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In this paper a nonequilibrium description of the dynamics of electrons in a background gas un-

der the inAuence of space-time varying fields is presented. It is obtained by interpolating between a
kinetic and a moment formulation. To achieve this, the moment equations have been ordered by us-

ing characteristic scales. The ordering is then used to derive, from the kinetic equation, a new equa-
tion vahd only in the scale of the moment equations. This equation and a finite set of moment equa-
tions form a closed system which can be used to describe the dynamics of electrons under various

nonequilibrium conditions. Comparisons are presented between results obtained with this formula-

tion and those obtained from a kinetic model.

I. INTRODUCTION

The ensemble-averaged dynamic behavior of an assem-
bly of electrons in a background gas under the influence
of a space-time varying field may be described at a micro-
scopic level by the time-dependent distribution function,
f(v, r, t) (where v is velocity, r is position, and r is
time). ' Given the initial state of the assembly, the dis-
tribution function at any other time may be obtained
from either a kinetic-type equation such as the
Boltzmann equation (BE), ' or from Monte Carlo simula-
tions. ' %hen the fields are changing in space-time, it is,
in general, very difricult to obtain the solution to the BE.
Moreover, the Monte Carlo approach, although simple to
implement, is very time consuming and in some cases (de-
pending on the number of test particles used) prohibi-
tive. Once the distribution function is found, desired
macroscopic properties (which can be measured) can be
calculated by averaging over the distribution the corre-
sponding microscopic properties. '

An alternate approach for obtaining the macroscopic
properties of the assembly is in terms of moments of the
distribution, ' In general, an exact description of the as-
sembly requires an infinite set of moments (this is
equivalent to the fact that we need an in6nite set of mo-
ments to specify the distribution f ). These moments
obey a hierarchy (infinite set} of equations obtained by
taking moments of the BE.'

In contemplating a description in terms of moment
equations, two questions need to be addressed(1:) Can a
finite set of moments be used to describe (to some degree
of accuracy) the state of the system (this is equivalent to
asking under what conditions can a 6nite set of moments
determine to some approximation, the distribution func-
tion)'?, and (2) given that the previous question is
answered in the afhrmative, how can a finite set of mo-
inent equations be made determinate (since a finite set of
moment equations contains more unknowns than equa-
tions)i The first question is a well-known problem in
statistics and will not be given any attention here. It will
be assumed (from physical considerations) that a finite set
of moment equations can be used to describe the behavior

of the electrons. To assess the accuracy of this finite set,
the results for some representative cases must be com-
pared with those obtained from the exact distribution
function. This paper focuses on the second question,
namely, how to obtain a closed set of moment equations
which are valid in the presence of space-time varying
6elds. A number of approaches have been proposed to
accomplish this task. These approaches can be divided
into four general categories. They are respectively based
on the assumptions that (a) the distribution function can
be represented by an expansion in terms of a 6nite num-
ber of Legendre polynomials, ' (b) the distribution func-
tion is a displaced Maxwellian, " (c) the unknown vari-
ables and coeScients appearing in the moment equations
are given by phenomenological equations, 'i and (d) the
system evolves through a series of equilibrium states so
that steady-state results for the unknown parameters can
also be used in transient situations. ' The 6rst approach
is closest in spirit to a derivation based on 6rst principles.
This is important since it can provide guidance as to
where the model is likely to fail.

In Sec. II a mathematical formulation of the problem
and the foundation for an approach to its solution are
presented. This approach has also been discussed in con-
nection with electron dynamics in semiconductors. ' In
Sec. III closed sets of moment equations are derived for
three levels of description. An example is given in Sec.
IV to illustrate the capabilities of the model. Some con-
cluding remarks are given in Sec. V.

