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Atom-field interaction without the rotating-wave approximation: A path-integral approach
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%e use the path-integral technique to solve the quantum-mechanical problem of interaction of a
single two-level atom with a single-mode quantized field without the rotating-wave approximation
(RWA). %'e calculate the full spin-Bose propagator in the form of a matrix as an expansion around
a path corresponding to the R%A. The e6'ect of energy-nonconserving terms on the atomic popula-
tion inversion is studied, and we show that even under the conditions in which the R%A is con-
sidered to be valid there is a significant e8'ect on the atomic inversion due to these terms.

I. INTRODUCTION

The problem of a single two-level atom interacting
with a single-mode quantized field has drawn consider-
able interest both theoretically and experimentally. '

Jaynes used the rotating-wave approximation (RWA) to
reduce it to an exactly solvable problem. Jaynes and
Cummings subsequently solved the model for a quantized
radiation field. ' Certain interesting features about the
dynamical behavior of the atom such as collapses and re-
vivals of the atomic population inversion were prediced
by Eberly et a/. , who later on gave analytic expressions
for the revival time and amplitude of the envelope when
the field mode is initially in a coherent state. These pre-
dictions have been verified in a recent experiment by
Rempe et al. It is the exactly solvable model, i.e., in the
RWA which is usually referred to as the Jaynes-
Cummings model.

The rotating-wave approximation is used in many
problems in quantum optics and it is acceptable to
neglect the rapidly osci11ating terms in resonance prob-
lems. Tavis and Cummings, ' however, noted that the
breakdown in the R%A occurs for extremely high inten-
sity fields. Milonni, Ackerhalt, and Galbraith" have
shown that the terms neglected in the R%'A in the semi-
classical Jaynes-Cummings model may lead to chaos
when they are kept in the high intensity regime. Fox and
Eidson' studied the onset of chaos in the level popula-
tion expectation value as the atom-field coupling strength
is increased. Strong field e6'ect has also been studied by
Munz and Marowsky, ' without the R%A, using a semi-
classical treatment which emphasizes the weak field and
small detuning conditions under which the R%A is
justified. The eft'ect of energy-nonconserving terms on
the photon statistics in a single-mode laser has been in-
vestigated by Vyas and Singh' using a perturbation tech-
nique.

The fully quantum-mechanical model without the
R%A, however, is not solvable by usual techniques since
the eigenstates of the Hamiltonian cannot be found in
closed form. In this paper, we calculate the coherent
state propagator for the Jaynes-Cummings model without
the RWA.

The idea of a coherent-state representation for the path
integral was first discussed by Klauder. ' The concept
was later introduced in quantum optics and coherent
state propagators were calculated for various Hamiltoni-
ans involving the boson operators. ' Multitime correla-
tion functions have been calculated with the help of
coherent-state propagators with operators in any or-
der. ' ' The importance and application of this tech-
nique to quantum optics lies in the perturbation methods
and the approximations to which they lead. is Path in-
tegrals have also been employed to study spin-Bose sys-
terns. ' In the RWA, the Jaynes-Cummings model is
similar to the I.ee model of nuclear interaction in which a
heavy nucleon interacts with a light-particle field.
Marshall and Pell calculated all possible transition proba-
bilities for this model in an occupation-number represen-
tation.

%'e use a path-integral technique in the coherent-state
representation to obtain the propagator as a perturbation
series, the perturbation parameter being the ratio of the
Rabi frequency to the field frequency. The zeroth-order
term in our expansion corresponds to the R%A results.
In Sec. II, we define the coherent-state propagator for a
system of a two-level atom interacting with a single-mode
field without the RWA. In Sec. III, we obtain the full
spin-Bose propagator by performing path integrations.
In Sec. IV, we obtain an expression for the atomic popu-
lation inversion and discuss its dynamical behavior.

II. COHERENT-STATE PROPAGATOR

0 1

0 0
0 0

The Hamiltonian for a system of a two-level atom in-
teracting with a single-mode quantized radiation field in
the irlteractlon picture is

Ht ———g(acr++a cr +ao e ' '+a o+e ' '), (I)
—2l APE

where a and a are the creation and annihilation opera-
tors, respectively, for the field, g is the atom-field cou-
pling constant, and o.+ and o. are the atomic Ripping
operators
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For simplicity, we have taken the 6eld to be resonant
with the atomic transition frequency. We obtain the
propagator as a matrix element'6

K(a~, t~;a, , t, )=&aI i U(ti, t, ) ia, ), (3)

where the coherent state
i a; ) is the eigenstate of the de-

struction operator a at time t, and
t

U(t&„t, ) = T exp i f—dt'H (t ')
t

(4)

is the time evolution operator where T is Dyson s time-
ordering operator and we have chosen units such that
fg= 1.

