to find a relation
between Q and Q'.

lnQ;
o(2)= lim

N~ce n

Here i can be any of the four integers (1,2,3,4) since the
difference between the four quantities Q], Q2, Q3, and Q4,
scaled by the number of spins N„—:(3"+'+3)/2, ap-
proaches zero when n ~ m. To test this idea, let us start
from the initial conditions for the generator (stage n = 1},

b(b+1)
2

is the number of the stage-n lattices that comprise the
stage-n +1 lattice. The relation (10) can be applied itera-
tively. Starting with the ground-state degeneracy QG of
the generator G (b), we obtain the new relation

which is sufFicient to calculate the corresponding residual
entropy o(b) per spin, providing we know QG. In fact,
leaving aside for a moment the question of QG, we csn
adapt (6}by substituting (12) for Q;. The total number of
spins of the stage-n structure S„ is somewhat more com-
plex in the case b & 3 than in the case b =2. Yet one can
readily check that for b & 3,

[3(b —1)+28](C" ' —1)
C —1

where X& is the number of spins that can be situated on
the generator G(b),

(b+1)(b+2)
2

(14)

Therefore, inserting (12), (13), and (14) into (6), we obtain,
after a straightforward calculation, the final expression
for the residual entropy,

2 t (b —1)(b —2)ln2+ [b(b+ 1)—2]lnQG j
o(b)=, - . (15)

b(b 1)(b+4)—
%'e see that due to the self-similarity of the fractals, the
residual entropy, per spin, of the infinite lattice is a sim-
ple function of the ground-state degeneracy Qz of the
corresponding generator. Hence our next step consists in
evaluating QG for various b.

For small b, up to b =7, one can calculate QG straight-
forwardly. However, for larger b the calculation becomes
laborious and one should use a computer. The calcula-
tion of QG is actually a problem of determining the num-
ber of possible configurations of 8 bulk spins that satisfy
the condition that no two of them, if they are nearest
neighbors, can be simultaneously antiparallel to the field.
A simple FoRTAN program that surveys all possible
configurations and determines QG, for small b, can be
easily written but the problem because formidable for
large b since the number of all configurations of 8 spins is
equal to 2, where 8 is given by (9). For b= 1 1 there are
2 =3&10 configurations and this is very close to the

%hen the stage-n + 1 finite-size lattice is formed out of
the stage-n lattices, the apex spins of the latter become
surrounded by the six nearest neighbors that have been
parallel to the field. Accordingly, the stage-n apex spins
can be now arbitrarily oriented and since there are pre-
cisely 8 of them [within the stage-(n + 1) structure] we
can write the following relation:

Q'=2'Q',
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upper operational limit of the present-day computers. In
order to surmount the computational difIiculties we have

applied the method indicated by Binder, in a somewhat
different form.

The outline of our computational method is briefly de-
scribed as follows. For each generator G(b) we consider

the chain of b —2 bulk spins that is parallel to one of the
sides of the triangle (Fig. 4). These spins may have
m =2 ' configurations altogether. Let yi, (k) be the
ground-state degeneracy of the generator associated with
one of the configurations, designated as k, of the chain.
The ground state degeneracy of G (b) is then

Thus knowing all configurations of the chain of bulk
spins and the corresponding quantities y&(A, ) we know
the ground-state degeneracy of the generator G(b) But.
the virtue of this knowledge appears in the next step. In
order to determine QG of G (b + 1) we consider the new

chain of b —1 spins that is parallel to the foregoing chain.
The 2 ' configurations of the new chain we shall label

by k'. Defining a projector P by setting Pzz ——1 if the
configurations I, and A, ', of the b —2 and b —1 chains, re-
spectively, are compatible (in the sense that no two neigh-
boring spins of theirs should be simultaneously antipar-
allel to the field), and Pi&

——0 otherwise, we may write

IV. RESULTS

where 06 is the ground-state degeneracy of the genera-
tors and NG is given by (14). It is evident that as b in-

creases the difFerence between the two sets of data de-
creases. This should have been expected since when
b ~ ce the generators are approaching, for obvious
reasons, the ordinary triangular lattice, whereas in the
case of the corresponding fractals, judging according to
the established limit of their fractal dimension

df ~2, b~ oo, (19)

we may say that they also converge to the two-
dimensional Euclidean lattice. Accepting the latter state-
ment, one may argue that the pertinent residual entropies
of both the fractals and the corresponding generators
should, in the limit b ~ 00, approach the residual entropy
of the Ising model situated on the ordinary triangular lat-
tice, in the maximum critical field,

