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Calculation of the director configuration of nematic liquid crystals
by the simulated-anneal method
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A new procedure for computing the equilibrium director pattern in a liquid-crystal-display cell

subjected to an applied voltage is presented. It uses the simulated-anneal method which is based on
the Metropolis Monte Carlo algorithm. The usefulness of the technique is illustrated by the simula-

tion of three representative, but totally diFerent kinds of liquid-crystal devices.

I. INTRODUCTION II. GIBSS FRKK KNKRGV

Over the last few decades, the computation of electro-
optical properties of twist-nematic liquid-crystal (LC)
displays has been a matter of continued interest. These
properties directly depend on the equilibrium director
con6guration of the LC material subjected to an external-
ly applied 6eld. This con6guration is determined by the
minimal total free energy of the LC system which de-
pends on variations in the molecular tilt and twist angles,
de6ning the local orientation of the director.

In most calculations, one determines the equilibrium
director configuration by numerical integration of a set of
differential equations, obtained analytically by applying
the Euler-Lagrange equations on the Hehnholtz free ener-
gy.

' This technique, however, only 6nds an extremum
of the free energy. Berreman' also mentions a second
class of numerical methods, called relaxation methods, in
which an initial director conSguration is adjusted accord-
ing to certain equations of motion that cause the free en-

ergy in the liquid crystal to relax towards a minimum.
By including transverse motion of the Quid, these
methods are also used to describe the dynamics.

This paper presents yet another method for determin-
ing the equilibrium director eon6guration. The Gibbs
free energy given in detail in Sec. II is numerically mini-
mized by the simulated-anneal (SA) technique. This algo-
rithm, fully described in Sec. III, was 6rst applied by
Kirkpatrick et al. to the optimization of computer
design and recognized as a powerful minimization tech-
nique for multidimensional functions. It has the advan-
tage of not getting stuck in a local minimum by perform-
ing, in a controlled manner, uphill steps in the multidi-
mensional parameter space. Moreover, it guarantees that
a minimum instead of an extremum is found. In Sec. IV
the usefulness of the method is illustrated by the simula-
tion of three representative LC examples.
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is the elastic contribution,

1 DG„(z)=—
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denotes the electrostatic free-energy density, and the in-
teraction with the surfaces of the cell is proposed to have
the form

Gs(z) =Cu. [5(z)+5(z —d)]sin (8—8o) . (2.2c)

Here yi (k33 ki/ )/k33 and y2
——(k33 kpz)/k», with

k»„k2z, and k33 being the elastic constants of the LC
material for splay, twist, and bend, respectively. The
dielectric constants of the material parallel and perpen-
dicular to the director are denoted as eI~ and ej, respec-

The equilibrium director con6guration of a twist-
nematic LC cell at a given voltage across the plates is
found by minimizing the Gibbs free energy. Taking the z
axis perpendicular to the cell surfaces with spacing d, this
energy is expressed in terms of the angles 8—=8(z) and
P—:P(z). The tilt angle 8 determines the orientation of
the director measured from the xy plane, while the twist
angle P corresponds to the spherical P coordinate. The
Gibbs free energy 6 per unit area is then given by

G =—G(8,$)= I [GE(z) Gv(z—)+Gs(z)]dz, (2.1)

in which
I

Gz (z) =—k 33 (1—y icos 8)=1 t)8
2 t)z
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tively, and a=(ei —ei)/e~). The natural pitch P of the
material is incorporated in the formalism through the
constant q0=2m/p, and 80 denotes the pretilt angle. D
stands for the dielectric displacement, C~ for the surface
anchoring constant, and 5(z) for the Dirac 5 function.

Most iterative calculations, however, start from the
Helmholtz free energy, ' " which di5'ers from the Gibbs
free energy (2.1) only in that the sign of the electrostatic
free energy is reversed. Hence the Helmholtz free energy
takes the form

GH = f [Gs(z}+G).(z)+ Gs(z) ]dz . (2.3)

It has been demonstrated that both formulations lead to
the same equilibrium director pattern.

