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The probability measure generated by typical chaotic orbits of a dynamical system can have an
arbitrarily fine-scaled interwoven structure of points with different singularity scalings. Recent
work has characterized such measures via a spectrum of fractal dimension values. In this paper we
pursue the idea that the infinite number of unstable periodic orbits embedded in the support of the
measure provides the key to an understanding of the structure of the subsets with different singulari-
ty scalings. In particular, a formulation relating the spectrum of dimensions to unstable periodic or-
bits is presented for hyperbolic maps of arbitrary dimensionality. Both chaotic attractors and

chaotic repellers are considered.

I. INTRODUCTION

The long time distribution generated by a typical orbit
of a chaotic nonconservative dynamical system is general-
ly highly singular. The subset of phase space to which
the orbit asymptotes with time, the attractor, can be
geometrically fractal. Furthermore, the distribution of
orbit points on the attractor can have an arbitrarily fine-
scaled interwoven structure of hot and cold spots. Sets
with such distributions have been called multifractals.
By hot and cold spots we mean points on the attractor for
which the frequency of close approach of typical orbits is
either much greater than typical (a hot spot) or much less
than typical (a cold spot). Recently there has been much
work developing ways of quantitatively characterizing
how such chaotic orbits distribute themselves on attrac-
tors.!~* In particular, the spectrum of fractal dimensions
introduced in Refs. 2—-4 are sensitive to the characteris-
tics of the structure of hot and cold spots on the attrac-
tor. In this paper we present results which show that, for
a large class of chaotic attractors, the infinite number of
unstable periodic orbits embedded in the attractor pro-
vide the key to an understanding of such issues. (A brief
preliminary report of some of this work appears in Gre-
bogi, Ott, and Yorke.®)

The importance of unstable periodic orbits in deter-
mining ergodic properties of chaotic systems has long
been recognized in the mathematical literature (e.g.,
Bowen® and Katok’). For some more recent work see
Refs. 8 and 9 which also illustrate the important point
that information about unstable periodic orbits is readily
accessible from numerical computation (and perhaps ex-
perimentally® %) and can be used for determining ergodic
properties. In addition, in the theory of quantum chaos,
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the distribution of energy levels can be related to unstable
periodic orbits of the classical Hamiltonian.!' =13 Anoth-
er case where unstable periodic orbits appear!'® is in
determining the behavior near parameter values where
sudden changes in chaotic attractors occur [the argument
in connection with our Fig. 1 is similar to that for Eq. (2)
of Ref. 10].

The organization of this paper is as follows. Section II
presents a discussion of the pointwise dimension for at-
tractors and shows that hot and cold spots occur on the
unstable manifolds of saddle periodic orbits in the attrac-
tor. Numerical experiments illustrating this are also
presented. Section III reviews recent work on the dimen-
sions of attractors including the partition function for-
malism.* Section IV presents our results relating the dis-
tribution of typical chaotic orbits on attractors and the
associated fractal dimensions to the unstable periodic or-
bits. Section V illustrates the material of Sec. IV with ex-
amples. Arguments yielding the results stated in Sec. IV
are presented in Sec. VI for the case of hyperbolic attrac-
tors. Section VII treats the case of chaotic sets which are
repelling rather than attracting.

The dynamical systems to be discussed throughout this
paper are d-dimensional maps of the form x, ., =F(x,),
where x is a vector in the d-dimensional phase space of
the system. An attractor A for such a system is a closed
set, invariant under F, which is the limit set as time goes
to + oo for almost every initial condition in some neigh-
borhood of 4. (By “almost every” we mean that the set
of initial conditions in the neighborhood that do not ap-
proach A can be covered by a set of d-dimensional cubes
of arbitrarily small total volume.) The basin of attraction
for the attractor is the closure of the set of points which
asymptote to the attractor as time goes to + . In the
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case of continuous time systems (flows), we can think of
F(x) as arising from a Poincaré surface of section.

II. POINTWISE DIMENSION

For most purposes we may think of the natural mea-
sure of an attractor as follows: For a subset S of the
phase space and an initial condition x in the basin of at-
traction of the attractor, we define u(x,S) as the fraction
of time the trajectory originating at x spends in S in the
limit that the length of the trajectory goes to infinity. If
u(x,S) is the same for almost every x in the basin of at-
traction, then we denote this value u(S) and say that u is
the natural measure of the attractor (cf. Appendix).
Henceforth, we assume that the attractor has a natural
measure. In particular, this means that the attractor is
ergodic (i.e., it cannot be split into two disjoint pieces
that each have positive natural measure and are invariant
under application of F).

Let B (l,x) denote a d-dimensional ball of radius / cen-
tered at a point x on an attractor embedded in the d-
dimensional phase space of the dynamical system being
considered. Then the pointwise dimension (at the point
x) of the attractor is defined as

D (x)=lim logu(B(/,x))
P 10 log!

or ,u(B(l,)_c))~ID"(£). For almost every point with

respect to the natural measure on the attractor, Dp()_c )
takes on a common value and is equal to the information
dimension (defined in Sec. III). That is, the set of points
on the chaotic attractor for which D,(x) is not this com-
mon value may be covered with a set of d-dimensional
cubes of varying sizes which together contain an arbi-
trarily small amount of the natural measure of the attrac-
tor. [Points x where D,(x) is greater than (less than) the
common value it assumes at almost every point with
respect to the natural measure are the hot (cold) spots re-
ferred to in Sec. 1.] For example, a chaotic attractor typi-
cally has a dense set of unstable periodic orbits embedded
within it, and, as we shall see, Dp(J_c) with x on one of
these periodic orbits does not take on the typical values.
The periodic points, however, are countable and so have
zero measure. Nevertheless, it is a main point of this pa-
per that this zero measure set is important and leads to
interesting properties of the attractor.

To see why D,(x) is the same for almost every x with
respect to the natural measure, assume that it is not.
Then we can pick some D, such that there is a nonzero
amount for the natural measure of the attractor for
which D,(x)>D,, and another nonzero amount for
which D,(x)<D,, Thus the attractor is divided into
two disjoint sets, 4, and A4 _, pu(Ad, )+u(4_)=1,
1(A3)>0. From the definition (2.1), one can show that
D,(x) is invariant to smooth changes of coordinates. In
particular, for a smooth map x,,,=F(x,), we can take
y=F(x) as the change of coordinates. It follows that
D,(x)=D,(F(x)). Thus the sets 4_ and A _ are in-
variant under F. This implies that every orbit on the at-
tractor is confined either to 4 or 4 _. Hence, contrary
to our assumption that the attractor has a natural mea-
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sure, the attractor has been decomposed into two disjoint
F invariant sets. We conclude that D,(x) must be the
same for almost every x with respect to the natural mea-
sure on the attractor.

Returning now to consideration of the zero measure set
of points x for which D,(x) is not typical (i.e., is not the
common value assumed at almost every x on the attrac-
tor) and taking the map to be two dimensional (d =2), we
will obtain the following result. Let j be an index label-
ing the fixed points of the n times iterated map F". (The
components of a period n orbit are fixed points of F".)
We assume that the Jacobian matrix of F” at fixed point j
has one unstable direction and one stable direction. Then
for any point x on the unstable manifold of fixed point j
of F",

logh,;

D,(x)=1 (2.2)

P loghy; ’
where A,; > 1 and A,; < 1 are the magnitudes of the unsta-
ble and stable eigenvalues of the Jacobian matrix of F”".
Since points on different periodic orbits typically have
different eigenvalues, Dp()_c ) will clearly be different for
different periodic orbits and hence will not be the typical
D,(x).