II. FORMULATION OF THE NONEQUILIBRIUM
MACROSCOPIC DESCRIPTION

The state of an assembly of electrons in an ionized
medium can be described at a microscopic level by the
distribution function f(v, r, t) in (v, r) space. This func-
tion obeys the BE; namely, '

8,f+ v V',f+ E.V„f=I'(f),

where E=E(r, t ) is the electric field (either externally ap-
plied or arising from space-charge), and I'(f ) is a non-

37 Q~1988 The American Physical Society



37 NONEQUILIBRIUM MACROSCOPIC DESCRIPTIONS OF. . . 1655

linear operator which accounts for collisions of the elec-
trons with neutrals, electrons, and ions. In this paper it is
assumed that the neutral and ion distributions are not
significantly disturbed by collisions with the electrons
and that (two-body) electron-electron interactions are
small in some measure. For this case, I'(f ) can be linear-
ized. ' This linear operator is denoted by I(f ). No
specific form for the operator I need be assumed at this
time. This operator describes a number of physical pro-
cesses (interactions between electrons and background)
which occur in diferent space-time scales. The scales of
interest in the formulation of a macroscopic model are
the fine-grained (kinetic) scale, where changes occur in a
particular collision time and/or distance, and the coarse-
grained (hydrodynamic) scale, where changes occur in a
macroscopic scale. '

At the macroscopic level, the properties of the elec-
trons are given by the "state vector" (of infinite dimen-

sion) S, whose components are moments of the distribu-
tion. " That is, 8=[m J(r, t); j=i, . . . , X, . . . 00],
where m~ corresponds to a moment of the distribution
which may be a scalar, vector, or tensor. The equations
for the moments are obtained by taking appropriately
weighted integrals (in v space) of Eq. (1).' The equa-
tions for the first three moments [namely, density n(r, t ),
mean energy F(r, t },and average velocity, u(r, t )] are

B,n+V (nu)=vn,
d, (n r)+ V & ev ) qE n u =——v,nr,

B,(nu)+ V & vv &
— En = vnu, —

P72

(2a)

(2b)

where the bracket implies an average over the distribu-
tion, e = —,

' mu, and v, v„and v are the (space-time-

dependent) effective-ionization, energy-exchange, and
momentum-exchange frequencies. These frequencies are
defined by

vn = f 1(f)dv,

—v,no= f ,'mu I(f )dv, —

—v~ nu= vI v (3c)

(3a)

(3b)

An integral without limits implies integration over all
space. Since it is difficult to ascribe physical significance
to higher-order moments, their equations of evolution are
seldom written down. The in6nite set of moment equa-
tions is equivalent to Eq. (1).'

Because of the diSculty in obtaining solutions to the
equations for either S or f, a description in terms of a
finite number of moments is desirable (assuming that this
finite system is less difficult to solve), that is, a description
in terms of a state vector SN = 1m&', j=1, . . . , XI. Un-
fortunately, any finite set of moment equations is not
determinate. 'z For example, the set of Eqs. (2) contains
unknown averages over the distributions (quantities in
brackets) and unknown rates [Eqs. (3)]. To calculate
these unknowns and thus arrive at a determinate set of
equations for S~, f needs to be found. This implies hav-

ing to solve Eq. (1), which is exactly what is being avoid-
ed.

A similar problem arises in classical gas kinetics, which

has been the subject of much investigation. ' ' For
some cases in gas kinetics [namely, those for which the
external forces are zero and the spectrum of the corre-
sponding (linearized) collision operator I(f ) is either
known or significant properties are known], it is possible
to obtain formal (exact) expressions for f, i.e., expansions
in terms of the eigenvectors of I(f ). ' ' By proper or-

dering of the terms, these expansions may be truncated
resulting in an approximate but manageble expression for
f. With this f, a determinate set of macroscopic equa-
tions can be obtained. ' This procedure is mathematical-
ly rigorous, and it is possible to assess, a priori, the mag-
nitude of truncation errors and the range of validity of
the solution. As an example, the one-dimensional initial
value problem of a gas of Maxwell molecules has been in-

vestigated in some detail using this procedure. ' In this
example (representative of ideal fluids), the spectrum of
the operator yields a set of modes that are decaying in
time. The three least damped modes have equal decay
rates, and are known as hydrodynamic modes [in homo-
geneous situations, these modes su8'er no damping, and
collapse into a single mode, i.e., the smallest eigenvalue of
I(f ) is threefold degenerate]. The modal amplitudes of
the hydrodynamic modes correspond to the particle den-

sity, average velocity, and mean energy. ' The hydro-
dynamic time regime corresponds to time scales for
which only these modes need to be considered in the rep-
resentation of the distribution function (all other modes
are exponentially small).