Since we want to know the equilibrium director
configuration for a given voltage V, it is desirable to ex-
press the Gibbs free energy directly as a function of V by

utilizing the relationship between the externally applied
voltage and the dielectric displacement, the latter being
constant throughout the cell. %'e have

V= cf
GfZ

e))(1 —a cos 8)

from which it follows that

(2.4)

f G),(z)dz =
0

2

dz
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(2.5)

For numerical work, the expression (2.1) has to be discre-
tized with respect to z, i.e., the LC cell is divided into N
layers, each layer having a thickness h =d/N. The
derivative of the angles with respect to z is replaced by
the simplest finite-difference approximation. The Gibbs
free energy per unit area then becomes

G= g [(8;—8; 1}kll(l —p)cos 8))+kll()I)}; f; 1) (—1 —/leos 8) )cos 8;]
1=2

N—kzzqo g (P; —P;, )cos 8;—2

1 1 —acos'8; +C)1 sin (8)v —80) . (2.6)

It has to be stressed that in this formalism, the director
configuration is simulated for the total thickness of the
liquid-crystal-display (I.CD) cell and no assumption con-
cerning the symmetrical behavior of the tilt angle with
respect to the middle of the cell is needed. ' ' Only the
tilt angle of the last layer is taken to be identical to that
of the first layer, since the same boundary conditions are
applied to both substrate plates. For practical purposes
we have found it expedient to omit the contribution of
the first layer [see (2.6)], but this is permitted as long as
the layers have a suSciently small thickness. Expression
(2.6) will now be minimized with the help of the
simulated-anneal method, ' taking the angles 8, and )})},.

of the different layers as variables. It should be noted
that it is not appropriate to replace the derivative of the
angles by a finite-difference approximation of the form
(x;+,—x, ))/2I1. By doing so there is almost no cou-
pling (except a small one due to the cos 8; dependence)
between the angles of the odd- and the even-numbered
layers, and consequently both sets of variables can be
treated (almost) independently by the minimization pro-
cedure.

III. SIMUI.ATKD-ANNEAL METHGD

The simulated-anneal method ' is a powerful minimi-
zation method based on thermodynamical concepts. In
classical statistical physics, each state S with energy E (S)
occurs in a system in thermal equihbrium at a tempera-
ture T with a probability given by the Boltzmann distri-
bution e, 111 which p= I /kg T with kp Boltzmann s
constant. The mean value of a function f for such a sys-
tem is then given by

f e zp(s f)(S)dS

f e-p""ds (3.1)

(3.2)

for a sufficiently large P, since in the limit of T~O one
Snds

lim (P) =Pa,
p~ oo

(3.3)

where P0 stands for the set of variables corresponding to
the minimum of G(P).

Now, for calculating expressions such as (3.1}or (3.2),
one can use the Metropolis Monte Carlo (MMC) algo-
nthm. "' DefIning the temperature-dependent probabil-
ity density

e
—13E[S)

—pE($) dS
(3.4)

the MMC procedure guarantees that the states 5 are gen-

From this, one can see that in the limit of T~0 (P~ oo ),
the mean value of f is determined by the function value
of the ground state So corresponding to the minimum en-

ergy E(SO). Replacing the energy E(S) by a function to
be minimized, e.g., G(P), and the state S by the set of
variables P = IP; I, minimization of G(P) is achieved by
slowly increasing the value of P. If one wants to know
the mean value of the set of variables I' corresponding
nearly to the minimum of G (P), one has to calculate
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crated according to this probability distribution by
proceeding as follows. "' Starting from a state S;, a trial
state S is constructed by application of a stochastic ma-

—P[E&$, )—E($,. )]
trix M. Then the ratio m(SJ )/m(S; }=e ' ' is
evaluated. If this ratio is greater than or equal to 1, the
state S is accepted as a new state. Otherwise, this ratio
is compared with a random number r uniformly distribut-
ed over the open interval (0,1) and the trial state S is

only accepted if m(SJ )/m(S; ) & r. In case of rejection, the
old state S; is retained as the current state. Following
this algorithm, each state S occurs with a probability
n (S) as long as the matrix elements of the matrix M fulfill

the conditions"

(M); =(I), ;, Vi,j, (3.5a)

Bn EN:(M"); &0, Vi,j . (3.5b)

The mean value of S can now be determined from

1

Card(S) (~}
(3.6)

where the sum covers those states generated by the MMC
algorithm.