Since the Hamiltonian in Eq. (4} is a matrix in the
space spanned by both atom and ield states, the spin-
Bose propagator given by Eq. (3) will be a 2X2 matrix.
The relationship of the propagator with certain quantities
of interest was determined in Refs. 16 and 17. Here we
derive an expression for the atomic inversion in terms of
the propagator.

The dynamical behavior of the atomic inversion for an
atom initially (t=O) in the excited state can be obtained
by noting that the wave function at a later time t is

~

p(t)) =U(t, O) 0 i a;), (5)

where the vector product (0} i a, ) represents the initial
state of the atom-field system. The corresponding density
matrix is given by

p(t)=
i
t((t))(t((t)

i

=U(t, O) 0 8 ia;)(a; is(1 0)U (t, 0) .

d af i Kco(af t a' 0)1 2

7r
(7a)

Here we have taken the trace over 6eld variables and the
subscripts on P»(t} denote the initial and final states of
the atom.

Similarly, the probability that the atom is in the
ground state at time t is

Pio(t)= f d aI iKio(aI ti a0)i'

The probability that the atom is in the excited state at
time t is

P»(t)=TrF(1 0)p(t) 0
1

ag UtO a; 00
1

III. PATH-INTKGRAI. REPRESENTATION
FOR THK PROPAGATOR

As pointed out earlier, the coherent-state propagator
corresponding to the Hamiltonian (1) is in the form of a
2/2 matrix which can be expressed in terms of a path-
integral representation by the following expression (for
details of the derivation, see Appendix A):

K(ai, ti, a, , t, )= lim f f P(a)e ' '2P 'Ia),
N~ co

tv —i d 2a(J )

j=1

& (a)= ——,
' g [ i a(j )

i

'+
i
a(j—1)

i

'

—2a"(j)a(j—1)], (10)

P(a)= g [I+ier)(j)o +ier)'(j —1)cr+] .

Here the arrow under the product symbol indicates the
time ordering in the product, i.e.,

g f(j)=f(N)f(X —1) f(2)f(1) .

Also,

nV)=g [a'(j}+a(j—1)f(j—1}]

rt'(j —1)=g [a(j —1)+a'(j)f '(j)],
f (j) e

—2I APi 6

(12b)

(12c)

The propagator, then, is in the form of a perturbation
series. (The detailed calculations are given in Appendix
B. Here we simply give the results):

Each of the matrix elements in Eq. (8) requires multifold
integrations. We use a characteristic function technique
to carry out these integrations. The propagator elements
can then be obtained by appropriately differentiating the
characteristic function and taking the limit X~ 00. It is
diScult to obtain a closed form for the propagator matrix
elements. We de6ne a perturbation parameter which is
the ratio of Rabi frequency to the Seld frequency, i.e.,
p+n where n is the mean number of photons and

Starting with the initial ground state, upper and lower
level probabilities at time t are

K =K' '+ip+nK"'+ . (14)

1
Po, (t)= — d2ag

i Ko, (aI, t, ;a;,0)
i
',

P~(t)= — d a~ iK„(aI,t„a, ,o) i'.1 2

(7c)

(7d)

The zeroth-order term in Eq. (14) corresponds to the
solution with the RWA and ip+nK"' is the first-order
correction due to the energy-nonconserving terms. %'e
only retain terms up to first order in p in Eq. (14). The
various matrix elements of the coherent-state propagator
under this approximation are given by
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(af} (ai} —()/2)(~a/~ +~a, l )

K00(af, tf, a;, t; }= g, e
yg t

( 2 2, g Slll[g(tf —t ) n +1]
X cos[g(tf t;—)&n +1]+i' (af e /+a, e ')

&n+1
—v'n + 1 sin[g (tf t; )—&n +1]

+g (tf t; )c—os[g (tf t,—)Vn + 1] (15a}

«f)"(a;)" -()/2)(~a, )'+ ~a )&)