To obtain (2.2) consider a point x, on the unstable
manifold of a saddle periodic point and two small circu-
lar disks centered at x, with radii /, and /,, where
I,/1,=A3;". We iterate the two disks backward a large
integral number of periods so that the two disks are now
similar ellipses close to the saddle and with their major
axes parallel to the stable manifold of the saddle (cf. Fig.
1). We now iterate the I, ellipse backward one more
period. Since it is close to the saddle, its backward itera-
tion by one period is governed by the linearized map at
the saddle (i.e., by the eigenvalues }\1]‘ and }»21-). Thus,
since we choose /, /1, =A2_j’, the major diameter of the /,
ellipse is now the same as that for the /, ellipse, while its
minor diameter is smaller than that for the /, ellipse by
the factor A,;/A;. The inverse images of the disks con-
tain the same natural measure as the original disks.
Thus, treating the attractor measure as if it were smooth
along the unstable direction, we have u(B(l,,x,))/
(B(1},x0)) =My, /Ay;. Setting pu(B(I,x0))~I"" and I,
=1,A,;, this yields Eq. (2.2), the desired result.

We have tested Eq. (2.2) numerically using the Henon
map given by

X, 1=1.42—x240.3y, ,

(2.3)
Yn+1=Xp 41 -

radius 4,

radius 4, 1

jth fixed
point of F M

large number
of backward
iterates

FIG. 1. Schematic for the derivation of Eq. (2.2).
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FIG. 2. Plot of the iterates of the Henon map (2.3).

In Fig. 2, we plot iterates of the map (2.3) to show the at-
tractor. In this figure we also indicate the location of a
point which we have accurately determined to be on the
unstable manifold of an unstable fixed point (i.e., a period
one unstable orbit) of the map (2.3). In Fig. 3, we display
the result of a calculation of the pointwise dimension
D,(x) for x at this point. In this figure, we plot
u(B(l,x)) versus / on a log-log scale. Here u(B(l,x)) is
obtained by iterating a randomly chosen initial condition
in the basin of the attractor 10° times (so that the orbit is
essentially on the attractor) and then determining the
fraction of subsequent orbit points which fall in B (/,x)
on further iteration. The numerically determined point-
wise dimension is the slope of the straight line through
the points in Fig. 3; we obtain D,(x)=1.36. The magni-
tudes of the eigenvalues at the fixed point are
1.94 - - - and 0.155 - - -, which, when inserted in Eq. (2.2),
yield D,(x)=1.36, in agreement with the data in Fig. 3.
Next we obtain a typical point x on the attractor which
is within a small distance (1.5X 10™* in this case) of the
previously chosen point on the unstable manifold of the
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fixed point. We do this by randomly picking an initial
condition, preiterating 2 10% times, and then iterating
the map until the orbit falls within a circle of radius
2% 107* centered at the previously obtained point on the
unstable manifold. Results for u(B(l,x)) versus / for this
point are shown in Fig. 4. For / > 1.5X 10~* the slope of
the straight line fitted to the numerical data is 1.36,
which is the same value as obtained in Fig. 3 for the point
on the unstable manifold. This agreement is as expected,
since for I >>107%, the two points are essentially indistin-
guishable. However, for data points in the range
6Xx107%<1 <1.5%107*, we find that the slope of a fitted
line is 1.21, which is significantly different from the 1.36
slope for / > 1.5X 107,

There are an infinite number of unstable periodic orbits
on the attractor. Thus, although it is true that all typical
x must have a common value for Dp(g ), one might
suspect that there will be significant fluctuations in nu-
merically determined values of D,, since such calcula-
tions are necessarily restricted to a finite range of /. This
seems to be the case: We have numerically determined
D,(x) for the map (2.3) using a range 10~' </ <107° at
20 different typical points, and we find considerable varia-
tion in the resulting numerically determined pointwise di-
mensions. A list of the 20 values obtained appears in
Table I. In obtaining these values, a least square fit was
used in 107" </ <1.22X 107>, and the root-mean-square
deviation of the least square fit is also shown in Table 1.
This root-mean-square deviation of the fit for D,(x) at
individual x values is small compared with the standard
deviation (0.10) about the mean (1.27) obtained by using
the twenty Dp()ﬁ) values (given in the first column of
Table I). (The 20 typical x values used were obtained by
choosing a random initial condition in the basin of the at-
tractor, iterating it 20 10°® times, and selecting every
millionth iterate.)

The Kaplan-Yorke formula, discussed in Sec. IV, pre-
dicts the typical value of the pointwise dimension in
terms of the Lyapunov numbers. For the case considered
here, the predicted value is 1.26, which is in good agree-
ment with our mean of the twenty numerically obtained
D, values but is far from the value obtained in Fig. 3.
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FIG. 3. Log-log plot of u(B(l,x)} vs I for a point on the un-
stable manifold of the fixed point.

FIG. 4. Log-log plot of u(B(l,x)) vs [ for a typical point on
the attractor which is within 1.5X 10~* of the point on the un-
stable manifold of the fixed point.
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TABLE 1. Result of pointwise dimension calculations for 20
typical points. Mean equals 1.27+0.10

rms deviation

D,(x) of fit
1.29 0.03
1.31 0.03
1.12 0.02
1.34 0.03
1.21 0.02
1.25 0.02
1.21 0.04
1.34 0.03
1.31 0.04
1.38 0.02
1.25 0.04
1.28 0.03
1.26 0.03
1.34 0.03
1.33 0.03
1.15 0.02
1.02 0.01
1.32 0.03
1.41 0.02
1.37 0.02

II1. DIMENSIONS OF MULTIFRACTAL
CHAOTIC ATTRACTORS

In this section we review past work on the dimensions
characterizing multifractal chaotic attractors.>~* Refer-
ences 2 and 3 consider the quantity D, defined by

N
log ¥ pf

~ i=1
= li
Dy= 07 ™ hogl

, (3.1

where the attractor is covered with N (/) d-dimensional
cubes from a grid of unit length /, and p; is the natural
measure of the attractor in the ith cube. Taking the limit
g—1, Eq. (3.1) yields>?
b, = lim [Ep,-logp,- } / log! , (3.2)
- i
which is called the information dimension of the attrac-
tor. It is D, which is the common value assumed by
D,(x) for almost all x with respect to the natural mea-
sure on the attractor.! We may think of the information
dimension as the capacity dimension (cf. below) of the
smallest set which contains most of the natural measure
of the attractor.!

As q is increased past 1, the contribution of the sum
3 .pf from a relatively few boxes with very little of the
total attractor measure but with larger p; than typical
(i.e., hot spots) becomes relatively more important. Simi-
larly, as g is decreased from one, the contribution from
low probability boxes begins to be more important. For
example, for ¢ =0, Eq. (3.1) yields

Dy=— Ilin}) logN (1) /log! , (3.3)
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which is known as the capacity or box-counting dimen-
sion of the attractor. Note that all boxes on the attractor
contribute democratically to (3.3) no matter what their
natural measure p; is. For typical chaotic attractors, it is
to be expected that D, > D, since low-probability boxes
(cold regions) containing very little of the total natural
measure on the attractor may be vastly more numerous
than those required to cover most of the natural measure
on the attractor.'