In contrast to classical gas dynamics, very little is
known about the properties of either I(f ) or the operator
(qlm )E V„I(f) in E—q. (1) for the case of electrons in a
weakly ionized gas. In this case, the nature of the in-

teractions between electrons and background makes it
very difficult to gain information as to the properties of
these operators. Because of this, a more physical ap-
proach is proposed. The key to this approach is the use
of information from the macroscopic equations to e8ect
the truncation. This is outlined below.

First, the moment equations are ordered according to
their characteristic scales. This step requires a priori as-
sumptions about the relative magnitude of these scales.
They can be made from physical considerations. In any
event, the ordering that is used needs to be confirmed
after the solution has been found. Equations (2a)-(2c)
have been ordered according to their characteristic times.
These times are (in decreasing magnitude}: r (effective
electron production and/or loss time =v '), r, (energy-
exchange time =v, '), and r~ (momentum-exchange
time =v '). The higher moment equations would also
have to be ordered accordingly. It is assumed that their
characteristic times are smaller than those defined above.
Note that, in general, ~,~ v for weakly ionized gases.

Next, the number of moments in the state vector S& is
determined from physical consideration, and from the
scale of the desired description. Alternatively, the num-
ber of moments that are used determines the coarseness
of the macroscopic description. This is because the mod-
el is only valid for time scales of the order of the smallest
characteristic time contained in the finite set of equa-
tions.
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Finally, note that the distribution function f, which
satisfies Eq. (1), contains information to all orders of time
greater than a microscopic collision time. ' This time is,
in general, much smaller than the characteristic times in

any 6nite set of moment equations. As far as the moment
equations, f contains "too much information. " Thus, to
obtain a determinate set of moment equations, it is
sufficien to use an f which only contains information in
the scale of the moment equations. This distribution, the
macroscopic distribution function f&, obeys a
"macroscopic-kinetic equation. " The equation of evolu-
tion for fst, together with the finite set of moment equa-
tions, form a closed set. This set can be used to describe
the nonequilibrium dynamics of the electrons in a time
scale corresponding to the characteristic times of the mo-
ment equations. This description is termed nonequilibri-
um because f may be space-time dependent. In fact, in
the time scale of the moments, it is equivalent to f.

A number of procedures can be used to arrive at an
equation for fst. The objective in any of these pro-
cedures is to change the scale of Eq. (1) from the micro-
scopic to that of the 6nite set of moment equations. ~ * '

In this paper the technique proposed by Bogoliubov is
used. A problem arises when trying to solve the equa-
tion for f&. This has to do with the issue of assignment
of initial values to f~. ' In this paper it will be assumed
that the moments of fst correspond to the (approximate)
macroscopic state. The procedure outlined above is used
in Sec. III to obtain closed sets of moment equations val-
id in three difFerent regimes (time scales).

IIL THK NONKQUILIBRIUM MACROSCOPI&
EQUATIONS

The approach outlined in Sec. II will now be used to
obtain the nonequilibrium macroscopic equations. The
characteristic times of the macroscopic equations [Eqs.
(2a)-(2c)] can be used to define various levels of descrip-
tions. The most coarse-grained description is valid for
times in the order of r (see Sec. II). From Eqs. (2a) —(2c),
since v & v, & v, there is a time for which the mean ener-

gy and average momentum of the electrons have relaxed
to a state of quasiequilibrium where their subsequent
variation is in the scale of r, i.e., the scale of the density
variations. For such times, the macroscopic evolution of
the system can be described in a single time scale. Thus,
S,=[n(r, t)]; that is, the macroscopic state vector con-
tains a single moment, the density.

By analogy with classical gas kinetics (see Sec. II), the
time regime for which this description is valid (namely,
the longest time scale) is named the hydrodynamic re-
gime. .However, in contrast to gas kinetics, the properties
of this state can be derived from a single macroscopic
variable (instead of three), the density. Note that the evo-
lution of the system to the hydrodynamic regime cannot
be determined from the properties of the Si state (see
below).

