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Numerical simulation of a coarsening two-dimensional network
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Topological correlations in a coarsening two-dimensional soap froth or polycrystalline network
are studied by computer simulation. %'ith use of a continuum model, grain growth in very large
systems of over 10' grains can be simulated. The correlations found between the size or the number
of vertices of adjacent grains are in accordance with semiempirical rules of metallurgy. The average
grain size grows in proportion to the square root of time, as predicted by mean-field theory. This
result, that correlation e8'ects do not modify the growth exponent, is consistent with dynamical scal-

ing and agrees with simulations done on a lattice.

I. INTRODUCTION

Grain boundaries in a polycrystalline material are an
interesting example of a system with topological disor-
der. ' Their motion is governed by the interplay of a
"geometrical" driving force (which tries to shorten the
boundaries) and the topological constraint of a space-
filling network. As a result of this interplay, correlations
develop between the geometrical and topological proper-
ties of the grains. These correlations are easy to visualize
in a two-dimensional (2D) model of the grain growth pro-
cess. For this model, various semi-empirical rules to de-
scribe the correlations have been proposed, obtained
from cross sections of polycrystalline metals or ceramics,
and from an analogous system: a soap froth sandwiched
between two plates.

Even for the simple 2D model, analytical progress
beyond mean-field theory has not been made. For this
reason numerical studies play an important role in the
theory of grain growth. In recent years, the Potts lattice
model has been studied extensively. ' '" In the present
paper, an alternative continuum model is investi ated,
which is based on (i) the macroscopic growth law' ' of a
grain, and (ii) a clever rule due to Marder' for deciding
when a grain loses or gains a vertex. As we will see, this
approach allows the study of very large systems (consist-
ing initially of over 10 grains) which can be followed for
several decades in time —before the number of grains has
dropped to the point where e8'ects of the finite system
size become noticeable. Long coarsening times are im-
portant for a full development of the dynamical correla-
tions, which asymptotically become independent of initial
conditions.

In Sec. II the method used is presented, and its relation
to both 2D grain growth and coarsening soap froths is ex-
plained. The results are discussed in Sec. III. In the
asymptotic regime a negative correlation is found be-
tween the number of vertices as well as the size of adja-
cent grains. The vertex-number correlation agrees with
the Aboav-%eaire rule ' of metallurgy, which says that
many-sided grains have few-sided neighbors. The size
correlation is similar to that found in a simulation' of
the coarsening of precipitated droplets (Ostwald ripen-

which describes the time dependence of the average drop-
let radius. In both 2D and 3D, one has a= —,

' for
diffusion-limited droplet growth and a= —, if the diffusion

of a solute molecule from one droplet to another is much
faster than its attachment at the droplet surface. Clearly,
grain growth is governed by the boundary kinetics, so
that one would expect to find a =—,

' regardless of correla-
tion effects —at least if one assumes that the presence of
topological constraints is not a fundamental distinction
between the coarsening of cells in a network and of
separated droplets. This has been a controversial is-
sue, ' ""' which is addressed in Sec. III in relation
to the simulation.

II. METHOD

The starting point of this investigation is Mullins's area
theorem

dA m.

M(n ——6),
dt 3

(2)

which relates the time derivative of the area A of a 2D
grain to its number of sides n and the grain boundary mo-
bility M. Equation (2) follows via simple geometry from
(i) the curvature law that each segment of a grain
boundary moves towards its center of curvature with a
velocity Vproportional to the curvature I,

V =MI

and (ii) the local equilibrium condition at the vertices that
in the infinitesimal region of intersection three grain
boundaries meet at equal angles of 120'. Note that Eq.
(2) implies that the total area of the system remains con-
stant in time, as it should, by virtue of Euler's theorem
that the grains have six sides on average. In the case of a
soap froth, the curvature law is replaced by Laplace's
law, together with a linear relation between pressure

ing). It is well established' ' that in Ostwald ripening,
correlation e8'ects do not modify the mean-field value of
the exponent a in the equation

8 (t) =const X r ',
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difFerences in adjacent cells and the gas Aux through the
cell walls. The result in 2D is still Eq. (2), with M re-
placed by the product of soap film permeability p and
surface tension coeScient o. Equation (2) is known in
that context as von Neumann's theorem. ' Von
Neumann's derivation assumes circular soap-cell boun-
daries, as required by pressure equilibration inside the
soap cells. It should be stressed that Mullins's derivation
of Eq. (2) does not assume that grain boundaries are cir-
cular arcs, which indeed they are not.