At this point it is appropriate to discuss another
definition of dimension, the Hausdorff dimension,!*
which is, in fact, an older concept than either the capaci-
ty!S or information dimensions.’® To define the Haus-
dorff dimension, we cover the attractor with d-
dimensional cubes of variable edge length /;, all of which
we restrict to be no bigger than some value / (/; <I). We
then form the quantity

Ty(D,L{L})=1P. (3.4)

Next the covering of cubes is optimized so as to make the
sum [P, minimum,

Iy (D,l)= inlfz 1P, (3.5)

where the infimum is taken over all possible collections of
cubes that cover the attractor subject to the constraint
I; <I. Finally, the limit / —O0 is taken,

FH(D):Ilir% I'y(D,I) . (3.6)
The quantity I';;(D) can be shown to be either zero or
infinity except at a critical value of D [cf. Fig. 5(a)]. This
critical value defines the Hausdorff dimension which we
denote Dy.

',
(o)
(a)
0
D, 5}
I'(q,D) q<l
= (b)
0]
Dq D
F(q,D) q > |
(e o]
(c)
0]
Dq D

FIG.5. (a)T'y(D) vs Dy. (b) T'(g,D) for g < 1. (c) I'(g,D) for
g>1.
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The capacity dimension D, and the Hausdorff dimen-
sion are closely related. In particular, if we do not opti-
mize over the cube covering, but instead use a cubic grid
covering of fixed length /, then all the /; in (3.4) are equal
to /, and we have T'§"4(D,/)=N (1)IP. Equation (3.3) is
satisfied by N(l)~I_D°, which yields T'$4(D,l)
~1°7%0 In the limit 1—0, T%¥"Y is zero or infinity [as
in Fig. 5(a)] with the transition at D =D,. Since the cov-

ering using a cubic grid may not be optimal,
r'$°9(n,1) > Ty (D,I) and

Dy>Dy .

For examples of ergodic chaotic attractors, where D, and
Dy, are analytically calculable, it is found' that Dy=Dp,
and it has been conjectured that this is to be expected, in
general, for typical ergodic chaotic attractors (although it
is easy to construct sets' which are not attractors which
have D> Dy).

Reference 4 gives a formalism which essentially gen-
eralizes the Hausdorff procedure and its relation to D so
that ﬁq for arbitrary q is treated. In particular, again say
we cover the attractor with cubes of variable edge length
/;, but now consider the following quantity, which in
analogy with statistical mechanics, has been called the
partition function,

I'(g,D,L{1;})= 3 pf/l], r=(q—1)D “(3.7)
where D > 0. Optimize over covering {/;},
sup[I'(g,D,L,{l;})] for ¢>1,
T(g.D,D= \infir(g,D,1,{1,})] forgq<1, (3.8)
and take the limit / —0,
I'(g,D)= Ili_rgl‘(q,D,l) . (3.9)

Again I'(g,D) is zero or infinity. The transition point for
I'(g,D) is denoted D,. [['(g,D)=0 for (@ —1)D <(q
—1)D,, and I'(g,D)= for (g —1)D >(g —1)D, (cf.
Figs. 5(b) and 5(c)).]

Again say that we do not optimize over coverings, but
instead use a cubic grid, of basic length /, then /;=1/ and

we have Zipiq/l'_r=l—fzip;1, From Eq. 3.1),
zipiq“’l(q‘])bq and hence 2,'1’19/1,7~1(q-”w"_m,

which,in the limit /—0, pass from 0 to o at D=D,.
Since in this the optimization over coverings, prescribed
in Eq. (3.8), is not done, the quantity D, defined by Eqgs.
(3.77-(3.9) is necessarily less than or equal to D,

D, gﬁq . (3.10)
However, as for the Hausdorff and capacity dimensions,
it is to be expected that, in practice, the equality in (3.10)
typically holds for chaotic attractors.

A central result of Halsey et al.* was the demonstra-
tion of the way in which D, is connected to the hot and
cold points on the attractor (i.e., those points x on the at-
tractor for which the pointwise dimension (D,(x)#D).
In particular, they consider the set of x values such that

Dp(£)=a, and they denote the Hausdorff dimension of
this set by f(a). They show that the D, can be explicitly
obtained from the dimensions f(a) via the formulas,

df(a)/da=gq , (3.11a)
(g —1)D,=[qa(q)—f(alq))] . (3.11b)

IV. UNSTABLE PERIODIC ORBITS

In this section we state and discuss results obtained in
Sec. VI on the relation of unstable periodic orbits on
chaotic attractors to the ergodic properties of these at-
tractors. The results to be quoted are for the case of
chaotic attractors that are mixing and hyperbolic. By
mixing we mean that for any two sets S, and S, in the
phase space of the system, we have

nlim ulS, NE™(S,)]=n(S, u(S,),

where p is the natural measure of the attractor. A chaot-
ic attractor would not be mixing in the commonly en-
countered situation where the attractor consists of a finite
number h of disjoint pieces, and the orbit cycles from
piece to piece. In this case, instead of the map F one can
consider the map F k. For F" each of the & pieces of the
attractor for F is a separate attractor in its own right and
is typically mixing. Our result would then apply to the
attractors of FA. Henceforth, we assume that the attrac-
tor is mixing. Hyperbolic attractors are defined in Sec.
VL

We consider a d-dimensional twice differentiable map,
X m+1=F(x,,). The magnitudes of the eigenvalues of the
Jacobian matrix of the n times iterated map F" at the jth
fixed point of F" are denoted Ay;,Ay,...,4,),
Aw+1)j» - - - » Mg, where we order the eigenvalues as fol-
lows: Aij>Rhy> 2 A > 120, )2 0 2 Ay
Thus in this notation, the number of unstable eigenvalues
is u. Let L; be the product of the unstable eigenvalues at
the jth fixed point of F",

sz}\’lj)\'zj..‘)\'uj . (4-1)

Then, as shown in Sec. VI for mixing hyperbolic (axiom
A) attractors, the natural probability measure of the at-
tractor contained in some closed subset S of the d-
dimensional phase space is the limit as n — « of the sum
of the L ;! over all the fixed points j of F" which lie in S,

u(S)= lim{ > L

"= | fixed points
inS

. (4.2)

Thus (4.2) is essentially a representation of the natural
measure in terms of the unstable periodic orbits on the
attractor. In particular, in the special case where S cov-
ers the entire attractor, we have u(S)=1, and, hence, we
obtain a relation amongst the unstable eigenvalues,
. —1
= "an:c ?L i
where the sum is over all fixed points of F” on the attrac-
tor. Equation (4.3) has been conjectured to apply in gen-
eral for Hamiltonian chaotic systems!? and has been used
to derive an interesting correspondence between the ei-

(4.3)
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genvalues of a random matrix and the statistics of the
semiclassical limit of the energy levels of a bound, time-
independent, quantum system whose classical limit is
chaotic."