Progressively less coarse-grained levels of description
can be de6ned by systematically using an additional mo-
rnent in the state vector. This assumes that the charac-
teristic times in the moment equations are not degenerate

(i.e., equal). In this case, there are times for which the
higher-order moments have relaxed to a state in which
their scale of variation is the same as the moments being
used in the characterization of the macroscopic state. If
there was a degeneracy (for example, v, ' =v '), then the
corresponding moments must be collectively taken as
components of the state vector. For cases of interest
(electrons in a weakly ionized gas), the characteristic
times are not, in general, degenerate. ' Thus, the next
less coarse-grained level of description is in terms of
S2 ——[n(r, t),e(r, t)]. This is valid for times in the order
of v, '. From a practical point of view, the least coarse-
grained description of interest is in terms of
S,=[ n(r, t), F(r, t), u(r, t)), which is valid for times of the
order of v

In contrast to (linear) gas kinetics, these states are not
orthogonal, so that there is no one-to-one correspondence
with the modes of gas kinetics. The gas kinetics modes
evolve independently, and their decay times are given by
the eigenvalues of I(f ). ' ' The macroscopic states, on
the other hand, evolve sequentially, that is, S3 evolves
into S2 and subsequently into S,. However, insight can
be gained into the nature of the "kinetic modes" for the
electron assembly by comparing the two systems (while
keeping in mind the differences between them). Recall
that in the gas kinetic hydrodynamic regime (i.e., the
longest time scale}, three moments are required to de-
scribe the system. ' ' This is due to the degeneracy of
the smallest eigenvalue of the corresponding 1(f). This
degeneracy is reffected in the gas kinetic macroscopic
equations by the fact that v=v, =v =0. Thus, the gas
kinetic hydrodynamic regime corresponds to a state S3.
As previously discussed, the macroscopic rates for an
electron assembly are not degenerate. Thus, conversely,
this may be a reflection on the characteristic time scales
of the corresponding (unknown) kinetic modes. In the
longest time scale (i.e., hydrodynamic regime), only a sin-
gle mode survives which corresponds to the S, state. The
nature of this and the other two modes, and how they
combine to yield the S3 or S2 states, is yet to be deter-
mined.

To make the equations that define the macroscopic
states, S;, i =1,2, 3, determinate, the macroscopic-kinetic
distribution fst must be found. To achieve this a macro-
scopic equation of evolution for fst in the time scale of
the S s needs to be derived and solved. This is carried
out below for each level of description of interest; name-
ly, S;, i =1,2, 3.

A. The 8& state (defined for times -v '
)

In this ease, only Eq. (2a) and the equation for fM f~-—
in the v. time scale are necessary to describe the evolution
of the electrons. These two equations form a closed set.
The equation for f is obtained by changing the time
scale of the BE [Eq. (1}]from the fine-grained to a r scale.
This can be achieved using a technique introduced by Bo-
goliubov. Mathematically, the change can be accom-
plished by the following relation:

f(v, r, t)=f~[v, n(r, t)] .
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That is, in the ~ scale, the space-time dependence of the
distribution is not explicit, but implicit through a depen-
dence on the density. The equation governing the
changes in fl't can be found using Eqs. (1) and {2a). From
Eq. (4), the changes in f can be written as

E V.fM I—(fM )+f~ f I(fw )dv

=fM I f~ V d V'V Il

f~—V'V Il —IlfM I(f~ )dV,
0 0 0

(10)

(sa)

(5c)

The time derivative of the density may be eliminated
from Eq. (5a) by using Eq. (2a). After placing Eqs. (2a)
and (5) into Eq. (1), the following equation is obtained for
the distribution:

d„fM —f B„f~ivdv Vn+ JI(f~i)dv

where V"~5 'V, and the last term is an approximation
to the corresponding term in Eq. (6).

The right-hand side of Eq. (10) constitutes a source to
an equation similar to Eq. (8). After linearization, the
solution to Eq. (10) may be formally written as

f~ ( vn )= I 6( v, v')S(v', n)d v', (11)

where S is the right-hand side of Eq. (10) and 6 is the
Green's function of a linearized Eq. (8). Substituting for
Sin Eq. (11),

+V.VII'„f~+ E V„f~=I(f~) . (6)

fM (V, II )=flit II + fl 'V Il

where

(12a)

The subscript r has been omitted from the spatial gra-
dient. This practice is continued in the rest of the paper.
If the deviation from spatial uniformity is small, a param-
eter 5 can be introduced into Eq. (6) which is indicative
of this assumption. ' Using 5 as a basis for a perturba-
tion expansion, the distribution may be expressed as

fl(v, n)= g5'fII't(v, n) .