The power of this technique stems from the fact that
states which do not necessarily possess a lower energy
E(S) are also accepted, and this with a probability densi-
ty depending on the temperature. In terms of the minim-
ization problem, this means that not only those sets of
variables yielding lower function values are accepted.
Consequently, this procedure allows for transitions out of
a local minimum, the transition probability being regulat-
ed by the temperature.

For the problem at hand, expression (2.6} will be mini-
mized by putting G(P)=G =G(8,$) and regarding the
angles (8,$)= ( (8;,P, ), i =1,2, . . . , N I as the set of vari-
ables. Of course the control parameter P is then to be
considered as a fictitious "inverse temperature" and has
no physical meaning. To implement the SA scheme we
could, in principle, simply follow the prescribed pro-
cedure for setting up a MMC simulation algorithm, as
given, for instance, in Ref. 12. However, due to the na-
ture of our problem, an extension to the standard pro-
cedure is required. In practice, the MMG method usually

consists of repeated attempts to change each of the vari-
ables one by one, i.e., by slowly moving through the
"phase space. " From (2.6) it can readily be seen that for
problems of this kind such a scheme is bound to be highly
ineScient. Indeed, as h is small relative to the other
length scales of the LC model, changing one of the 8; (or

P;) by a significant amount implies a fairly large change
in G. Hence, on average, such moves have a small likeli-
hood of being accepted. Consequently, within a limited
amount of computer time, the MMC will not sample the
full phase space in an adequate manner. This is reflected
in the simulation by excessively long annealing times. A
way out of this problem is found by realizing that the
structure of the integrals appearing in (3.2} is akin to that
of the Feynman path integrals encountered in quantum-
statistical physics. Therefore use can be made of the
Monte Carlo techniques developed to compute such in-
tegrals. '3

Thus the standard procedure has to be supplemented
with a difFerent kind of Monte Carlo step in order for the
MMC to be effective. Instead of changing only one of the
angles 8k or Pi„ the possibility of changing all the 8 an-
gles at once with the same amount 58 is also built in. For
such a MMC step, the change of the elastic energy is
small compared with the change of the electrostatic ener-

gy. The efFect is that the pace at which the system
evolves to equilibrium is much greater. This extension
has proven to be essential for a successful application of
the SA idea to the problem at hand. Note that for the P,.

no such procedure is necessary because from (2.6) it fol-
lows directly that there is no competition between contri-
butions of different origins. Indeed, a change in iI}; only
implies a change in the elastic contribution to the free en-
ergy. Hereafter we will call the first kind of MMC steps
single-angle moves and the latter ones multiangle moves.

From the definition of the tilt and the twist angle, it is
clear that they are related to the spherical coordinates
8'—=8—m/2 and P':—P, respectively. In a Monte Carlo
simulation of a model described in terms of spherical
coordinates, it is well known that one has to take into ac-
count the fact that the 8' coordinate is not distributed
uniformly over the interval [O, m]. Instead, it has to be
weighed by a factor sin8'. ' Accordingly, for the coordi-
nate system used for the I.C model, the probability densi-

ty reads

e ~ ' ~'cos8, cos8~
m.(8,$)=

d8i ' ' ' f d8g f dpi ' ' f dfge ' cos8i ' 'cos8N
(3.7)

Therefore the MMG strategy is applied as follows. As-
suming the current configuration to be (8,$), a trial
configuration (8,P) is generated. The ratio

gGia, pi Gie, y-i] g— (3.8)
~(8,$) „,cos8„

is evaluated and the trial configuration (8,$) is rejected as
the new state if the ratio (3.8) is less than a random num-
ber uniformly distributed between 0 and 1. Further de-
tails about the implementation of the MMC procedure
will be discussed in Sec. IV on the basis of three examples
of simulations.
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IV. APPLICATIGN

The algorithm, as discussed in Sec. III, has been tested
on three dil'erent systems and the results have been com-
pared with data obtained earlier with the help of iterative
schemes which solve the Euler-I. agrange equations. ' 'Of
particular interest are systems for which the
transmission-voltage curve exhibits a discontinuity. In
the analytical treatment of the Euler-Lagrange equations,
this discontinuity manifests itself in the divergence of el-
liptical integrals, rendering the iterative solution unsta-
ble. This problem is circumvented by the nonanalytical
and noniterative SA method, as shown by the results of
our second and third example.