We now give a partition function formulation of the
multifractal properties of chaotic attractors. This formu-
lation is in terms of the eigenvalues of the dense set of
periodic saddles on the attractor [rather than in terms of
the measure of coverings of the attractor, i.e., the p; in
Egs. (3.7)]. Let

D=A+6,

where A is the integer part of D, and §=D —A=(D
modulo 1) is the fractional part of D. In addition, let

S(D)=Ayhy; c Agj(Aay; P 4.4)

[Note that S;(D) is a continuous function of D.] In terms
of L ; and Sj(D), the result obtained in Sec. VI for the
partition function is

f(g,D,n)= 3 L7'[S;(D)]79~". 4.5)
J

In the two-dimensional case with A;;>1>A4,; this
reduces to
P(g,D,m= 3 Ajag -1 -n, 4.6)
j
which appears in Grebogi et al.’ and Morita et al.’ and,
for the case of the Hausdorff dimension (g =0), in Ref. 9.

Taking the limit n — « is analogous to taking the limit
!/ —0in Eq. (3.9),

f(¢,D)= lim [\(g,D,n) .

n-— oo

4.7)

The quantity £(g,D) is zero or infinity in analogy with
the quantity I'(g,D) in Eq. (3.9) [cf. Figs. 5(b) and 5(c)].
We denote the value of D at the transition of (g,D)
from zero to infinity by ﬁq and call it the periodic point
dimension.

0 for (q—l)D>(q——1)ﬁq

+o for (g—1)D <(g—1)D, .
In Sec. VI we show that

b,>D, . 4.8)
We conjecture that for typical chaotic attractors of two-
dimensional maps with A;; > 1> 4,;

o

D,=D, . (4.9)

Indeed for the two-dimensional case with A;;>1>2,;,
examples are worked out in Sec. V verifying that Eq. (4.9)
holds. (For further discussion see Sec. V1.)

Setting ¢ =1 and comparing (4.5) with (4.3) we have
f(1,D)=1. Formally expanding (4.5) around g =1 we
obtain

f(g,D)=

logS;(D)
fgDm=1—(g—1S —EL’——+O[(q —17].
J J

Letting n — « the coefficient of the (g —1) term may be
expressed using (4.4) as
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lim [ {zLj~llog(A1jA2j EERINY

n—co
J

+8 [zLj‘llog}u(AHU ] l )
J

As will become evident from a correspondence with
Lyapunov numbers to be discussed subsequently, the first
term in large parentheses becomes positive infinite and
the second term negative infinite (both sums behave like n
for large n). Thus this formal expansion in (¢ — 1) indi-
cates that the transition value 13, =A,+8, occurs at

EL]—llog()\.U e }\-Alj)
5|=A1—' hm d ’

n—o zLj_IIOg()\’{Al-f—l)j)
J

(4.10)

where (to satisfy 0 <8, < 1) we define A, as the largest in-
teger such that 3 L 'log(A,; - Ay ;) is positive. We
now compare (4.10) with the Kaplan-Yorke conjec-
ture."'” The Kaplan-Yorke conjecture gives a formula
for D, [defined in (3.2)] in terms of the Lyapunov num-
bers of typical orbits (i.e., orbits obtained for almost
every choice of initial condition in the basin of the attrac-
tor). Denoting these (typical) Lyapunov numbers

)\’12}\'22 e Zld ’

the Kaplan-Yorke formula states that for typical systems,

In(Ad, - Ay)

—_— 0, (4.11)
In(?»AI+1)

5|=A1—

where here A, is the largest integer such that
AAy - Ay >1. Comparing (4.11) and (4.10), see that

these equations are the same if we interpret the sums over
periodic orbits in (4.10) in terms of Lyapunov numbers,

(4.12)

.1 —
log, = lim — ? L; 'logh,; .
Equation (4.12) is reasonable since our construction, to be
discussed in Sec. IV A, shows that, during n iterates of
the map, each orbit on the attractor stays close to some
orbit of period n, and, furthermore, the natural measure
of the orbits which stay close to a given period n orbit is
L;'. [This latter statement is related to Eq. (4.2).] Thus
D,=D,.

The Kaplan-Yorke conjecture Eq. (4.11) has been
shown to apply in a variety of examples and numerical
experiments' (although it has not yet been proven in gen-
eral). The correspondence of the ¢ —1 limit of Eq. (4.5)
[i.e., Eq. (4.10)] with the Kaplan-Yorke formula (4.11)
supports our conjecture, Eq. (4.9).

Note that the two-dimensional map result for the
pointwise dimension on the unstable manifolds of period-
ic orbits, Eq. (2.2), is the same as (4.11) with d =2 and the
Lyapunov numbers of a typical orbit replaced by the
magnitudes of the eigenvalues of the periodic orbit,
Ayj>1>24,;. A generalization of Eq. (2.2) to d-
dimensional maps d > 2 is the statement that all points on
the unstable manifold of the jth fixed point of F" have the
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same pointwise dimension which is given by (4.11) with
the Lyapunov numbers A, replaced by the eigenvalues
Ay
PlThe Hausdorff dimension f(a) of the set of points on
the attractor with D,(x)=a can also be obtained directly
from this formulatxon In particular, define f to be the
same as the expression in (4.6) with ¢ =0 (for the Haus-
dorff dimension) and the sum restricted only to those
fixed points j which satisfy a+Aa>D,(x)>a,

P DAa,n)= 3 ARV,
j
a+Aa2Dp(5)2a
We then take limits,

£ D)= lim lim [ (D,Aa,n),
Aa—0n—x
and we obtain f (a) as the transition value of D for which
£ (D) goes from infinity to zero as D increases.

The results quoted in this section are for hyperbolic at-
tractors (Sec. VI). For the two-dimensional hyperbolic
case with A;; > 1> A,;, we have D,(x) > 1 for every point
on the attractor. For the nonhyperbolic case, D,(x) can
be less than 1, and we conjecture that (4.6) and (4.9) also
hold in the nonhyperbolic case but only for g values cor-
responding to a(q) > 1 [cf. (3.11)].

Another result concerning ergodic properties of a map
is that for the topological entropy S in terms of N,, the
number of fixed points of the n times iterated map F”,

S= lim —logN

n— o0

(4.13)

For this result for the case of axiom A attractors see the
papers by Bowen® and by Katok.’

V. EXAMPLES

We now illustrate the results on periodic orbits with
two analytically tractable two-dimensional, hyperbolic
map examples.

A. Example 1: The generalized baker’s map

The generalized baker’s map was introduced in Ref. 1
as a model for dimension studies which is amenable to
analysis yet also has nonconstant stretching and contrac-
tion. We divide the square 0<(x,y)<1 into a bottom
part, 0<y <a, and a top part, a <y < 1. This is illustrat-
ed in Fig. 6(a) (b =1—a in the figure). We compress the
bottom (top) part by a factor A, (A,) along x, and stretch
it in y by a factor a ~! (b~!). We then have two rectan-
gles, both of vertical height unity, one of width A, and
the other of width A, [Fig. 6(b)]. We then move the A,
width strip so that its lower left corner is at x =5, y =0
[Fig. 6(c)]. Thus we have a map of the
unit square into itself: x, ;=A(y,)x,+(3)uly,—a);

Y 1=YW )y, —au(y,—a)]; where Aly)=(A,,A,) for
y2a, y(y)=(@~',b~") for y2a, and u (y) is the unit step
function.

Using similarity arguments' it can be shown directly
from the map that the following transcendental equation
determines D, (cf. Refs. 2 and 3),
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(a) (b) (c)
FIG. 6. Schematic of generalized baker’s map.