In Table I we present the residual entropies of the 19
members of the class of fractals that has been studied in
this paper. For the sake of comparison, we present also
residual entropies of the corresponding generators calcu-
lated according to the formula

lnOg
&(b)(1)

o ~,„„„——0.333 242 721 976 1 (20)

Hence it follows that by comparing the configurations of
two adjacent chains of bulk spins we can learn the
ground-state degeneracies of the generators. In this way
the computational efFort needed to evaluate QG amounts

to approximately 2 x 2 comparisons, which is, for
large b, many orders af magnitude less than a straightfor-
ward survey of all possible configurations of G (b) (for ex-

ample, for b = 11 instead, to analyze about 3 & 10'
configurations one has to make 2' =10 comparisons).
In fact, by applying the method just explained, and with
some additional improvements, we have been able to ex-

tend, and confirm, our straightforward calculations of QG

(implemented for b & 9) up to b & 21.

FIG. 4. Generators G(6) and 6(7) of the b=6 and b=7
fractals. The shaded regions contain two successive chains of
sites such that each site has six nearest neighbors. Spins posi-

tioned at these sites () are termed the bulk spins.

This value was calculated by Baxter. and Tsang and
confirmed by Baxter to be an exact value. In Fig. 5 we
plot the residual entropies calculated in this paper against
the 1/b values and we see that it is very plausible to ex-
pect that the calculated entropies converge to (20) when
bazoo.

In Sec. I we raised the question of how the residual en-

3

5

6
7
8

9
10
11
12
13
14
15
16
17
18
19

21

0.099021026
0.121 300 776
0.152 243 28
0.169 177 83
0.185 134 80
0.197291 80
0.207 844 58
0.216 717 15
0.224 436 27
0.231 164 42
0.237 105 16
0.242 383 66
0.247 10905
0.251 363 81
0.255 215 90
0.258 720 17
0.261 922 03
0.264 859 20
0.267 563 31

0.069 314718
0.092 419 624
0.125 669 40
0.146 226 59
0.165 295 63
0.180 158 17
0.192 953 80
0.203 695 75
0.212 971 98
0.221 006 06
0.228 048 93
0.234 264 24
0.239 791 40
0.244 736 93
0.249 187 90
0.253 214 45
0.256 874 33
0.260 021 21
0.263 276 91

TABLE I. The dimensionless residual entropies of the frac-
tals and their generators, o.(b) and o(b)"', respectively, in the
maximum critical field H, =6J.

(b)(l)
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0.3 —&

IIIIIIII I I I I I II a logarithmic asymptotic law. Since the spectral dimen-
sion determines many dynamical properties of fractals
(see, for instance, Ref. 12), one could assume that a loga-
rithmic asymptotic law may be relevant in the case of re-
sidua1 entropies as well. For this reason we have per-
formed the least-square fitting of our data for c7(b) to the
formula

I
Efl

1a(b)= g ai
I 0 X

(21)

O. f

IIIIIIII I I I I I I I I I

1/1 /t7 1/5 1/5

FIG. 5. Residual entropies of the fractals (o) and their gen-

erators (6) plotted against the variable 1/b. The closed circle
() at the vertical axis (b= 00) corresponds to the residual en-

tropy of the ordinary triangular lattice (Refs. 8 and 9). It should

be noted that only for very large b the residual entropies of the
fractals surpass the lower limit 0 I

——0.29706 31 established (Ref.
5) for a lattice with the constant coordination number @=6.
The solid and dashed lines serve as a guide to the eye.

where x has been consecutively assumed to be b, lnb, and
b, while aI and o, are the fitting constants.