For the first two examples, the material constants of
ZLI-1132 (see Table I) are used and the thickness of the
cell is taken to be 6.3 pm. The first example consists of a
twisted-nematic (TN) LC cell (Pz ——90') with a pretilt an-

gle 8o of 3'. The natural pitch was chosen as 30 pm. As
the second example, an SHE (supertwisted birefringence
effect) display' with a total twist angle Pr of 270', a pre-
tilt angle 8o of 30', and a pitch p of 8.4 ym is considered.
For both systems a strong anchoring with the cell plates
is assumed, i.e., Cii = 100X 10 J/m . The SA results of
these systems can be checked with the iterative method
described in Ref. 3. The third problem is defined equally
to one of the systems of Ref. 4. It also consists of a TN
system, but with a pretilt angle 8& of 0', a natural pitch p
of 63 pm, and weak anchoring with the substrate plates,
which means once C&——10.0X10 J/m2 and once
Cis =8.3X 10 J/m . The material parameters for this
system were fictive (see Table I), while the cell parameters
were chosen such that the total free energy renders a
discontinuity.

Most of the parameters controlling the SA simulation
itself do not depend critically on the particular example,
in spite of the fact that the physical behavior of the three
systems difFers substantially. The director pattern is
computed for a voltage interval, the beginning and end-

ing value of which can be chosen arbitrarily. The choice
of the voltage step, however, depends on how fast the
director changes as a function of the voltage. The start-
ing con6guration for the first value of the voltage is such
that in each layer 8=0.88o and that P, increases hnearly
from 0 to PT.

Trial configurations are generated as follows. In the
case of a single-angle move, a randomly chosen element
of the set [(8;,$, ), i =1,2, . . . , NI is changed by an
amount 5, chosen randomly from the interval [—b„b,].
For a multiangle move aH the 0; are simultaneously
changed by a similar amount. In our applications 5 was
1'. The ratio of single-angle moves to multiangle moves
was kept to 50% for all systems. In order to fulfil condi-
tion (3.5a), all 8, are taken modulo n. /2, whereas all P;
are taken modulo PT. On the other hand, by choosing
6=1', condition (3.5b) is not fulfilled for n =1 since it is
not guaranteed that each possible set of variables is
reached by a single MMC step. But, in the limit of a
large number of steps (which means large n), the matrix
M becomes completely filled and, as such, requirement
(3.5b) is met.

According to (3.8), the likelihood of accepting the trial
configuration is "temperature" dependent. Cooling dur-
ing the first voltage step is performed by gradually in-
creasing P from 100 to 1000 over a number of MMC
steps (equal to N„,), while in each MMC step (2XN)
steps are performed so that each of the (2 X N) variables
gets a chance to be updated. The choice of the fjlnal value
of P is a compromise between a too ineScient calculation
due to the low acceptance of trial configurations if P is
large and a too inaccurate determination of the minimum
of 6 if P is small.

For the next voltage, the initial director configuration
is taken to be the final configuration of the previous volt-
age. Another amount of X„„,MMC steps is performed
at the largest P, in order to let the system relax to its new
equilibrium con6guration. Cooling for each voltage step
is possible, but this is less ef6cient since information ob-
tained from the calculation for the previous voltage is
then lost. From our examples it seems to be necessary to
choose N„„, as large as 12000, especially for those volt-
ages where the director starts to rotate. After those N„„,
steps another amount of steps (characterized by N