1=4A+B,
(g—1(D, ~1)

(5.1

where 4 =A, 29 B= kb(q-l)w e

We now show that the equation determining the
periodic point dimension ﬁ is the same as (5.1). We can
specify an orbit for the generallzed baker’s transforma-
tion by its symbolic itinerary which specifies whether the
orbit’s location on successive iterates is in the top (sym-
bolized by a 1) or in the bottom (symbolized by a 0).
Thus a periodic orbit of period n which spends k <n of
its n iterates in y >a is represented by a string of n
symbols with k ones and n —k zeros. The eigenvalues
associated with such an orbit are A,=A""kAk,
Ay=a~"~®p—k Equation (4.6) yields
f(g,D,n) z Ny A"-kgk,
k=0
where A =g\ 9~ VP -V B—pp,;9-VP=D and N,
is the number of fixed points of the n times iterated map
which belong to periodic orbits which spend k iterates in
the top (¢ > a). It can be shown that N, is the number of
ways of arranging k zeros and n —k ones,

Nnk:(z) .

(5.2)

(5.3)

Hence Eq. (5.2) is just a binomial expansion,
f'=(A4 +B)". Letting n— o, we see that the transition
of (¢, D) from zero to infinity occurs at D =D, with D,
given by (5.1). Thus D, D for this example. [Thls cal-
culation is algebralcally eqmvalent to one in Halsey
et al.,* although the basis for their calculation is Eq.
(3.7), while the basis here is the periodic orbit formula,
Eq. (4.6).]

To find f(a),

we use (2.2) with A;; set equal to
a—(n—k)b—

and Ay; set equal to Aj "‘7»" to obtain an
equation relating a and k /n =«. This gives

(1—x)loga +«logh
(1—«k)logh, +«logh,

a=1+

Setting ¢ =0 and using only the terms in the sum (5.2)
with k /n values near that required by the specification of
a and letting n — «, we have (again using Stirling’s ap-
proximation).

(1—«)log(1—k)+klogk

Sla)=1+ (1—x)logA, +klogh, 5.4
with
k=[loga —(a—1)logh,}/[(a—1)log(A, /A,)
+log(a/b)] .
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To obtain the topological entropy we note that
N,= 3} _oNu. Since N, is the binomial coefficient
(5.3), this yields N, =2", a well-known result for the
baker’s map. Equation (4.13) then gives S =log2, also
well known.

It is also straightforward to verify Eq. (4.3). In partic-
ular, the right-hand side of (4.3) is
S(i)a" *bk=(a +b)"=1 (recall a +b =1).

B. Example 2: The baker’s apprentice’s map

Example 1 has the property that setting f(q,D,n)=1
gives precisely the desired result, Eq. (5.1), for all n, rath-
er than only in the n — « limit. The generalized baker’s
map is exceptional in this regard, and this is due to the
exact self-similarity of the attractor. A more typical ex-
ample, which is still analytically tractable, is illustrated in
Figs. 7. Again, we divide the unit square into top (y >a)
and bottom (y <a) parts. We again horizontally
compress the two parts by A, and A,. The bottom part is
vertically stretched by a ~!, as before. The difference is
that we now vertically compress the top part by a/b.
The parts are then reassembled in the square as shown in
Fig. 7(b). [We call this the baker’s apprentice’s map be-
cause the baker squashes and stretches the “dough” just
right, so that it is exactly twice its original length, while
the less experienced apprentice misses by not stretching
enough to make the length double.]

Again we can specify orbits by a string of ones (tops)
and zeros (bottoms). In this case, however, an orbit point
in the top is always mapped to the bottom. Thus a one is
always followed by a zero. Replacing B by
B=(b/a)\; 9~ VP-1 (to account for the compression
by a /b as opposed to the stretching by 1/b in example 1),
we see that Eq. (5.2) still applies. Equation (5.3) for N,
however, does not.

To find N,, we first note that the number of fixed
points of the n times iterated map is the number of possi-
ble sequences of length n which contain k ones and n —k
zeros, subject to the constraint that a zero always follows
a one (except when the last symbol is a one). We consider
two cases: (a) the last symbol is a zero, and (b) the last
symbol is a one. In case (a), to find the contribution to
N, from such sequences, we regard the sequence (1,0) as
a single symbol denoted by a 2. Thus a period n orbit
which is located in the top k times is represented by a
string of (n —k) symbols of which k are twos and n —2k

are zeros (clearly k <n /2). There are (7 ~*) such symbol

y Y i
| | e mmma
|
b ./k’_\\ |
- !
____________ /___ - ___JI
G{ — | !
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(a) (b)

FIG. 7. Schematic illustrating the baker’s apprentice’s map.
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sequences. Sequences ending in the top [case (b)], on the
other hand, end in a one. Since the sequence represents a
periodic orbit it must also start with a zero. All the rest
of the symbols can be thought of as zeros and twos. For
this case the zero-two sequence has n —k —1 symbols of
which k —1 are twos. There are (} ~%¥~!) sequences of
this type. Thus we have

Nu= "]+ [P 7R (5.5)
and N, =0for k >n/2.
Using expand

Stirling’s agproximation to
A (n—

Z (k)=(1/n)log(N 'B ) for large n, we have

Z(k)=(1—x)log(l—«)—«klogk —(1—2k)log(1—2k)

+klogB +(1—k)logd , (5.6)

where k=k /n and 1>k >0. The quantity Z is concave
down (d2Z /d«k* <0) and has one maximum in 1>k>0.
The location of this maximum is given by
ko1 —Kg)=(1—2ky)?B /A. Since the summand in Eq.
(5.2) is exp[nZ(k)], if n—>o and Z(ky) <O, then
f(¢,D)—0. On the other hand, if Z(ky) >0, then
(¢,D)— . Thus at the transition we have the condi-
tion Z (ky)=0. This gives a transcendental equation for
ﬁq,A+A§=l,or
1=a"kzl‘qm"_ n—qxﬁq-n ‘

Y baa,n,) (5.7)

We now show that D, also satisfies Eq. (5.7). We em-
ploy the similarity technique! ™3 [used, for example, in
Refs. 2 and 3 to obtain Eq. (5.1)]. We write the sum in
the partition function, 3,,p7/I7, as a sum over the top re-
gion plus a sum over the bottom region,
L()=T(1)+Tg(l). Similarly we write I'; as a sum
over the bottom left (x < }), region plus a sum over the
bottom right region,

FB(I)=FBL(I)+FBR(I) . (5.8)

Applying the map to one of the coverings of size /; in the
bottom, we see that it is compressed by A, and elongated
by 1/a. Thus this /; covering can be covered by (aA,)™!
coverings of size (/;A,). Each of these new coverings has
a probability (p;aA,). Inserting this information in the
partition function Eq. (3.7) we have that

b | (aA)
FT(”\G):HG— TFB(I)
b al
=;kgq_1)<pq—1)rﬂ(l)'
Thus,
b a?
FT(1)=;WF3(1/}\.G) .
Similarly,
(b/a)? !
r,,ﬂl):r“,wq_,—)rrum,,) .

b
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Also, 'y =(a/b)T' ;. Combining these in (5.8) and let-
ting / —0, we obtain (5.7), and hence D, =D, for this ex-
ample as well.

