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The quantum theory of fourth-order interference of light is presented in a general format and

compared with classical wave theory. The conditions under which nonclassical phenomena occur
are discussed. In particular, the interference between the quantum field and classical field may give

rise to a nonclassical e8'ect. For some special states of light, the interference pattern does not disap-

pear even though one field is much stronger than the other, for which no classical analog exists.
Fourth-order e8'ects in the interference between two independent fields are analyzed in detail. It is

pointed out that the fourth-order interference between independent fields will not disappear when

the integration time of detection is of the order of the reciprocal bandwidth of the two light fields as

long as the spectra of the two fields are symmetric around the same center frequency, and for some

correlated fields, the interference does not vanish even if the detection time is much larger than the

reciprocal bandwidth of the fields. A new type of fourth-order interference experiment involving a
beam splitter is proposed in which local realism of the Einstein-Podolsky-Rosen form is violated for
quantum mechanics. This general argument is then applied to the interference between two pho-

tons generated in the parametric down-conversion process. The possibility of violations of Bell' s

inequalities in interference experiments is investigated.

I. INTRODUCTION

Interference phenomena as evidence for wavelike be-
havior of light were investigated a very long time ago.
The classical wave theory of light established at that time
successfully explained all the interference phenomena
which involve quantities of the second order in the field
amplitude. Fourth-order efFects in interference were not
noticed until Hanbury Brown and Twiss discovered in-
tensity correlations. 't Quantum features of light are best
known in connection with such things as the photoelec-
tric e6'ect, whereas the wavelike behavior of light in in-
terference can usually be described without quantum
theory. However, recently there have been several dis-
cussions focusing on the nonclassical feature in in-
terference, especially in fourth-order form. These treat-
ments have generally dealt with some specific systems
such as resonance fluorescence from a single atom' and
the parametric down-conversion process, which exhibit
strong nonclassical eft'ects such as photon antibunching,
sub-Poissonian statistics' ' " and squeezing. ' ' The
two interfering fields in these treatments are both very
nonclassical. Therefore, it is not very surprising that
they behave nonclassically in fourth-order interference.
It was proved that fourth-order interference between
two classical fields with random phases has maximum rel-
ative modulation of 50%, whereas quantum fields may in-
terfere to generate a relative modulation up to 100%%.
Therefore, it may be possible that fourth-order interfer-
ence between nonclassical and classical fields has a rela-
tive modulation larger than the classical limit of 50%.

Interference phenomena produced by two independent
light fields have been studied for many years. ' ' Many
of the experiments were limited to second-order interfer-
ence, which is extremely phase sensitive. Therefore, spe-

cial techniques' ' ' had to be used to reveal the in-
terference pattern. Fourth-order interference, however,
is not phase sensitive. It has been proved that fourth-
order interference is present for both independent and
correlated fields, even though second-order interference
may not exist. Therefore, fourth-order interference of
two independent fields may be easier to observe than
second order.

Recently, it was pointed out ' ' that fourth-order in-
terference phenomena in quantum mechanics provide an
example of violation of local realism discussed by Ein-
stein, Podolsky, and Rosen o (EPR) and give rise to
another quantum-mechanical paradox. A hidden-
variables theory is then needed to solve this paradox.
However, this theory was proved by Bell ' and others
to conflict with quantum mechanics in some systems in-
volving polarization correlation measurements and
several experiments ' in these systems have been per-
formed to test the theory. A11 the experiments were of
the Bohm-type EPR Gedanken experiment, in which
polarization correlation measurements are performed. In
fourth-order interference experiments, position correla-
tions are measured and the variables are positions instead
of polarization angles. So it is interesting to study the
hidden-variables theory in interference experiments.

In the following sections, we first present a general
quantum theory of fourth-order interference with em-
phasis on independent fields and compare this theory
with classical wave theory. %e then discuss the condi-
tions for nonclassical e6ects to occur. In Sec. III, a new
type of fourth-order interference experiment is given, in
which the two detectors can be put as far apart as we
wish. %'e then apply the theory discussed in See. III to
the parametric down-conversion process, in which recent
experiments ' showed strong evidence for fourth-order
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interference. The possibility of violations of Bell s ine-
qualities in interference experiments is studied in Sec. V.