80-

TABLE I. Material parameters of the liquid crystal ZLI-
1132 (Merck) and of the Sctitious material (FM) used for the
calculation in Fig. 3.
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FIG. 1. Transmission-voltage curve for a twisted-nematic
hqnid-crystal cell (fr=90, 80——3') of thickness d =6.3 pm
filled with ZLI-1132, having a natural pitch p =30 pm, and a
strong surface anchoring of C~ ——100&10 Jjm for light of
wavelength A, =480 nm incident on a cell with parallel polariz-
ers. Crosses, SA calculation; continuous curve, iterative pro-
cedure (Ref. 3).
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FIG. 2. Transmission-voltage curve for a nernatic liquid-
crystal cell {IIr——270', Hp=30') of thickness d =6.3 Iim filled
with ZLI-1132, having a natural pitch p =8.4 pm, and a strong
surface anchoring of C~ ——100' 10 J/m~, calculated for an in-

creasing and decreasing sequence of voltages, for light of wave-

length A, =589 nm incident on the cell with parallel polarizers.
Dashed line through the crosses, SA calculation; continuous
curve, iterative procedure (Ref. 3}.

Cg =8.3 x10 3/tn

Cg =10.0x10 J/tn

0O L~AA~~
0.5 1

VOLTAGE (V)

FIG. 3. Tilt angle in the middle (8 } of a twisted-nematic
cell (Pr =90 Hp= 0') as obtained from the SA procedure for
two diferent values of the surface anchoring constant. The cell
thickness d =6.3 pm, the natural pitch is in6nite (in practice,
p =9000 pm}, and the material parameters, given in Table I, are
fictitious.

which in our case equals 500) is performed to determine
the averaged set of variables.

From the voltage dependence of the director pattern,
the transmission-voltage curve for normally incident light
is calculated by means of a thin-slice method in which the
LC layer is considered as a stack of birefringent slabs,
each possessing s constant thickness snd a uniform orien-
tation of the optical axis. For the TN cell (example 1),
characterized by a strong anchoring at the substrate
plates, there is no discontinuity in the free energy as a
function of V. Hence it is not diScult to calculate itera-
tively the director con6guration from the Euler-Lagrange
formalism. The transmission-voltage curve obtained by
SA and the results of iterative calculations sre presented
in Fig. 1 and clearly show excellent agreement. In con-
trast to the TN cell, the SBE cell (example 2) exhibits a
discontinuity in the free energy, implying the typical hys-
teresis e8'ect in the transmission-voltage curve. There-
fore, in the iterative approach the upper part of the
transmission-voltage curve has to be calculated starting
from a diff'crent con6guration than the one used to obtain
the lower part. Figure 2 shows the iterative results for
the lower and upper part of the transmission-voltage
curve in comparison with the results obtained with the
SA technique. The width of the hysteresis found by SA is
somewhat larger than that obtained iteratively but, apart
from that, there is satisfactory agreement. In complete
contrast to the iterative method, the SA technique yields
the complete curve for increasing (decreasing) voltage V,
starting from one con6guration. Consequently, no
unpredictable actions have to be programmed for the
computation of the transition regime. For the third
problem, the weak anchoring strength may cause a
discontinuity in the transmission-voltage curve. Figure 3

shows SA data for the tilt angle in the middle of the cell
[8 =8 ( V)], rather than the transmission-voltage curve,
as a function of the voltage for two differen values of the
anchoring constant. It can immediately be verified that
our SA results agree well with the ones given in Ref. 4,
taking into account, however, that in Fig. 3 8 has been
determined by searching for the global minimum of the
free energy, whereas in Ref. 4, 8 corresponds to an ex-
tiernurn in the free energy. For those parts of the curves
of Ref. 4 where the slope of 8 (V) is negative, the free
energy is maximal rather than minimal.

To sum up, we have demonstrated the usefulness of the
SA technique for the determination of the equilibrium
director pattern within a LC cell with an external voltage
applied to the substrate plates. The method searches
directly for minima instead of extrema of the free energy.
A disadvantage of the technique is that it uses about a
factor of 10 more computer time compared with the pro-
cedure described in Ref. 3. On the other hand, it requires
much less human intervention. Moreover, it has the ad-
vantage of being more Aexible in the choice of the materi-
al snd ceil parameters and of being insensitive to the ini-
tial conditions. Finally, since no analytical manipulation
precedes the numerical computation, it is straightforward
to apply the technique to other forms of the free energy.
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