To find f(a) for the apprentice’s map, we again use
a=D,(x) with D,(x) given by (2.2). This gives

(1—«)loga +«klog(b/a)
(1—k)logh, +xlogh,

a=1+ (5.9

Including only values of k /n in the sum for [' which
nearly satisfies this relation and letting n — «, we see
that the Hausdorff dimension f(a) of the set where
a=D,(x) is given by setting Z(x)=0 in Eq. (5.6) (with
g =0),

(1—x)log(1—k)—klogk—(1—2k)log(1—2k)
(1—«k)logh, +« logh,

fla)=1+
(5.10)
where from (5.9)

loga —(a—1)logh,
" (a—1log(A, /A, ) +logla?/b)

k(a)

To find the topological entropy we perform the sum

n/2

Nn: 2 Nnk ’
k=0

again by using Stirling’s approximation. We obtain
N,~G", where G=(14+V'5)/2 is the golden mean.
Thus from (4.13) the topological entropy is S =logG.
Again one may verify Eq. (4.3) by direct calculation.
The quantity to be obtained is
n/2
lim 3 N (b/a)a"*.

= k=0

The computation is somewhat tedious, but straightfor-
ward (use Stirling’s approximation yet again), and yields
1, as it should.

To conclude this section, we emphasize that these
two-dimensional map examples have both been shown to
satisfy the conjectured equality of D, with the periodic
point dimension ﬁq [Eqg. (4.9)].

V1. DEMONSTRATION OF THE RELATION
OF UNSTABLE PERIODIC ORBITS
TO THE ERGODIC PROPERTIES OF ATTRACTORS

In this section we obtain the results stated in Sec. IV
and illustrated in Sec. V concerning the relationship of
periodic orbits to ergodic properties of chaotic attractors.
We shall do this only for the case of hyperbolic attractors
which have a dense set of periodic orbits (i.e., axiom A4
attractors). Although our arguments are strictly only for
the hyperbolic case, we believe that the results may be
valid much more generally. For any point x in the phase
space let W% x) and W*(x) denote the stable and unsta-
ble manifolds of x. The stable manifold of x is the set of
points y such that ||F"(x)—F"(y)||—0 as n— + o (Fig.
8); the unstable manifold is the set of points z such that
|IE~™x)—F~"z)||—0 as n — + o« (we assume here that
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FIG. 8. Schematic illustrating the stable manifold of a point
X.

F is invertible). A hyperbolic attractor is one for which
the following two conditions are satisfied.

(a) There exist stable and unstable manifolds W*(x)
and W¥(x) at each point x on the attractor that are not
tangent and whose dimensions, d; and d, are the same
for all x on the attractor, with d; +d, =d, where d is the
dimension of the space. [Here W¥x) and W*(x) are
smooth surfaces and d; and d, denote their Euclidean di-
mensions.]

(b) There exists a constant K > 1 such that for all x on
the attractor, if a vector p is chosen tangent to the unsta-
ble manifold, then

IDE(x || >K|z] ,
and if v is chosen tangent to the stable manifold, then
IDE(x | < |lz]| /K .

[Here DF(x) denotes the Jacobian matrix of partial
derivatives of F(x ) evaluated at x.]

From condition (b) nearby points on the same stable
(unstable) manifold approach (separate from) each other
with time at least as fast as exp(—«n ) [exp(kn)]. For ex-
ample, the magnitudes of the eigenvalues of F" at a
periodic point of a period n orbit must satisfy A,; >K"
for p<u and A,; <K ™" for p>u. In particular, there
can be no zero eigenvalues. In addition, it is very com-
mon for chaotic attractors encountered in practice to not
be hyperbolic because they have points where W*(x ) and
W¥(x ) are tangent [in violation of condition (a)]. For ex-
ample, the Henon attractor is of this type.

We first deal with two-dimensional maps (Secs.
VIA-VIB) with d,=d;=1 and then indicate how the
results can be extended to higher dimensions (Sec. VI C).

A. Measure

Imagine that we partition the space into cells C;, where
each cell has as its boundaries stable and unstable mani-
folds [Fig. 9(a)]. If the cells are very small, the curvature
of the boundaries will be slight, and we can regard them
as parallelograms [Fig. 9(b)]. Say we consider a given cell
C, and a large number of initial conditions sprinkled
within the cell according to the natural probability mea-
sure on the attractor. Imagine that we iterate each of
these initial conditions » times. After n iterates, a small
fraction of the initial conditions may return to the small
cell C;,. Since we assume the attractor to be ergodic and
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u

(@ (b)

FIG. 9. Cells in a partition of the phase space. The letters s
and u label stable and unstable manifold segments bounding the
cell.

mixing this fraction is asymptotically (i.e., in the limit
n— «) equal to the natural measure of the attractor in
the cell, u(C,). Let x, be an initial condition that re-
turns and x, its nth iterate. This is illustrated in Fig.
10(a), where we take the stable direction as horizontal
and the unstable direction as vertical. The line ab(c’d")
through x, (x,) is a stable (unstable) manifold segment
traversing the cell. Now take the nth forward iterate of
ab and the nth backward iterate of ¢'d’. These map to
a'b’ and cd as shown in Fig. 10(b). Now consider a rec-
tangle constructed by passing unstable manifold segments
e'f’ through a’ and g'h’ through b’. By the construc-
tion, the nth preimages of these segments are the stable
manifold segments ef and gh shown in Fig. 10(c). Thus
we have constructed a rectangle efgh in C, such that all
the points in efgh return to C, in n iterates. That is,
efgh maps to e'f'g’h’ in n iterates. The intersection of
these two rectangles must contain a single saddle fixed
point of the n times iterated map [cf. Fig. 10(d)]. Con-
versely, given a saddle fixed point, we can construct a rec-
tangle of initial conditions efgh which returns to C, by
closely following the periodic orbit which goes through
the given fixed point j of F” [the construction is the same
as in Figs. 10(a)-10(c) except that x,=x,]. Thus all ini-
tial conditions which return after n iterates lie in some

&k
f'—‘—'A__'ﬁ
cell Cy ¢ ¢
Xn a'egb
c nk
a¢—e b a b b
Xo 3
(a) d
ech
a'4-e-4b
c
e h
aé—¢ b
f g
(c) fndogl

— &y,

FIG. 10. Schematic of the construction of a rectangle in cell
C,. which returns to C,.
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long thin horizontal strip (like efgh) which contains a
fixed point of the n times iterated map. We label this
fixed point j and the magnitudes of its unstable and stable
eigenvalues A;; and A,;. Denoting the horizontal and
vertical lengths of the sides of the cell C; by &, and 7,
[cf. Fig. 10(b)], we see that the initial strip efgh has di-
mensions §; by (9, /A;) and the final strip has dimen-
sions £, A,; by 7, [cf. Fig. 10(d)]. Since the dynamics is
expanding in the vertical direction, the attractor measure
varies smoothly in this direction.’® Since the cell is as-
sumed small, we can treat the attractor as if it were essen-
tially uniform along the vertical direction. Thus the frac-
tion of the measure of C; occupied by the strip efgh is
1/A,;. Since, for n — o, the fraction of initial conditions
starting in C;, which return to it is u(C, ), we have

p(Cy )= lim 3 Ay (6.1)
n— | fixed points
in Cp

(Also note that, as n gets larger, k,‘j‘ and A,; get exponen-
tially smaller and the number of fixed points in C, grows
exponentially.) Since we imagine that we can make the
partition into cells as small as we wish, we can approxi-
mate any subset S of the phase space (with reasonably
smooth boundaries) by a covering of cells. Thus we ob-
tain the result, Eq. (4.2), of Sec. IV (with sz)\lj for the
case treated here; i.e., d =2 with saddle periodic orbits).

