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This paper shows that the 1evel crossing rate of a process y {t)which results from nonlinear Slter-
ing of non-Markov dichotomous noise x {t)can be expressed as NI ——P[1—Fi(l)]p (1), where p (y) is
the density of y (t), P is an inverse time parameter, and F(y) is a nonlinearity in the system equation
y+pF(y)=px Fo.ur examples are given in which Monte Carlo methods are used to establish the
veracity of the theoretical results. In a Mth example, the theoretical result is obtained by time
averaging. The new result is compared with the crossing rate for Gaussian processes and it is found
that N~-8(l)p(l) in each case, where 8(y) is the second conditional moment in the extended
Fokker-Planck equation for p (y).

I. INTRODUCTION

In this paper we will be concerned primarily with level
crossings of nonlinearly filtered dichotomous noise;
specifically with level crossings of processes generated by
the first-order nonlinear differential equation

(t)
+PF[y (t))=Px(t),

in which F( ) is a nonlinear function, p~ 0 is an inverse
time parameter, and x (t) is dichotomous noise (a binary
process). F( ) will be assumed to be nonpathological and
such that the output y (t) is continuous and bounded over
any 6nite time interval if its initial value is finite, and has
a mean-square derivative. Aside from being a stationary
random process, x(t) will be permitted to be quite gen-
eral. If N(b, ) denotes the number of traversals of x(t}
from one state to the other in the time interval (0, b, )„all
that will be assumed is that

1imPtN(b, )=Oj =1,
&~0

which is quite unrestrictive. Under these conditions, we
will show that the average number Ni of crossings ofy (t)
per unit time with the level/ is given by

NI ——p[ 1 —F (1)]p(l),

where P (y) is the marginal probability density function of
y (t). This same expression was previously shown to hold
when x (t) is the random telegraph signal' and so is now
being generalized to all x (t}with the property (2).

Filtered dichotomous noise processes have been the
subject of a number of recent investigations; but one
of the most classic 6ltered binary processes is the output
of the Ster-limiter-Slter system in which the limiter input
is RC Gaussian noise i)(t)." ' In this case the dichoto-
mous noise is sgn[i1(t)] and has, consequently, an average
number of traversals per unit time which is infinte.
However, as discussed by Rice [Ref. 14, Eq. (117)and fol-

lowing] an unpublished result of Slepian for the probabili-
ty that rt(t) has no zero crossings in an interval of length
5 is given by

P[N(b, )=OI= —sin '(e '),
where v, is the correlation time of the E.C noise. Hence,
(2) is satisfied by the dichotomous process sgn[rt(t)].
Another wide class of binary process for which (2} is
satisfied is that with intervals generated by an equilibrium
renewal process, and a number of results are available for
the output probability density in this case. ' '5

%e here derive the above expression for NI by evaluat-
ing

NI ——lim P I (y —1)(y—0 —1) & 0I,04
in which yc ——y(0} and y =y(b ). The equation of Kac'
and Rice' for%I is

NI= f ~y ~p(1,y)&y, (6)

where P(y,y) is the joint probability density function of
y (t) and its derivative. Although these two are
equivalent, in certain cases N& is more easily found from
(5) since (6) requires the determination of p (y,y ) prior to
its evaluation.

A second ingredient essential in the derivation is the
general result of Mazo and Salz that'

E[y(t)
I
y(t)]=o

whenever y (t) has a mean-square derivative. When used
in (1), this leads to 8[x (t)

~
y(t)] =F[y (t}]from which it

follows that

P (x(t)=4 1
i y(t) =1 J

= 1+F(1)
2

For this to be always positive, we must require
~
F(y)

~

& 1 as the region of validity of (1). If
~
F(y )

~
& 1, the im-
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plication, from the above, is that y(t) does not have a
mean-square derivative or else is not a stationary random
process.

The next section gives a derivation of the general re-
sult. Four examples are presented in Sec. III and expres-
sion (3) verified in each case by Monte Carlo simulations.
In a fifth example, (3) is deduced from a time-domain
averaging. The final section discusses the results and
compares them with the same results for Gaussian pro-
cesses. This leads us to speculate as to a possible general
form for the average number of level crossings of an arbi-
trary stationary, mean-square differentiable random pro-
cess, and an interesting interpretation of the second con-
ditional moment in the extended Fokker-Planck equa-
tion.

g l. PIA jhm

II. DERIVATION

The denvatlon closely parallels that for exponent&ally
distributed intervals (the random telegraph signal} in Sec.
4 of Ref. 1 but there are important difFerences because of
the more general nature of the dichotomous noise.