Substituting this expression into Eq. (6) leads, in zeroth
order, to the equation

E V„fst (v, n)=I(fl ) d„f~ I'I—(f~ )dv,

which has the general solution

f~ (v, n)=f~ (v)n(r', t),

where r'=5r, and at (v) obeys the equation
0

fM ——f 6(v, v') fst (v ) f fl (v")v"dv"

and

f~ (v )v —dv
0

(12b)

fw ———J 6(v, v')fw {v') f IlfM {v")]dv" dv'.

f~ =fIIt {v)n(r', t )+5fl Vn, (13)

(12c)

Since J fl dv=O (note that f f dv=n and jf~ dv

has been taken to be one), the fl 's above must satisfy
1

the conditions J f~ dv=O, i =0, 1. This implies that
li

f 6dv=O.
The results obtained above can be summarized as fol-

lows. The distribution function in the ~ scale satisfies Eq.
(6). To first order in 5, its solution is given by

E V.fM, =I(f~, ) f~, I I(fw, )dv—

with the condition

(8)
where

fM (v ) =fw, (v )+5fIJ „(v)

v dv=l

Note that the same symbol has been used for f~ ( nv)

and fst (v). The context in which they are used deter-
0

mines the argument. Equation (8) has the form of a
steady-state, homogeneous Boltzmann equation, and fit
can be identified as the (zeroth-order) steady-state distri-
bution of a homogeneous assembly of electrons in a
homogeneous field defined by the value of the field at
r', t. This is the distribution that exists at (r', t) if lo-
cal equilibrium with the field is assumed. A number of
techniques are available for solving this equation. fM
can also be obtained using Monte Carlo methods. '

Noting from Eq. (7) that B„fl't (v, n)=f~ (v), the

equation of 0(5) is found from Eq. (6) to be

This result is the density gradient expansion which has
previously been a priori assumed for the distribution func-
tion. The use of Eq. (13) into Eq. (6) yields a diffusion-
type equation for the density,

I3 n = —(vd —v„) V'n +D V'V'n +v n (14)

These coe%cients depend on the applied field through the

where vd —vdg is the efFective drift velocity, D is the
diffusion tensor, and v,- is the ionization rate under uni-
form field conditions at the values of the local field. vd
is the contribution to the drift velocity resulting from the
fact that J I(f )d v&0. These quantities are defined as

vd ——I vf~ dv, vdg ——5 I I(fl )dv,

D= —5 I vf dv, v, = f I(f~ )dv.
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f~,. They can be tabulated as a function of field by nu-

merically solving for the fM, and using the above equa-
tions. Once these coeScients have been evaluated, Eq.
(14) may be used to describe the evolution of the elec-
trons. Thus, in this time scale, the above results corre-
spond to nonequilibrium di8'usion theory.

More accurate expressions for the transport parame-
ters can be obtained by explicitly introducing the time
scale of the 6eld in the distribution function. That is,
by letting f=fM(v, n(r, t),E(r, t)). Note that the mac-
roscopic description still corresponds to time scales of the
order of v . Using the techniques discussed in this sec-
tion, transport parameters and rate coeScients can be ob-
tained which explicitly account for 6eld variations.
%ith this method, no a priori assumptions need to be
made about the form of the distribution as done in Ref.
27. A similar approach can be used to obtain expressions
for the transport parameters in the other descriptions (see

S2, and Si below) which explicitly account for field varia-
tions. This extension of the results presented in this pa-
per will not be discussed further.

tern. The procedure for obtaining the equation for fM
follows along the same lines as the procedure for fit (Sec.
III A). In this case the change in scale is accomplished
by the relation

f(v, r, t)=fM(v, n(r, t), F(r, t)) . (15)

dJ =5nfMdin+5+~5ie (16a)

V,f=d.f~Vn+ dt"~« (16b)

V,f=V.fM . (16c)

The time derivative of the density and mean energy may
be eliminated from Eq. (16a) by using Eqs. (2a) and (2b).
Note that in this scale the average velocity u is obtained
from

Note that fJ changes in two characteristic time scales, r
and r, Fr.om Eq. (15), the changes in f can be written as

B. The Sq state (defined for times —v, ') nu= f vf~dv (17)

In this case, Eqs. (2a), (2b), and the equation for

fst =fst in the r, time scale are used to describe the sys-
After placing Eqs. (2a), (2b) and (16) in Eq. (1), the follow-
ing equation is obtained for the distribution function,