In the construction which we used in arriving at Eq.
(6.1), we have made two implicit assumptions. Namely,
we have assumed that the segment ab maps to a segment
a’'b’ which lies entirely within C, [i.e., we assume that
the situation in Fig. 11(a) does not occur], and we have
assumed that the preimage of c¢'d’ is entirely within C,
[i.e., Fig. 11(b) does not occur]. These situations might
conceivably occur if x, is too close (~§;A,;) to a stable
boundary or if x, is too close (~7, /A;;) to an unstable
boundary. The point we wish to make here is that, for
hyperbolic systems, the partition into cells can be chosen
in such a way that the situations depicted in Fig. 11 do
not occur. Such partitions are called Markov parti-
tions.

A Markov partition'® satisfies the following condition.
Say we have a Markov partition into cells C;. Then, if x
is in cell C;, and F(x) is in cell C;, we have that

i ¢
/ Q'eetfeb
Xn X
a - b
Xo <
ey
(a) (b)

FIG. 11. Schematic depicting what can happen if x, or x,, is
too close to the boundary of C; and a Markov partition is not
used.
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F(W“x,C))DWHE(x),C)),
E( WX(-_x_,Ck ))C WS(E(-E. )yC[) »

(6.2a)
(6.2b)

where W*(x,C, ) denotes a segment of the unstable mani-
fold of x which traverses C, passing through x, and simi-
larly for W¥(x,C, ). Equations (6.2) are illustrated in Fig.
12. [Note that, to satisfy (6.2a), the end points of
F(W"x,C,)) map to cell boundaries.] As an example,
Fig. 13 shows a succession of finer Markov partitions for
the baker’s apprentice’s map. The unit square, Fig. 13(a),
is mapped into itself and bounded by segments of stable
(horizontal) and unstable (vertical) manifolds. The
boundaries of the partitions are obtained by taking for-
ward iterates of the vertical (unstable) boundaries and
backward iterates of the horizontal (stable) boundaries (as
is explained further in the caption to Fig. 13).

Remark. The arguments as presented are not rigorous,
but can be made rigorous. In particular, our arguments
assume that we can approximate the map on each cell C;
as if it were linear. Also we assume that n is very large,
giving the mixing sufficient time to make the probability
of returning to C, nearly equal to the measure u(Cy).
Detailed calculations based on the second derivative of
the map show that our linear estimate (6.1) can be in er-
ror by at most a factor of 1te, where € depends on the
size of C; and the size of the second-order partial deriva-
tives of the map. Since we can make the size of C; uni-
formly small, we can make € uniformly small. Hence Eq.
(4.2) holds exactly.

B. Dimension

In Fig. 10 the attractor measure contained in e’'f'g'h’
is 1/);;. Say we cover e'f’'g’'h’ with boxes of edge length
& /Ay, corresponding to the narrow width of e’ f'g'h'.
There are m; =1 /(£xA,;) such boxes. Since the attrac-
tor measure in the cell is essentially uniform along the
vertical direction, the measure contained within one of
the small boxes of edge length §;A,; is 1/(A;m;). Thus
the contribution from e’f’h’g’ to the sum ¥ ;p?/I in Eq.
(3.7 is m;(Ay;m;) " UE Ay;) 77, o1

N S
k _ _ ’
A’?j}‘(ﬂ 1D —1)

EWHCD)  (wH,Cy)

\1Y
ol | % Flx)
Wu()_(,Ck)—;’; \
LN

Ch  Wix ,C)

FIG. 12. Schematic illustrating Egs. (6.2).
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FIG. 13. Several successively finer Markov partitions for the
baker’s apprentice’s map. Starting with (a), (b) is obtained by
taking a preimage of the horizontal line y =1 (which is a stable
manifold segment). (c) is obtained by taking a forward iterate of
the vertical (unstable manifold) segments, x =0 and x =1. (d) is
obtained by taking a preiterate of y =a in (b), and (e) is obtained
from (d) by preiterating y =a?, etc.

where
X =(qER~H~a=1 .

Note that X, depends only on the partition and not on n.
For a given partition there will be some cell k =k,,
where X, is the largest and some cell k =k, where X, is
the smallest

X, 2 X 2 X - (6.3)

Now summing over all boxes we have

1

2/ =3 X oo - (6.4)
: ; A‘{j)"(ﬁ 1XD —1)

Using the bound (6.3), we have for the quantity in (6.4)

1

Xo Dg, D) > X ———5
M 7 ij}‘-(z‘f IND -1)

szm f(q,D,n) ,

(6.5)

where ['(g,D,n) is given by (4.6). Letting / —0 in (3.9) is
analogous to letting n — «, since the box edge length
used for the cover of e'f'g’h’ is edge §;A,;, and A,; de-
creases exponentially with n. Letting n go to infinity, we
see that the right-hand side of (6.4) goes through a transi-
tion from zero to infinity at the same value of D (denoted
ﬁq) as does ¥ ,p?/I]. Furthermore, by (6.5) this transi-
tion also occurs at D =ﬁq for f(q,D) given by (4.6). This
is the desired result for the two-dimensional map case.

In the above we have used a particular covering in ob-
taining the result (6.4) for 3,p7/I7. In particular, we
have used the covering suggested by the dynamics and
the Markov partition [cf. Fig. 10(d)]. However, since we
have not optimized over all coverings, ﬁq the transition

value of lim;_,o 3, pf/I] might overestimate D,. That is
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ﬁq is an upper bound to D,, Eq. (4.8). It appears, howev-
er, that the covering of the attractor that we use is a rath-
er efficient one, and we therefore believe that D, =ﬁq for
typical chaotic attractors. This is confirmed for the ex-
amples in Sec. V. [Furthermore, note that our result has
turned out to be independent of the particular choice of

the Markov partition (i.e., £ does not involves X )]

C. Systems of higher dimension

Again we consider a Markov partition, this time in a
d-dimensional (d >2) space. A fixed point j in a small
cell C, has associated with it a d-dimensional paral-
lelepiped of initial conditions extending across the cell in
the stable directions and thin in the unstable directions.
The nth iterate of this parallelepiped is a d-dimensional
“slab”” which extends across the cell in the unstable direc-
tions and is thin in the stable directions. This is illustrat-
ed for the case d =3 and A;; > A,; > 1> A3; (i.e., two un-
stable and one stable direction) in Fig. 14. Using this
construction, it is readily seen that the derivation given in
Sec. VI A for Eq. (6.1) extends to the higher dimensional
case, for which we obtain Eq. (4.2). Now we turn to a
consideration of the partition function for d >2. As
shown in Egs. (6.3)-(6.5) of Sec. VIB, the dimensions of
the cells do not affect the final result; thus, for simplicity
we set the d edge lengths of the cell C equal to 1 (e.g.,
&, =n, =B, =1 in Fig. 14). Now we cover the slab (cf.
Fig. 14) with small d-dimensional cubes. We choose the
edge length of the small cubes to be A ), where we
leave k unspecified for the moment, except to say that k
is large enough so that Ay ;<1 (or k>u where u
denotes the number of unstable eigenvalues). The num-
ber of such small cubes necessary to cover the slab is
_ )\11‘7‘2]‘ T }‘kj 1