The fact that the shape of the grain boundary does not
appear in the growth law (2) is characteristic for two di-
mensions. In 2D the curvature of a grain boundary
equals dII)/dl ((() being the angle of the tangent to the
boundary and I its length). The integral of the curvature
along the perimeter of a grain is, therefore, simply

f dl I = f dl =2' g(—tr a; )—= — (n —6—),dl, I
' 3

regardless of the shape of the boundary. Here a, a„
are the internal angles at the n vertices of the grain,
which equal 2'/3 at local equilibrium. The time deriva-
tive of the area is proportional to the above integral,

dA = —const)& f dl I

where the constant equals M for grain boundaries and po.
for soap films. The growth law (2) now follows from Eqs.
(4) and (5).

The power of Eq. (2) is that it allows a reduced descrip-
tion of a coarsening network in terms of only two vari-
ables A and n per grain, when supplemented by a model'
for changes in n. By contrast, other simulations either
achieve such reduction by doing away with the network
structure (treating the grains as separated spherical
"droplets" ), or' " ' employ a full description in
which the motion of every boundary segment is followed
in time. Note that the reduction in the number of vari-
ables works only in 2D. Unlike the Potts model, the
present model has no obvious extension to three dimen-
sions.

To account for the dynamics of n, I adopt a simple rule
due to Marder. '" In principle, a grain can change its
number of sides either by a neighbor-switching "T1 pro-
cess,"or by a "T2 process" which involves the disappear-
ance of a grain, see Fig. 1. In the experiments of Glazier,
Gross, and Stavans, ' it is observed that in a coarsening
soap froth only a small fraction of the topological
changes occur via neighbor s~itching without a disap-
pearing cell. It seems reasonable to assume that the Tl
processes are also relatively unimportant during grain
growth, and the present model neglects them.

My algorithm now goes as follows. For each grain
i = 1,2, . . . , X track is kept of its area A, , its number of
sides n, , and its neighbors j; I, (k =1,2, . . . , n, , listed
clockwise). The areas are updated according to Eq. (2),
and whenever the area of a grain drops to zero, that grain
is eliminated via a T2 process. %'hen a four- or Ave-sided
grain disappears, one would need to know which sides

FKJ. 1. Sketch of grain boundaries undergoing topological
changes. (a) shows the T1 or neighbor-switching process;
(b)-(d) show T2 processes related to a disappearing 3-, 4-, or 5-

sided grain. [Notice how in (d) one grain ends up gaining a
side. ]
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FIG. 2. Time dependence of the average grain size, for or-
dered (0) and disordered (D) initial conditions. Data points are
averages over 10 runs. The solid line has a slope of ~. {Time in

units of 3A(0)/trM, and R in units of [3(0)/tr]I~', with A (0)
the initial average grain area. )

vanish first to make the choice which of its neighbors end

up losing a vertex in the T2 process. However, since
grains tend to be equi-axed, one may well assume that all
sides are equivalent and make this choice at random—
which is what I have done. The above scheme is rather
tedious to code because of the bookkeeping required. (If
one would not keep track of the network topology but ig-
nore correlations between difFerent grains it would essen-
tially reduce to Marder's mean-field algorithm. '4) What
is important is that the program is executed very rapidly,
a run with initially 10 grains taking only 10 min of cen-
tral processing-unit time on an IBM-3081 computer.

Initially, the system studied consists of 102400 grains
in either an ordered or disordered 2D array with periodic
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boundary conditions. In both cases the same state of
dynamical scaling is reached, although the way of ap-
proach to the asymptotic regime-differs. In the scaling
regime the distribution of the number of sides of a grain
is time independent, and the distribution of grain sizes
P(R, t) is time invariant when expressed as a function of
R /R(t). [The grain "size'" R, with average R, is defined
by R =(A/ir)' .] The asymptotic time dependence of
R (t) obeys Eq. (1) with a=0.50, see Fig. 2. Dynamical
correlations are observed between the number of vertices
of adjacent grains, as well as their sizes. These correla-
tions are illustrated in Figs. 3 and 4, where I have plotted
the time dependence of the correlation coefBcients

X:N' —g (n; /6 —1)(v, /6 —1),

0.06

0.00

0

0

0

x
&XX

O

0
0
0

Q
O

0
O

o

@=—X ' g (R;/R —1)(p;/R —1) . (6b)
I I I I Iilll i I l I IIIII i I i iiiill l I t iiiiI

The symbols p; and v; denote, respectively, the average
size and average number of vertices of the grains adjoin-
ing grain i (which itself has size R; and n; vertices).
The negative values of X seen in Fig. 3 imply that many-
sided grains tend to be surrounded by few-sided neigh-
bors, and, similarly, a negative f means that large grains
have small neighbors.
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FIG. 4. Time dependence of the size-correlation coefficient g,
defined. in Eq. (6b). Data points 0 and D as in Fig. 2.