We first show that (5) can be written in the equivalent
form

Ni ——lim P I
—(y —1)(yo —I ) & 0 j N =0j,a-0 6

in which N=N(h). To simplify writing the equations,
the event (y —l}{yo—I ) &0 will be denoted by A. Then,
starting with (5), we have

= lim (PIA—
~

N =OjPIN =Oj+PIA
~

N ~0jPIE ~0j )
1

a-0 5

=(»m PI&=Oj) lim +(lim PIN~Oj) lim: 0 5'0 a-o a-o b,
(10)

We now invoke (2), i.e., P I E=0j ~1 as 5~0. This, of course, implies that P I N & Oj ~0 as 5-+0. The desired result
(9) would follow if the second limit in the second term on the right-hand side of (10) were finite. Indeed, this is the case
because this term is no larger than Ã, since P IA j N & Oj &P t A j.

We now proceed to evaluate (9) by expressing the probability in (9) as a double integral over the underlying joint
probability density function with limits determined by the system equation (1). Equating the up-crossings and the
down-crossings, to Srst order in 5 in the limits of integration, we have

I I+M
Ni ——lim —f dyo f dyp(y, yo ~%=0), (11)

in which M =136,[l —F(I)]. The probability density in the integrand can be further expressed as

p{y,yo ~

1V =0)=p(y
~

)V=0,yo xo= 1)PIxo= 1 j
&=0 yo jp(yo ~

&=0)

+p(y
~

N=O yo xo= 1)P[xo=—1
j
N=O yojp(yo ~

X=O) (12)

=2P[1—F(l)]P txo ——1
~ yo ——I jp(1)

=P[1—Fi(1)]p(I) .

(14)

As b, ~O, N(h)~N(0)=0 and since this is the certain
event, it can be dropped in going from {13)to (14). Also,
(8) was used to get the final result.

HI. EXAMPLES

This section gives four examples of linear systems,
F(y)=y, driven by non-Markov dichotomous noise in

where xo =x(0}. Now, the probability densities

p (y j +=0 yo x o =+ 1 ) must be 5 functions since, start-
ing at an initial state (xo,yo), the system will evolve in a
deterministic way if the input remains fixed (N =0) ac-
cording to the system equation (1). Hence, using (12) in
(11) gives

I
N, = lim — dyoPIxo= 1 j %=0,yojp(yo j

E=O}
5~0 6 1 —M

{13)

I

which explicit expressions for N& are known. In the Srst
three, the dichotomous noise has intervals generated by
an equilibrium renewal process, and in the fourth it is
limited RC Gaussian noise, the sgn[r)(t}] discussed in
Sec. I. The theory was validated by Monte Carlo simula-
tions in each example. Although Monte Carlo methods
can rarely "prove" anything, it it interesting to see how
close the actual and Monte Carlo results are. Since the
agreement is so good, a table of values is given only for
the first example.

The fifth example considers the nonlinear case
F(y)=k sgny. Unfortunately, there are no known cases
in which p (y) or N, is available when F(y) is nonlinear.
Instead of going through the Monte Carlo simulations,
the time averages which they estimate can be done
analytically and, in this way, the general result (3) de-
duced for dichotomous noise with an arbitrary equilibri-
um renewal interval density.

In the Srst four examples, P= 1 for convenience, and
the level crossing rates are related to their respective den-
sities by g, =(1—I )p(1); jr j &1. In the last example,
N~ =P(1—k )p(1); j I j & oo. The interval density, when
appropriate, will be denoted by f (t).
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A. F{y)=y, gamma interval density

For the particular gamma interval density

f(t)= —e '", t&0
4.

(is)

the probability density p (y) is a hypergeometric function
[Ref. 10 (1986}, Sec. 6]. Using the known result for it
[Ref. 10 (1986), Eq. (S4b)], we have

(16)

B. F{y}=y,McFadden interval density, c =1,b =4

In this case [Ref. 10 (1986), Sec. 7],

f(t)=3e '(1 —e ')', t&0

in which 2F, denotes a hypergeometric function and
q=(1+i)/4 Ea. ch of the intervals of the dichotomous
noise was generated as the sum of two independent and
identically distributed random variables with the ex-
ponential density f (t)= exp( t) (—variables with ex-
ponential densities are easily obtained from uniform vari-
ates by a logarithmic transformation}.