L

m.
j k
Ak +13) j

The probability measure of the attractor in the slab is

L j_l. Thus, if the measures in each cube used to cover
the slab are equal, then
1
o= =p . (6.6)
Pi mL, 2

The assumption of equal probabilities was justified in the

parallelepiped
«———gk/ fixed point of £"

B/ Nz {\%" T

N

N
|

FIG. 14. Schematic illustrating a cell in the partition for
d =3 with two unstable and one stable direction.
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two-dimensional case (Sec. VI B) by the fact that the mea-
sure varies smoothly along unstable manifolds. In the
case considered here, however, k can be greater than u.
The directions corresponding to subscripts
u+1,u+2,...,k are not stretching. Thus the assump-
tion of equal probabilities is not as well founded as it was
in Sec. VIB. Nevertheless, it is still useful, as we now
show. The contribution to ¥,,p7/I from the slab is
A+ 1)) 2sap P The sum ¥ . p? subject to the con-
straint 3 .. p;=L;™" is bounded by the value it assumes
when all of the p; in the slab are equal,

3 prsmp? for g<l,
slal

> pi>mp? for g>1.

slab
Thus using (6.6) for ¢ <1 can only increase f(q,D).
From Fig. 5(b) we see that this can possibly increase the
transition value of D but not decrease it. Similarly, using
(6.6) for g > 1 can only decrease f(q,D), again leading to
a possible increase in the transition value of D [cf. Fig.
5(c)]. Thus, we conclude that using (6.6) to obtain £ will
give a transition value of D for ' which is an upper
bound on D, [Eq. (4.8)]. Using (6.6) the contribution to
3..pf/1 from the slab is

q
1
(g —1)D
()‘(k+1)j)

1
mij

m; =L '[S;(D)]7 Y,

where
S (D)=m;L;(Ay ,1);)°
=hpjhg e Mgy P

In accord with the supremum for g > 1 and the infimum
for g <1 in Eq. (3.8), we choose k to make Sj;(D) as
small as possible. Increasing k decreases Sy;(D) so long
as D —k >0 (recall that A, ;); <1). Thus k =A, where
A is the integer part of D, and the minimum S;;(D) is
S;(D) given in Eq. (4.4). Now summing over all fixed
points and all cells, we obtain the desired result, Eq. (4.5).
We note that due to the possible nonuniformity of p;
within the slabs, our conjecture (4.9) is not on as firm
ground for d > 2 as it is for the case d =2 treated in Sec.
VIB.

VII. TRANSIENT CHAOS

In many situations there are sets with chaotic dynam-
ics which are not attractors. While such sets do not lead
to long-term chaotic behavior of typical initial condi-
tions, they do have an important effect on the gross dy-
namics.!*°~2! In particular, they manifest themselves
by the presence of chaotic transients. It is the purpose of
this section to extend some of the results of the previous
section to the case of chaotic sets which are not attract-
ing.

Imagine a region of space A which encloses what we
shall call a strange saddle. This is illustrated for d =2 in
Fig. 15. This figure shows the saddle as the intersection
of its stable and unstable manifolds, both of which may
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A

FIG. 15. Strange saddle and its stable and unstable mani
folds, and a region A containing the strange saddle.

be thought of as a Cantor set of roughly parallel lines. If
we sprinkle N, initial conditions uniformly in A, on sub-
sequent iterates, the orbits leave A never to return. Let
N, be the number of orbits that have not left A after n
iterates. For large n this number will decay exponentially
with time,

(N,/Ny)~exp—(n/7), (7.1)

where we call 7 the lifetime of the chaotic transient. We
can define a natural measure for this process as follows.
Let W be a subset of A. The natural measure of W is

pw(W)= lim Lim N, (W)/N, ,

n— o NO—*w

(7.2)

where N, (W) is the number of orbit points which fall in
W at time n. Equations (7.1) and (7.2) imply that if initial
conditions are distributed in accord with the natural
measure and evolved in time, then the distribution will
decay exponentially at the rate 1/7. (This is not an in-
variant measure.) Points which leave A after a long time
do so by being attracted along the stable manifold of the
saddle, bouncing around on the saddle in a, perhaps,
chaotic way, and then exiting along the unstable mani-
fold.!>!® The natural measure (7.2) is thus concentrated
along the unstable manifold of the strange saddle.

Proceeding as in Sec. VI A, one can show that [com-
pare with (4.3)]

lim e"”zLj“zl , (7.3)
n—o j

from which the transient lifetime can be determined,
L tim [Log (L) (7.4)
T n— o n j J

This equation has been previously conjectured in Ref. 8
where numerical experiments verifying it are also report-
ed. The quantity on the right-hand side of Eq. (7.4) is
called the pressure and plays an important role in the er-
godic theory of dynamical systems.

One can also ask what the dimensions D, and f (a) are
for the natural measure,’®2! Eq. (7.2). Proceeding as in
Secs. VIB and VIC, we find that the relevant partition
function is

1723

1

f(g,D,n)=em""3 IS, (et

i =i

(7.5)

In (7.5) the sum is over all fixed points of F" which lie on
the strange saddle. [The factors e"/” and e?"/" that ap-
pear in Egs. (7.3) and (7.5) do so essentially in order to
compensate for the exponential time decay of orbits in A
which start with initial conditions distributed in accord
with the natural measure (7.2).]

Formally expanding Eq. (7.5) in powers of ¢ —1 [as
was done in Sec. IV to obtain Eq. (4.10)], we find that the
information dimension of the natural measure is

log(xlXZ cct XA)—I/T

D ,=A+ — , (7.6)
log(1/A,,4)
where the Lyapunov numbers Xp in this equation are
defined in terms of the periodic orbits as follows:
_ . n/t 1
logA, = nler:c 2 Flogkpj . (7.7)
i i

Equation (7.6) has been given in Ref. 20 for the two-
dimensional case, with the Lyapunov numbers defined in
terms of typical orbits rather than periodic orbits [Eq.
(7.7}, and we conjecture that the two definitions yield the
same Lyapunov numbers. Note that for attractors 7—
and (7.6) recovers the Kaplan-Yorke formula, Eq. (4.11).

VIII. CONCLUSION

The main result of this paper is a partition function
formalism for determining the spectrum of fractal dimen-
sions in terms of unstable periodic orbits. Beyond its
conceptual appeal and potential use in further theoretical
developments, the utility of this formalism will depend on
how easy or difficult it is to extract information on
periodic orbits from numerical computations and experi-
mental data 810
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APPENDIX: NATURAL MEASURE

At the beginning of Sec. II we have given a definition
of the natural measure which is adequate for “most pur-
poses.” A difficulty with the definition as stated can
occur in special cases. For example, if the attractor has
zero phase-space volume and we let the set S be the at-
tractor itself, then, for almost every x in the basin of at-
traction, u(x,S) as defined is zero (for finite length trajec-
tories, the orbit approaches S but is not on S). A proper
definition should give ;(S)=1 for this S. To correct this,
one can define u(x,S) in a slightly different way. Let
pdx,S) be the fraction of time the trajectory originating
at x spends in the € neighborhood of S, and define

u(x,S)= lim+ pnlx,S) .

€e—0

If this u(x,S) is the same for almost every x in the attrac-
tor basin, then we denote this value u(S) and call it the
natural measure of the attractor.
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FIG. 6. Schematic of generalized baker’s map.