B„fl —f B„fstvdv Vn+ f I(f~)dv +B,f~~n

&( —f B„f&evdv. Vn —f djMevdv VF+ E f vf&dv+ f eI(f&)dv

+v VnB„fM+VVeBQM+ E V„fl=I(fir ) . (18)

[The term proportional to 8, inn is assumed to be small
and hence has been neglected in Eq. (18). If this is not
the case, Eq. (18) should be modified accordingly. ] To ex-
pedite the algebra in obtaining a solution to Eq. (18), re-
sults obtained for fji't [see Eq. (13)] will be used as a
guide. That is, let ftit be expressed to first order in spa-
tial gradients by

f~(v, n, F) =fst (v, e }n+5fM (v, r)n

This is a nonlinear equation for f~ . Neglecting the first
0

term (assuming that the effective electron gain integral is
small), and using the following definitions:

u=U~ = u(E)= f vf~ dv, (21a)

—vw= f eI(f~ )dv, (21b)

Eq. (20) becomes

+5fM (V, F) Vn+5fst (v, e) Ve . E u, —v~ agMO+ E V„fM =I(f (22)

The objective for the rest of this section is to arrive at the
lowest-order solution for fz. Higher-order approxima-
tions and the efFect of the gradient terms are to be con-
sidered in the future. Thus, only the first term in this ex-
pansion will be retained. The equation for f~ is found

0

to be

At this level of approximation to fst(v, n, F}, Eqs. (22),
(2a), and (2b), form the closed set of equations that de-
scribes the evolution of the system. fl is made to satis-

0

fy the following normalization conditions (see comment
at end of Sec. I):

f~, —f 1(fst, )dv f fM ( ,'mu )dv=c-,

f f~ dv=l

(23a)

(23b)

+dj~, E. f vf~, dv+ f el(f~, )dv

+ E.V.fM, =1(f~, } .

The solution to Eq. (22) can be obtained as follows.
Performing a change of variables from (e,v) to (co,(,vi),
where

v=UFaF+v~,
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(where a„ is a unit vector parallel to the field direction),

g= UF —E/rnu~

m =e/mu, ,

F-„a—ifM + (~„—&)aZM =I(f„' ), (24)

where

For (E,q E)/F.—,q
small (or fM a slowly varying func-

tion of co), the lowest-order solution to Eq. (24) satisfies
the following equation:

&.qdgf~ =1(&sr ) (26)

This equation has the form of a steady-state BE with

(q /rn )E,„as the source. It is equivalent to Eq. (8) which
arises in connection with the description of the 8, state.
Thus, to lowest order, the macroscopic-kinetic distribu-
tion function of the Sz state obeys a steady-state BE in an
equivalent field. This observation has a physical interpre-
tation. The actual field E appears as a source term in the
moment equations and as such causes changes in the state
Sz. These equations describe the evolution of Sz in their
characteristic time scales. Variations in F. faster than
these time scales are "filtered" by them, that is„as far as
changes in Sz are concerned. Thus, it is the "filtered"
field which the state really "sees." This filtered" field is
the equivalent field in Eq. (26).

Equation (26) can be solved numerically with E,q
as a

parameter. By requiring that

F= f (-,'mu )f~ dv,

a table for e vs E,q can be generated. Moreover, using
Eqs. (3a) and (21},all unknown variables and/or paraine-
ters in Eqs. (2a) and (2b) can be tabulated as functions of
F, or equivalently of F. In this fashion, v= v(F),
v, =v,(e), and u =u, (e). Once these tables are generated,
the system of equations describing the Sz state becomes
determinate (since the unknowns have been determined
as functions of the state variables).

C. The Si state (valid for times —v ')

In this case, Eqs. (2a) —(2c) and the equation for
fM

=f in the r time scale are used in the description
of the system. In the spirit of Eqs. (4) and (15), the dis-
tribution function is assumed to depend on space and
time as follows:

f (v, r, t )=f~(v, n(r, t ),c(r, t ),u(r, t )) .

Although obtaining an equation for f~ is straightfor-
ward, its solution is more dificult to find than for the S,

Ui =Up

and using the chain rule, Eq. (22} becomes [to zeroth or-
der in i}~u,(e)]

and Sz descriptions. This stems from the fact that, even
in lowest order, it is an equation in three variables
(e, u, v).