II. GENKRAI. FQRMAI. ISM

E 'i+'(R, t) = —g l(co()&(co))e

E(+)(R t)= g l(t()2)tt(coz)e
(~2(

where l(co)=i (flu/2@0)', tr) and tr2 are unit vectors of
the directions of propagation for corresponding fields, V

%'e start o6' by considering two light fields from two
sources. These two fields may or may not be independent
of each other, but have independent random phases so
that no second-order interference exists. %'e assume that
these two fields have well-defined directions of propaga-
tion with a small angle 58 between them (see Fig. 1), and
have the same polarization so that we can use a scalar
treatment. The fields are assumed to be homogeneous
and stationary. The positive frequency part of electric
field operator of each field can be written as

FIG. 1. Fourth-order interference between two fields.

is the quantization volume, and [co) j and [cu2] are the
frequency sets with bandwidths hen] and hco2 for the two
fields, respectively. %e then write for the total field in
the interference plane as

E '+'(R, t}=E ', +)(R,t)+E ',+'(R, t) . (2)

In the fourth-order interference experiments, we mea-
sure the joint probability of detecting one photon at posi-
tion R at time t and another at R' at time t+v.. This
probability P)z(R, t, R', t + r) is expressed in the formt9

P»(R, t, R', t +r) =K (X:I(R,t)I(R', t +r }:)

=E(X[2' '(R, t)E' '(R', t+r)E '(R', t+r)E'+'(R, t)]), (3)

where K is a proportionality constant, x stands for time ordering and:: for normal ordering. Substituting Eq. (2) into
Eq. (3), we can write P, 2 as

P»(R, t, R', t+r)=K(X[E(( '(R, t)+E', '(R, t)][E', )(R', t+r)+E', '(R', t+r)]
&& [E (+'(R', t +r)+E ',+'(R', t +r)][E()+)(R,t)+P ',+'(R, t)] ) . (4)

We now denote (R', t +r) by a prime and (R, t) without prime. Expanding Eq. (4), we find that the unpaired terms, say
(X[E ', 'E ', 'f

z +Ez+'] ), (X[1, )E ', 'E ', +'E z+'] ), etc. , vanish because of the independent random phases of the
fields. Only six terms survive and Eq. (4) becomes

P„(R,t, R', t+r)=rC[&X:I,i;:)+(X:i,I,':)+&X:i,I,':&+&X:i,I;:&

+ (X(g ( —)g ( —)~g (+)&g (+))) + ( X(g ( —)E ( —)~g (+)~g (+)) ) ] (5)

It can be seen in Eq. (5) that the first four terms depend
weakly on R, R', whereas the last two terms are mixed in
the two fields at R, R'; these are the interference terms.
The first two terms in Eq. (5) depend only on the relative
distance of R and R' because of the homogeneity proper-
ty we assumed for the two fields, Since the two fields
propagate along a'i and x2 which are almost same, the
first two terms in Eq. (5) are functions only of the relative
distance between R and R' along direction x, or z2. If we
furthermore assume that R, R' are on the interference
plane that is nearly perpendicular to ~, and ~2, these two
terms will not depend on R, R' and are equal to auto-
correlations for the corresponding fields and can be writ-
ten as

l

where A,;(r) is the normalized intensity correlation for the
corresponding field and is defined as

(X:I,(t)I, (t +r):)
)(,;(r)=

( ),

(7)

A.;(0) is non-negative for classical fields and can approach
—1 for nonclassical fields. The middle two terms on
the right-hand side of Eq. (5) are the cross correlations
between the two fields at two points, and the last two
terms give rise to interference. In order to calculate these
terms, we need to know the state of the fields. However,
we can draw some general conclusions just by comparing
the terms.

It can be proved (see the Appendix) that, for classical
fields, the first two terms and the middle two terms in Eq.
(5) are both larger than the last two terms or the interfer-
ence terms, that is
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(X:I,(R, t)I, (R', t +r):)+(X:I,(R, t)I, {R',t+r):)
&

~
(X[2', '(R, t)E', '(R', t+r}P',+'(R', t+r)E', +'(R, t)])+ c c. ~, (8)

(X I, (R, t)I, (R', t +r):)+ (X:I,(R, t)I, (R', t +r):)
&

~ (X[XI '(R, t)E' (R', t+r)E', +'(R', t+r)E', +'(R, t)])+c.c.
~

. (9)