III. DISCUSSION

Before proceeding to a discussion of the correlations, I
will first compare the results for the single-grain distribu-
tion functions obtained here with those from the Potts
lattice model simulations,

The time-invariant distribution of grain sizes P(R /R )

compares well with the distribution of Sahni et al. ,
' see

Fig. 5. Although obtained from 2D simulations, Fig. 5
happens to give a good description of cross sections of
bulk metals and ceramics, see Refs. 10 and 27. Apparent-
ly no experimental data for P (R /R ) in sheet material are
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FIG. 3. Time dependence of the vertex-number correlation
coeScient 7, defined in Eq. (6a). Data points 0 and D as in Fig.
2. The solid lines are predicted by the Aboav-&eaire rule.
Note the transient "dips" in curve 0, characteristic for the ini-
tially ordered system, which signal the sudden disappearance of
a substantial fraction of the grains. (The transient "steps*' in
Fig. 2, ease 0, have the same origin. ) The noise in the data in-
creases somewhat with time, because of the decreasing number
of grains —which drops from 10 to 300 during one run.

FIG. 5. Distribution of grain sizes in the long-time regime.
The histogram with the higher resolution follows from the
present model, the other from the Potts model of Ref. 10. As is
customary, the distribution is given as a function of
x:—' log(R/8 ). The probability density I'(x) is such that
P (x)dx equals the fraction of grains with x' between x and
X +6/x.
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available. For the distribution of the number of sides
P(n), Simpson, Beingessner, and Winegardi have col-
lected measurements on a variety of quasi-2D systems
(two polycrystalline materials and soap). Their data are
shown in Fig. 6 together with the theoretical predictions
of this paper and of Sahni et al. It seems likely that
di6'erences in the frequency of neighbor-switching pro-
cesses are responsible for the variations in P(n) between
the two models. In fact, these Tl processes tend to
broaden P(n), consistent with the observation that the
model used here (in which Tl processes do not occur at
all) gives a more narrow distribution than the model of
Sahni et al. The experimental distributions have a width
intermediate between the two predictions, and do not ap-
pear to favor one model above the other. A third single-
grain property of interest is the shape-size correlation ex-
pressed by the perimeter rule

R (n ) = —,'(n —2)R,

R(n) being the average size of an n sid-ed grain. In my
opinion ' this correlation should be seen as a consequence
of the shape-dependent growth rate (2) of the grains: a
large grain is likely to have many sides because many sid-
ed grains grow rapidly. A different point of view, based
on a maximum entropy postulate, is taken by Rivier.
The present model gives R (n) in good agreement with ex-
periment, see Ref. 31 for a detailed comparison.

%'e now turn from the single-grain properties to pair
correlations. The vertex-number correlation coeScient X
shown in Fig. 3 is in accordance with a semi-empirical
rule of metallurgy, the so-called Aboav-%eaire rule,
which says that

v(n)=5+(6+@)/n .

Here p=—((n —6) ) is the variance of the number of
sides distribution, and v(n) is the average of v, taken over
all n-sided grains i This . rule says that a many-sided
grain is likely to be surrounded by few-sided neighbors,
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FIG. 6. Plot of the fraction of grains with a given number of
sides in the long-time regime. Solid curve from the present
model, dashed curve from the Potts model of Ref. 10. The ex-
perimental data are from Ref. 30 for quasi-20 systems (trian-
gles, polycrystalline tin; squares, polycrystalline hexa-
chloroethane; circles, soap froth).

as has been observed in 2D soap-froth experiments and
simulations, as well as in sectioned polycrystalline ma-
terials. A statistical argument for such correlation is
given by Weaire. (A more complicated variant of this
rule is also in use, see Refs. 32 and 33.) From the
Aboav-Weaire rule follows the prediction X= —( 1

+p/6)((1/n ) —1/6), which describes very well the data
in Fig. 3-except during an initial transient. The size
correlation of Fig. 4 has not yet been studied experimen-
tally. The perimeter rule suggests the estimate

1(= ( [—,'(n —2) —1][—,'(v —2) —1])= —,'g .

This rough estimate predicts the sign and within a factor
of 2 the magnitude of g in the scaling regime, but cannot
explain the remarkable positive correlation peak observed
in the initially ordered system.