In this paper instead of proceeding to find an equation
for f~ and obtaining its solution, an approximate expres-
sion for f~ is presented. This approximation is motivat-
ed by Grad's concept of an eigensolution of the BE.' A
more complete theory [in essence, a more rigorous
derivation of an expression similar to Eq. (27) below] is
under investigation.

In all cases of interest, the nonequilibrium macroscopic
equations are solved using numerical methods. Kith
these methods, the field E in each time step is taken to be
constant. Thus, the problem of finding a solution for fM
in a time step corresponds to the approach to equilibrium
of an initial distribution in the presence of a constant field
(i.e., an initial value problem in each time step}. From
the discussions in the previous sections, it is known that
after a sufficient time, the "initial distribution" will

evolve into fM (if the time step is long enough). Thus, an

approximate expression for fI can be obtained by as-

suming that this evolution can be modeled by a relaxation
process. Let the macroscopic state S, and fM be known
at time t when th.e field is E(r, t&). Note that the field

does not change in the interval (t, , t, +, ) and that the dis-

tribution f~, (t, ) (i.e., the distribution at time t ) need not
be the equilibrium distribution for the field E(r, t ).
Thus, in the spirit of the above discussion, the distribu-
tion at time tj +p (where p is a continuous variable) can
be written as

fM(&, +p)=[fM(&J ) fM(&;+p)—]e "p+f~(&j+p)
(27)for pgO,

where v J is the average momentum-exchange frequency
in the interval tj, t +, [that is, v Jp= fiov (p)dp]. That
is, fl approaches f~ exponentially, due to the relaxation
of the fast component (fM fM ) resultin—g from rnomen-

tum transfer at an average rate v . The distribution at
J

the end of the interval is found by letting p=ht in Eq.
(27). Once fM(t/+, } is found, v, v„and v can be ob-
tained from Eq. (3) at tj+i. With this information, Eqs.
(2) are determinate at tj+, and can be used to obtain the
state 83 at t, +z. This procedure is to be repeated at each
time interval. Note that to implement this approach fJ
must also be known at each step. This problem has been
discussed in Sec. III C.

A simple alternative to Eq. (27) is to approximate f~
by fM in the calculation of the unknown variables in the
macroscopic equations [Eqs. (2a) —(2c)]. This substitution
in lowest order leads to the phenomenological equations
proposed by Shur for space-independent conditions.

IV. EXAMPI.K: THK RESPONSE
QF A HOMOGENEOUS ASSKMBI.Y OF KI.KCTRONS

IN NITROGEN TO A STEP CHANGE IN FIKI.D

In this section the response of a homogeneous assembly
of electrons in a background of nitrogen to a step change
in electric field is investigated using the theory developed
in Sec. III. For the sake of simplicity, ionization by elec-
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(28b)

where v, , i=a, m, are obtained from Eqs. (3b) and (3c)
with f=f~.

These equations have been solved numerically using
finite difFerence techniques. At the jth time step, the
mean energy e(j ) and average velocity u (j ) are obtained
from the discrete equations, given their values and the
rates at the previous time step, j—1. After substituting
in Eqs. (3b) and (3c) for f~~ (Eq. 27), the rates at the jth
time step are obtained from

v;(j )=[v;(j-l)-v,' '(j)]e ' +v'; '(j), (29)

where i =e,m, and the superscripts correspond to rates in
the S2 time scales (see Sec. III C). The v', 's are obtained
from Eqs. (3b) and (3c), with f=f~. fIir is obtained
from Eq. (26). This equation is solved using a set of cros-
section for electron-N2 interactions. ' For simplicity, it
has been assumed that the collisions are isotropic. The
values for the v', 's have been tabulated as a function of
mean energy (see discussion in Sec. III 8) and are shown
in Table I.

In these calculations, v J has been approximated by
v (j—1), which is the momentum-exchange frequency at

tron impact has been treated as an inelastic process with
no particle gain; that is, n(r, t ) =const. The evolution of
the electrons is discussed in the context of the 83 time
scales. This is dictated by the time scale of the applied
field. For this example, Eqs. (2a) —(2c) reduce to

i3, E= —v 6+QQE,

the beginning of the interval. Thus, with e(j—1),
u(j —1), and v, (j—1) given, the values of e(j ), u(j), and

v;(j) are obtained by solving Eqs. (28a), (28b), and (29).
This procedure is repeated at each time step.