10000 intervals of the binary process were generated
and Sltered and the level crossings counted. The Monte
Carlo results are compared in Table I with the exact re-
sult (16) and the agreement is to within 2% in all cases.

TABLE I. Comparison of exact and Monte Carlo results for
F(y) =y and gamma interval density.

0
0.2
0.4
0.6
0.8
0.9
0.95
0.99

N1

Monte Carlo

0.227
0.225
0.217
0.202
0.173
0.143
0.117
0.0691

Exact

0.231
0.229
0.221
0.206
0.176
0.145
0.117
0.0678

Ãi ———(1—1 )'i (22)

The simulations are more involved because the RC noise
has to be generated. The same methods as employed in
Ref. 13 were used and the exact and Monte Carlo results
agreed to within 2% in all cases.

0, F{y ) =y, Filter-limiter-Slter

In this example" ', P(y} is known in closed form
only when Pv, =2. The intervals of the dichotomous
noise are no longer statistically independent and the
statistics of the intervals are unknown. The result, using
the result of Doyle et al. for p (y), " is

N( ——~3(1—1 )(7+1 ) . (18)

Each of the intervals of the dichotomous noise was gen-
erated as the sum of three independent random variables
with respective densities exp( t), 2 exp—( —2t), and
3 exp( —3t). Again, agreement between the Monte Carlo
and exact results was excellent. For example, when
1 =0.8, the exact XI ——0. 188 and the Monte Carlo gave
0.191.

C. F{y}=y,McpatMen interval density, a =6, b =41

In this case, the probability density turns out to have a
bimodal shape [Ref. 10 (1986),Sec 7, F.ig. 4]. We have

—6l( 1
—t )34f(t)=, t &08 (6, 35)

(19)

46
1 —g „ Iz "(1—z) "+z "(1—z) I

k=0 ~

1+/ 1z=, p= g =1.99520. . .
2

'
k 0 @+6

Each of the intervals of the binary process was generated
as the sum of 35 independent random variables with
respective densities 6 exp( —6t), . . . , 40 exp( 40t } For— .
I =0.6, the exact and Monte Carlo values of N& were
0.461 and 0.465, respectively.

E. F{y)=k sgny, Equilibrium renewal interval density

This is a system for which an exact solution is not
known. The system nonlinearity is

F(y)=k sgny, 0&k &1

and the dichotomous noise is generated by an equilibrium
renewal process with interval density f (t). In this case
the output y(t) is a piecewise linear function that goes
"away" from the origin with slopes +P(1—k) and "to-
wards" the origin with slopes RP(1+k}. Since the slope
towards the origin is greater than that away, the effect is
that the time trajectory looks hke a random walk with a
restoring force that tends to drive the particle back to the
origin. For any given set of interval times, y(t) can be
exactly constructed from (1), and a typical trajectory ob-
tained in this w'ay is shown in Fig. 1.

Since neither X, or p(1) is known, they can both be es-
timated by Monte Carlo methods from a sample trajecto-
ry as time averages. As in the previous examples, N& is
obtained by counting the number of crossings with level

y =1 in a time T. The density P (1) is more difficult to es-
timate as the difference of the probability distributions
P [y &1+6, I and P Iy &1 I divided by 6 for some small b„
and each of the distributions as the percentage of time
y & I+5 or y & I, respectively.

However, instead of going through the Monte Carlo
simulations, analytical expressions can be written for the
time averages and, from these, the desired result ob-
tained. %'ith the exception of the limits 6~0 and
T~ 00, these operations are identical to those performed



FIG. 1. Typical trajectory for F(y) =k sgny and equihbrium renewal interval density.

in a Monte Carlo simulation. For each up-crossing with
the level y =1, there is of course an ensuing down-
crossing. Consider a pair of these and let T, denote the
time interval between the onset of the up-crossing and the
down-crossing of the previous pair. Then, as shown in
Fig. 1, the total time that y(I) spends below the level

y =1 for the present pair is T~. The total time that the
trajectory is below the level y =I+5 for the present pair
is then T, +5;+e; . where 5; is the time for the up-
crossing to go between 1 and 1+5, and e; is the time for
the down-crossing to go between 1+6 and l. Adding up
all these times in a long interval of length T leads to

p(1)= lim —[PIV &1+hJ PIV &1]—]
1

S-0 b,

g(T;+5, +s;) gT;—
1= lim-

o 5, T

Now, because of the difFerent slopes in going through the
up- and down-crossings, we have