K(), (af, tf,'a;, t; ) = —g e
n=o

sm[g(tf ti )&n +1]
ia; +)u afe cos[g (tf —t; )v tt ]n+1

2l Nf
afe —'cos[g (tf t, ))/—n +2]

(af) (ai} —()/2)(~a/~ +~a;~ )

K)()(af, tf)a;, t; )= —g e
n=0 n!

sin[g(tf t, }&n +1—]—a;g(tf t, )—
&n +1

(15b)

sin[g (tf t, ) n + 1—]
iaf —p a;e cos[g(tf t;)&n +—2]&n+1

—2l Nf—a;e 'cos[g (tf t, )v'n ]—
(af) (ai} —(l/2)(~af

~ +~a, ~2)

K'()(af tf a;, t, )=
n!

sin[g (tf t; )&n +—1]
+afg(tf t,)—n+1

(15c}

,2 2(~(. 2 2; ( sln[g(tf t;) n+2—]
X cos[g (tf ti ))/)t ]—ip (af e '+a,.e ) &n+2

—&n sin[g (tf t, )Vn ] —g (tf—t; )cos[g (tf——t, )v'n ].(15d)

Equations (15a)-(15d) give the full spin-Bose propagator. Note that the zeroth-order terms correspond to the results
given in Ref. 7.

IV. ATOMIC POPUI. ATION INVERSION

Assuming that the atom is initially (at t=0) in the ground state, the population inversion at a later time t is

W(t) =P()l(t) P(~(t)

On substituting Kol and K)l from Eqs. (1Sc) and (1Sd) into Eqs. (7c) and (7d) and using some properties of coherent
states vie obtain

W(t)= —g'~ (n
~
a)

~

cos(2gtV n )+i@(a —a* ),
„, sin 2gt&n +2

n=0 &n+2

sin(gt &n +2)+2(a' e ' ' —a e ' ')cos(gt )/n )
&n +2



ATOM-FIELD INTERACTION %'ITHOUT THE ROTATING-WAVE. . .

~here we have taken tf ——t, t, =0, and a, =u, and we have retained only the terms linear in p. It is trivial to see that the
probability amplitudes satisfy the unitarity condition, i.e.,

P„(t)+P (t)= g !
tn ra)!'=1.

n=0
(18)

In the limit n &p 1 and for an initial number state, Eq. (18) reduces to the semiclassical results obtained by Munz and
Marowsky (Ref. 13). For

a=one'~, r=2gt,
where P is the phase of the field, Eq. (17) becomes

oo —n —IT

8'(r) = —g
pg t

cos(rv n ) —p, n 2+n sin(2$)
sin(r&n +2) +4+rT sin —2$ cos &—n

&n+2 2p 2

sin[(rl2)&n +2]
&n+2

(19)

&he first term in Eq. (19) corresponds to the RWA re-
sults. The second term depends upon the phase of the in-
itial field and the third term oscillates at the field frequen-
cy. The phase contributions in the second and third
terms tend to cancel each other and the population inver-
sion is essentially unaffected due to a change in the phase
of the initial field. Indeed, it is the third term in Eq. (19)
which makes the significant contribution. Compari-
son of Figs. 1 and 2 highlights the e8'ect of energy-
nonconserving terms on the population inversion. The
envelope does not collapse altogether but there are rapid
oscillations of the population inversion during the other-
wise relaxed period. There are, also, small nutations on
ihe Rabi precessions.

V. CONCLUSION

In conclusion, we have extended the path-integral tech-
nique to spin-Bose systems in quantum optics in the con-
text of the Jaynes-Cummings model without the
rotating-wave approximation.

Our results are valid for small values of the perturba-
tion parameter which is the ratio of the Rabi frequency
to the field frequency, since we only have retained terms
up to the first order in the propagator. There is, howev-
er, no restriction on the excitation intensity. %'e have
also shown that under the conditions in which the
rotating-wave approximation is considered to be justified,
i.e., exact resonance and weak field, there is a significant
contribution to the dynamical behavior of the atom due
to the energy-nonconserving terms.
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APPENDIX A: DERIVATION OF KQ. (8)

The derivation of the path-integral representation of
the coherent-state propagator is along the same lines as
in Ref. 16. On inserting X resolutions of identity in Eq.
(3),

&.0
1.0

0.6'

0 6'.