Therefore, the largest modulation of interference pattern is 50% for classical interference. For nonclassical fields, the
first inequality can be proved (see the Appendix) to be satisfied, the second one, however, is violated for some states of
fields. The fields with A, ,(r) = —1 (i =1 and 2), for example, will make the left-hand side of the inequality (9) zero, and
the inequality (9) is violated as long as the right-hand side of the inequality is nonzero. From these two inequalities, we
can see that one necessary condition for which nonclassical efFect occurs in interference experiment is that the first two
terms in Eq. (5}or the auto-correlation terms are less than the maximum of the absolute value of the interference terms,
namely

& X:I,(R, t)I, (R', t +r):&+ (X:i,(R, t)I, (R', t +r):&

(
~

&X[I', '(R, tg', '(R', t+r)P', +'(R', t+r)E'i+'(R, t)]&+C.C.
~ st .

By using inequality (8), which is true for all fields including quantum fields, we change condition (10a) to

( X I, (R, t )I i ( R', t +r ):) + ( X Ii ( R, t )Ii ( R', t +r ):) ( ( X I, ( R, t )Iq ( R', t +r ):) + ( X I, ( R, t )Ii ( R', t +r ):) .

(10a)

(lob)

Therefore, the modified necessary condition for nonclas-
sical efFect to occur in fourth-order interference is that
the sum of the autocorrelations of the two interfering
fields is less than the sum of the cross correlations be-
tween the two fields at two locations.

It is interesting to notice that if one field, say Ei, is
very nonclassical so that A, i(r) = —1, the inequahty (10a)
will always be satisfied regardless of what kind of field the
other source emits, whenever the nonclassical field is
much stronger than the other one and the right-hand side
of this inequality is significantly different from zero.
Therefore the nonclassical effect may occur in the in-
terference between nonclassical field and classical field. If
the interference pattern exists, it will not disappear even
though (I, ) » (Iz ) because, when A, ,(r)= —1 and
(I, ) » (Ii ), the cross correlation terms and the in-
terference terms in Eq. (5) will dominate and have the
same order of (I, ) (Iz ). When both fields are very non-
classical and A., (r)= —1 for i =1 and 2, the inequality
(10a) is satisfied whenever the interference terms are
nonzero, and the interference pattern, if it exists, will
not disappear for any ratio of (Ii ) and (Iz) because

I

the first two terms in Eq. (5} vanish and the interference
terms have the same order as the cross correlation terms.
In Sec. IV, we will see such a case. This kind of
phenomenon is purely quantum mechanical and has no
classical nrigin, because, for classical fields, the auto-
correlation terms in Eq. (5) can never vanish and there-
fore if one field, say P„ is much stronger than the other
one, the first term in Eq. {5}will dominate and the in-
terference efFect will be very small.

When the two fields are independent of each other, the
cross correlation terms in Eq. (5) become extremely sim-
ple and can be written as

where we have used the homogeneity and stationarity
properties of the fields. The interference terms in Eq. (5)
are also easy to calculate. With the help of Eq. (1), they
reduce to

(X[X',—'(R, t)E,'-'(R', t +r)P ',+'(R', t +r)S',+'(R, t)])+c.c.

'(R, t)E 'z '{R',t +r)E I+'(R', t +r)E ' i(+R, t}&+ cc(r&0).
1 I i co'(a].5R /c —r) —i co"(z2.5R/c —~)

~

l(tooi+t0')l(tooz+c0")
~

n, (a)o, +to')n2(~00z+c0 )e+2 I II

—i gcoOI —~02) i f(alcuol —x2cu02) 5Rtc]
X e e +cc. (r &0) (12)

where we have used the assumption that (it (to)a(co')) =(it ( )c8o( )t)o5 „=n(co)5 „be—cause of the stationarity of
e fields and have put ~1 ~01+~ and ~2 ~02+~ with IMddl frequencies ~01 f002 and 5R=R) —R2. It is easy to

see that, when r ~ 0, the expression for interference terms is exactly same as the last equation of Eqs. (12). Therefore we
will ignore the condition r & 0. Combining Eqs. (6), (11},and (12), we obtain
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P(z(R, R', r)=K (I ) ) [1+k.)(r)]+ (Iz ) [1+hz(r)]+2(I, ) (Iz )

1 i ~'(K&.QRIC —v') —i ro"(K'& 5R/e —v )

~
l(~»+~')l(~oz+~")

~

'Iz, (~»+~')~z(~oz+~")e

—i v(cop] —
cop2) i [(Kl cop) —K2cop2) 5R/C]

Xe ' e +c.c.