Accepting at most four-fitting constants (rn =3), we
have found that is the last choice, x =b, and not x =lnb,
which ofFers a fitting function (21) that has smallest devia-
tions from r7(b) given in Table I and, at the same time,
gives the best reproduction of o(b) given by (20) (our
findings are depicted in Fig. 6). In order to strengthen
this conclusion we have carried out an additional least-
square fitting to the formulas

P
O (b) =r7ii,„„,—

tropics of fractals converge to the residual entropy of Eu-
clidean lattice. This question is related to numerous re-

cent questions (see, for example, Refs. 10 and 11) which

are concerned with the way physical laws on fractals ap-
proach the known laws on ordinary translationally in-

variant lattices. For instance, it follows from (1) that the
asymptotic form of the fractal dimension is d& ——2—ln2!
lnb for very large b, and it was recently argued that the
spectral dimension d, of the fractals under study also has

+(b) =~aaxter p(lnb )

0,2

0.1

IIIIIII I I I I I I

I

04

0,1

Illlllll I I I I I I I

Ye Ys

(23)

TABLE 11. The fitting constants a, P, P, and Q of functions

(22) and (23) fitted to the residual entropies cr(b) given in Table
I. The sums of the squared deviations, that is the quantities

21

[o (b)(exact) —rr(b)(fitted)]~,
b =22 —N

are multiplied by 10' and denoted by D, whereas X is the num-

ber of data included in each St.

o

0,3

0.1

Ijilljll I I I I I I I

0 Yg

t

0.3

0,3

0,2

I

Yg Yb Ye 5 K 1/g Yb

19
18
17
16
15
14
13
12
11
10
9
8
7
6

4 122 108
732 769
614462
214 521
126 739
57 803
30 709
14 780

8248
3385
1847
1736
1195
389

0.642 0.499
0.687 0.556
0.698 0.57
0.721 0.605
0.734 0.626
0.748 0.65
0.759 0.67
0.769 0.688
0.778 0.705
0.786 0.722
0.791 0.733
0.793 0.736
0.795 0.742
0.803 0.758

25 534 564
7 423 863
4 136563
1 749 584

920231
AHA 000
22S 935
1130S6
55 454
26 585
12 788

5659
2228

833

1.53 0.289
1.392 0.352
1.523 0.395
1.664 0.45
1.774 0.5
1.867 0.546
1.949 0.593
2.032 0.644
2.092 0.686
2.148 0.727
2.202 0.77
2.25 0.81
2.3 0.854
2.345 0.896

0.2 0.2

0.1

FIG. 6. Results of the least-square fitting to the data o(b),
given in Table I, to function (21). Cases A, 8, and C correspond
to the choices x =b, x=lnb, and x =b, respectively. The pa-
rameter rn was set equal to 1 (in the case C&), 2 (in the case of
A l, 8&, and C2), and finally 3 (in the case of A2 and Bz). The
solid lines represent function (21) with the optimized fitting con-
stants whereas the data from Table I, and (20), are represented
by (0).
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where I', Q, a, and P are the fitting constants. This time
we have varied the number of data included in the fit,
and, again, we have found (Table II) that the logarithmic
asymptotic formula (23) is less tenable than the similar
power-law asymptotic formula (22). Thus we may argue
that, according to our data, (22) is the limiting form of
the residual entropies of the Ising antiferromagnets on
the Sierpinski type of fractals with b & 3.

V. CONCLUDING REMARKS

In summary, we have found the general formula (15)
for the residual entropies of the Ising antiferromagnet, in

the maximum critical Aeld, situated on the Sierpinski-

type family of fractals with b &3. In addition we have
calculated specific values of the residual entropies cr(b)
for 3 & 6 & 21 and demonstrated that it is most likely that
o(b) converge, when b ~ Do, to the value (20) calculated
for the ordinary triangular lattice. ' Numerical analysis
of our findings reveals that the asymptotic law of o&b)
cannot be of the logarithmic form, which, in conjunction
with the fact that both the fractal df and spectral dimen-

sion d, have logarithmic power laws, implies that cr(b)
cannot be a simple function of df and d, . This result is in
accord with the recent finding' that the critical ex-
ponents describing self-avoiding walks on the Sierpinski-
type of fractals cannot also be simple functions of df and
d, . Since the Ising magnets (with short-range interac-
tions) on these fractals do not exhibit critical behavior,
and consequently one cannot say anything about magnet-
ic critical exponents, it would be interesting to study re-
sidual entropies of the Ising antiferromagnets on those
fractals, for example on the Sierpinsi carpets, ' for which
it has been found that magnetic critical exponents are
functions of df and an additional geometric characteris-
tic of fractals. This is a topic for further work.
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