-0.2 '

O.2.

+{~)
-0.2'

-).0
0 )0 20 30

-).Q-
0 10 20 30 40 50

FIG. 1. Plot of 8'R~A(~) against a dimensionless tine ~=2gt
and for n=lO. The Gaussian envelope collapses and revival

occurs after a time 2rr+rT as given in Ref. 6.

FIG. 2. Plot of W'( v) with perturbation parameter
p+n =0.1, /=0, and n=)0. The contribution due to the
energy-nonconserving terms is most signi6cant during the relax-
ation period where the population inversion oscillates rapidly.
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K(af, tf,'a;, t;)= lim I . I (a(E)
I
e "

I
a(X —1))(a(X—1)

I

. . Ia(2))

1V —1 d2 (
~

){2)
I
e -""

I
a(1) ) & a(1)

I
e -""

I
a{O)) II (A 1)

where

e=(tf t;—)/N, a(N)=af, a(0)=a; .

It follows on expanding the exponential to erst order in e
that

(a(J)
I
e

I a(J —1))-=[1—ieH(a", a, i', t, i)]

«xp[ ——,'{ la, I'+ ia, il')

+aj aJ )]

where for a normally ordered Hamiltonian, the function
8 is given by

(a(j)
I
H(a, a;t)

I a(j —1) )
(a(j)

I
a(j —1))

{A3)

On substituting Eqs. (A2) and (A3) into Eq. {Al), we ob-
tain the expression for the coherent-state propagator in
the path-integral representation, which is given in the
text as Eq. (8).

APPENDIX 8: PATH INTKGRATIONS
BY A CHARACTERISTIC-FUNCTION TECHNIQUE

Here we shall carry out the multifold integrations in
Eq. ((|) using the characteristic function technique. The
time-ordered product in Eq. (11)can be written as

P(a)= g {I+iert(j )o +iert'(j —1)o+]

[N/2) X k [Z/2) Z k

X g g [' '9(J )ll. ' '9 {J.. —1)]+ o g g' ff [ ti(j . )][ rt'(J .—1)]
k=O J) &J2Ir n=1 k =0 J ~

(j2k n =1

[(S—1)/2] N k k +1
+o g g' g [t'crt(j 2„)] ff [icy'(j2,—1)]

k =0 j) &J2I, n =1 m=1

[(W —1)/2) S k k+1
+o— g g g [ie'9(jz, —1)] g [i&at(j2 ))],

k =O J& ~ju m =1
(Bl)

where

1 0 0 0
OO o=o l

1
——1 j) ——1

(82)

K (af tf a;, t;)= J e ' Xl 'Ial,
where

(84)

obtained by multiple difT'erentiations of the following
characteristic function with respect to 8 and 8' parame-
ters:

The square brackets in the summation limits in Eq. (Bl)
indicate that the greatest integer less than or equal to the
enclosed quantity is taken as the summation limit.

Each of the matrix elements of the propagator can be
I

Se{a)=S(a)+ g [ieg{j )8f +i crt'(j —1)8~] . (85)

Using the results for the most general quadratic Hamil-
tonian given in Ref. 16, Eq. (84) becomes

{af tf a„t; )=exp ——,
' {

I af I

'+
I a; I

')+afa, —ieg g I af [8, +f '(J)8J' j+a; [8j +f (j —1 )8, ] I

j=1

—e g g g [8,+f*(j)8J ][8k+f (k —1)8k ] (86)

~e can now carry out the multiple differentiations of the characteristic function given in Eq. (86) as follows:
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k=0 ji (j2I, n =1
i =0, 1 (87a)

K (af, tf', a, , t, ), i. &j =0, 1 . (87b)

In the above equations &'=8, 8't=8' for i =0 and 8l'=8',
%=8 for i = l.

The difFerentiations in Eq. (87) are lengthy but
straightforward. The propagator elements K;J are ob-
tained by setting the 8 and 8' parameters in Eq. (87)
equal to zero and taking the limit N~ ac, e~O. Under
these limits, the summations are replaced by integrals,
i.e.,

(88)
So far we have not made any approximation. On per-
forming the time integrations, we obtain the spin-Bose
propagator as a perturbation series given in the text as
Eqs. (14) and (15).
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