The evolution of the mean energy and average velocity
of the assembly of electrons in N2 subjected to a step
change (of finite rise time) in field is shown in Figs. 1 and
2. The time dependence of the electric 6eld is shown in
Fig. 3, The initial field is kept constant for a time such
that the electron assembly has attained equilibrium with
the field by the time the field begins to change. Also
shown in Figs. 1 and 2 are the results obtained using: (a)
the Boltzmann equation [Eq. (1)], (b) the S& description,
i.e., Eqs. (28a) and (28b), with rates determined from the
S3 and S2 states (i.e., by letting fsr=fsr and fear, respec-
tively), and (c}the S, state approximation. The evolution
of the system from the initial equilibrium state (I } to the
final equilibrium state (F) is displayed in (e', u ) space in

Fig. 4. The fast transient (nonequilibrium) behavior ob-
tained with the S& approximation is clearly contrasted
with those obtained from the Si approximation (which in
essence yields an evolution through a series of equilibri-
um states). For fields changing in time scales gv, ', a
description in terms of S, is not satisfactory. From these
figures, the results obtained from the nonequilibrium
macroscopic equations in the Si time scale are seen to be
remarkably close to those obtained from a kinetic model.

V. CONCLUDING REMARKS

Nonequilibrium descriptions of the dynamics of elec-
trons in a background gas under the infiuence of space-

TABLE I. Rate coeScients for electrons in N2 in the S2 description as function of E,q, or equivalent-

ly, as functions of F.

E,q/N (TD)

100
200
300
400
500
600
800
900
1100
1200
1400
1500
1800
1900
2000
2100
2200
2400
2700

F (ev)

2.73
4.892
6.37
7.88
9.178

10.47
12.95
14.115
16.645
17.573
19.9
21.925
25.465
26.578
27.657
28.712
29.729
31.655
34.306

v,'0' (sec ')

4.14x10'
7.85 x 10'
1.28 x 10
1.70X 10'
2.15x10'
2.58X10'
3.41x 10'
3.82x 10'
4.55x 10'
4.98x 10'
5.69x10'
5.84x 10'
6.81x 10'
7.13x 10'
7.45x 10'
7.75x10'
8.14x 10'
8.79x 10'
9.84x10'

v'0' (sec

1.56x 10'
1.83 x 10'
1 95X10'
2.11x 10'
2.23x 1O"
2.34x10"
2.55x 1O"
2.64x 10"
2.81x10"
2.90x 10"
3.04x10"
3.09x 10"
3.29x 10"
3.35x10
3.42x 10"
3.48 x 10"
3.52-x 1O"
3.64 x 10'
3.80x 10"
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FIG. 1. Evolution of the mean energy of the electron assem-

bly as a consequence of a step change in the applied Aeld (see

Fig. 3). In the 6gures the dotted, solid, short-dashed, and long-
dashed lines correspond to the response obtained for the S3
description, the Boltzmann equation, the 83 description with
rates from the 82 description, and from the S& description, re-

spectively.
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FIG. 3. Time dependence of the applied 6eld.
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time varying 6elds have been presented. These descrip-
tions are valid in different macroscopic space-time scales
which are determined from the characteristic scales of
the moment equations. The results that have been
presented in this paper correspond to the lowest-order
solutions of these descriptions. In the fastest scale (83j,
these low-order results have been shown to agree remark-
ably well with those obtained from a kinetic description.
A number of issues remain to be addressed. Among these
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FIG. 2. Evolution of the average velocity of the electron as-

sembly as a consequence of a step change in the applied field
(see Fig. 3). The line symbols correspond to those used in Fig.
2.
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FIG. 4. Phase-space plot of the evolution of the electron as-

sembly. The arrows indicate the dir~tion of evolution. In the

figure the solid and dashed lines correspond to the response ob-
tained from the S3 and S& description, respectively.
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issues are: (a) the (more) quantitative description of the

S3 state, (b) the relative importance of higher-order terms
in the expansions of f and of faster time scales (S, or
higher), and (c) the relationship between a description in

terms of 8,. and a modal decomposition of the distribu-

tion function. These issues are presently under investiga-
tion.
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