P(1—k) ' ' P(1+k) '

and, consequently,

I
Sh-0 Tb, ~ p(1 —k) p(1+k)
T +00

P(1—k )

have been investigated when there are no closed
forms+

It is instructive to compare the work of Kac and Rice
on level crossings of Gaussian processes to see what light,
if any, it sheds on the present paper. Rice's expression
for the average number of level crossings per unit time of
a Gaussian process can be written as [Ref. 17, Eq.
{3.3)-(13)]

Ni ——No, i1
—p (1)

p0'
in which

p(l)=(2ngo) '~ exp( —1 l2$0),

No =Ir '( —p(0+ )lfo)

(23)

g(I } is the autocorrelation function of the process, and
$0=&/(0). Our expression (3) can be put into the form

1 —FI(0) p (0) ' (24)

where NO=P[1 —EI(0)]p(0). Both of these can be ob-
tained from

N N &(1)p(1)
8(0)p(0)

by appropriate definitions of 8 (1),p (1), and No.
If 8(y) is the second conditional moment in the ex-

tended Fokker-Planck equation for p(y), then (23) and
(24) each follows from (25). To see this in greater detail,
it is necessary to examine the extended Fokker-Planck
equation which is'

and (3) is estabhshed for E(y ) =k sgny.
This time averaging could, of course, be carried

through for a general nonlinearity F(y). However, be-
cause of the anomalies of processes like the dichotomous
noise sgn[I)(I)], it may not be possible to carry it through
1n general.

1 d 6f

Gfp
[8(y}p(y)]— [A (V)p(V)]=0

dy

in which

A (y) = lim E[y(I +s) y(I)
~
y(I)—], —1

a~0 p"

8 (y) = lim E[jy(t+e) —y(I—) JI
~
y(I)] .1

&~0 p"

(26)

(27)

Although (3) holds for very gene@el binary processes,
the determination of p(y) in the general case is still a
diN][cult and unsolved problem. Exact results are avail-
able for the random telegraph signal for both linear and
nonlinear E(y). Some closed-form results are available
for nonexponential intervals and computational methods

%hen v=1, this reduces to the classical Fokker-Planck
equation; however, the classical equation degenerates to
0=0 in some cases [because A (y) and 8(y) are each
zero] and it is then necessary to use v ~ 1.

FOI' a GausslaII process (wtth v= 1), 8 (y) =1/0 and (25)
yields {23).
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For the nonlinearly Sltered dichotomous noise of the
present paper, it is necessary to use v=2 (see Ref. 1). It
is readily shown from the system equation (1} that
8 (y) =P [1—F (y) ]. Now (25}yields (24}.

Based upon these, it is tempting to speculate that (25)
with the extended Fokker-Planck second conditional mo-
ment might hold for any stationary mean-square
di6'erentiable random process. If this were the case, one
implication would be that (26) can always be written as

[8(y)p(y)] —A (y)p(y) =0 .1

2 dp
(29)

That the constant of integration on the right-hand side is
indeed zero follows by integrating the left-hand side over
the range of y, noting that 8 (y)p (y) vanishes at the end-
point by (25) and that E[A (y) ] must vanish by (27). The
solution to (29) is

Our general result (3) gives insight into level crossing
rates and, in some cases, makes their calculation more
tractable. In view of the fact that there has been exten-
sive recent interest in the first-passage time problem for
(1), it is quite natural to ask if there is any connection
between level crossing rates and first-passage times. On
the surface, mean first-passage times appear to be much
more diN][cult to determine and it would be highly desir-
able if some simpler way could be found to obtain them;
i.e., specifically in some way through level crossing rates.
This, we feel, is a fruitful area for future investigation.

The speculation Nl -8(1)p (I) stresses the utility of the
extended Fokker-Planck equation and gives an interest-
ing interpretation of the second conditional moment
8 (y). Recently, the extended Fokker-Planck equation
has also been shown to play a key role in extensions of
Pearson s method from statistics for approximating dis-
tributions from moments.

8 (y)p (y) =c exp f, dy'x 2A (y')
8 y' (30)

where c is a constant. Also, if the y (t } process were such
that y;„&y &y,„, it is then necessary that 8(y}p(y)
vanish at both endpoints since there cannot be any level
crossings at the endpoints even ifp (Y) were asymmetric.
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