It is interesting to note that the asymptotic size corre-
lation between these neighboring polycrystalline domains
is of the same sign (but an order of magnitude smaller )

as that found in a simulation' of Ostwald ripening.
(Ostwald ripening is the growth of precipitated droplets
by difFusion of solute through a liquid or solid solution. )

For the latter problem perturbation theories' ' have
been developed, with the volume fraction of the dispersed
precipitate as the small parameter. Such an expansion
parameter is not available in the network, but the physi-
cal origin of the size correlation is presumably the same
as in Qstwald ripening: large grains have grown at the
expense of their neighbors, which will therefore be small.

Now that we have seen that the present model can
reproduce the correlations in grain growth, let us consid-
er the fundamental issue: Do topological correlations
modify the kinetic exponent a in Eq. (1)? Figure 2 shows
that the mean-field value a = —,

' remains unmodified This.
conclusion is consistent with the hypothesis of dynamical
scaling, which says that the average grain size 8 is the
only independent length scale in the system. Indeed, it is
a consequence of this hypothesis that the length A, —:&tM
is identica! to R up to a multiplicative numerical
constant —which implies Eq. (1}with a=-,'. [Here M is

the grain boundary mobility, defined via the curvature
law (3); in soap froths, k, =&tpcr with p the soap-film
permeability and cr its surface tension coefficient. ] Clear-
ly, the scaling hypothesis requires both the long-time lim-
it and a large system, so that the lengths which character-
ize the initial condition and the system size do not play a
role. In the case of a lattice model there is the additional
requirement that the average grain size should be much
larger than the lattice constant —to avoid the introduc-
tion of an additional relevant length scale. If this require-
ment is not met, the concepts of grain boundary curva-
ture and mobility become meaningless, and the above ar-
gument fails.

In light of the above we can try to understand why pre-
vious workers' *"obtained an anomalous a=0.41+0.02
when simulating grain growth on a lattice —whereas a
lattice model of soap-froth coarsening gave" a= —,', in

agreement with Fig. 2. I estimate from the information
given in Ref. 10 that E. & 10 lattice constants. This does
not seem especially large and deviations from the curva-
ture law of motion (3}due to kinks in the boundary might
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well be the origin of the anomalous a. After the present
work was completed, I learned that Grest, Anderson, and
Srolovitz have extended their Potts model to larger lat-
tices. They indeed 6nd a crossover to a= —,

' at late times,
when the grain boundaries become suSciently smooth
that one would expect the curvature law to describe the
dynamics. On the other hand, the soap-froth simulation
of %ejchert, Weaire, and Kermode, " as well as the
present work, are directly based on the macroscopic
growth law (2). Therefore, the network has a well-defined
mobility M (or Jscr product) at all times —and the simula-
tions give a = —, in agreement with the scaling hypothesis.

The experimental evidence remains inconclusive. In
polycrystalline materials, FY cc&t is found in some sys-
tems, but one observes a general tendency for slower
growth of the grains. In metal films this can be account-
ed for by the pinning of grain boundaries at surface
grooves. In bulk samples, deviations from a= —,

' have
been attributed to the obstruction of grain boundary mi-
gration by impurity atoms. These are additional compli-
cations, which may be removed as purer and purer sys-
tems become available.

In soap froths, much less experimental work has been
done. Early experiments by Smith (analyzed in Refs. 18
and 32) showed no sign of a scaling regime, but instead
gave a distribution P(n) which broadened steadily
without reaching a time-independent limiting form. In
Ref. 20 I have proposed an explanation for this anoma-

ious nonscaling behavior, based on the assumption that
the many-sided shape of large soap cells is due to the rel-
atively low surface energy of such nearly circular cells.
The new experiments by Glazier, Gross, and Stavans, '

however, disagree with the predictions of Ref. 20—and I
now believe that this surface-energy mechanism plays
only a minor role in the dynamics. The point is, as ar-
gued by Marder, ' that the soap 61m network is highly
constrained in its movements and cannot easily reach an
energetically more favorable structure. Marder's calcula-
tions show convincingly that the general features of these
new experiments can be explained without considering
the surface-energy mechanism [and also suggest that the
anomalous broadening of P(n) seen earlier was a tran-
sient eff'ect]. Glazier, Gross, and Stavans observe slower
than v't growth of the soap-cell size. The origin of this
anomaly is unclear, both 6nite-size efFects and variations
in p and 0. with film thickness may play a role.

In summary, a method for simulating coarsening of
very large 2D networks is reported, which reveals in-
teresting correlations and which demonstrates the validi-
ty of dynamical scaling in a topologically disordered sys-
tem.

Nate added in proof. My attention has been drawn to
interesting earlier work by Fradkov, Shvindlerman, and
Udler on this grain growth model. These authors stud-
ied single-grain properties, but did not consider correla-
tions between adjacent grains.
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