We now integrate over the detection time T and the measured probability becomes

P„(R,R', T}=ET (I, )' 1+—f"'
dry, (r) +&1,&' 1+—' f '"

dry, (r) +2(I, )(I, )T —T/2 T —T/2

1 i co'(K 5R/C —~) —1'"(K2 &R/c —~)
~
l(~o&+co )l(cooz+~")

I
n i(~oi +co)nz(moz+cu" )e

CO COt

rp 1 T/2 iso'(K) '6R/c —T) —iG) (K2'5R/C —T')

X 7lz(cooz+co ) d7 e
—T/2

p l
—40p2 ) l [( K i Q)p j

—Kpcop2 ) 5R /c]
Xe e +c.c. (14)

We can see from Eq. (14) that, if
~

T(coo, —cooz)
~

-1, the interference terms may integrate to zero. So we need to make
coo, and ozoz close enough so that

~
T(coo, —cooz)

~
&& 1 and coo, =~oz —=coo. We furthermore assume that n, (coo, +co") and

nz(cooz+co") are symmetric around coo, and cooz. Then Eq. (14) becomes
T T

P(z(R, R', T)=ET (I, ) 1+—f dr A, , (r) +(Iz) 1+—f dr Az(r) +2(I) )(Iz)T —T/2 T —T/2

T/2+2 cos[(», az) 5Rc—oo/c] —drX, (», .5R/c r)Xz(» 5R—/c —r)T —T/2
(15)

where we have put

X;(~)=C f dao'
~
I(coo, +a)')

~

'n, (coo, +co')e' ' (i =1,2),
which is real and non-negative when n;(coo;+co,') is symmetric around co,'=0 and l(coo;+co,') varies slowly, and has
width of order I/hco;, and is approximately equal to (I; ) when b,co;r «1. C is a scaling constant when we change
from a sum to an integral with respect to m,'. If we introduce the visibility U of the interference, which is

1 T!2 dr LC, (», 5R/c ~)X.z(»z 5R/c——r)T —T/2

(I, ) 1+—f drA, ,(r) +(I ) 1+—f drA, (r) +2(I, )(I )T —T/2 T —T/2

(16)

Eq. (15) can be further reduced to

P,z(x, x', T) ~ 1+u cos[2~(x —x')/I. ],
where I. =2mc/(cooM) =Ao58 is the fringe spacing, x and
x' are positions of detectors along the direction of a, —x2,
and 58 is the angle between a, and az. By inspection of
Eq. (16), we see that if bc';(»; 5R)/c « 1, u has its larg-
est value when TAm, &~ 1 and is finite when Theo; —1 al-

though u goes to zero when T~00. Therefore, the
fringes will not go away even if T4m, - —1. P,2 is also
phase insensitive and the interference fringes do not
disappear if the two fields have independent random
phase Auctuations. That is because fourth-order photon
detection does not depend on the phases of fields. The
frequency is of course related to the phase of the field, so

even if the phase changes almost by 2~ when Th~; —1,
the fringes do not average to zero. However, if T is so
long that the detectors can tell which photon comes from
which source via its center frequency, then no interfer-
ence occurs. That is why we need T(ci)o& ct)oz) «1. A11
the properties described above are typical for fourth-
order interference. Under the same circumstances,
second-order interference will disappear. Although U in
fourth-order interference also goes to zero when T~ao
like second-order interference, the mechanism is not
same for these two cases. In second-order interference,
the phase linearly increases when T~oc and therefore
the interference fringes average to zero, whereas in
fourth-order interference, as T~ Oc, the cross correlation
terms go to ~ because of the independence of the fields
while the interference terms stay finite. Later in Sec. V,
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For classical fields, A, , (0))0 and we have

"'""'-"
&i &'+&I, &'+2(i, &&I, &

(19)

The right-hand side of this inequality reaches its
maximum value of —,

' when (I, ) =(Iz). Therefore the
largest modulation of the interference pattern is 50% for
classical fields. For nonclassical fields, I,;(0) may be less
than zero and therefore u can go beyond 50% and reach
to 100% when }I,;(0) (i =1,2) takes its minimum value of
—1.

Let us now find the condition for u & —,'. In Eq. (18), u

reaches its maximum value of

we will see that, for some correlated fields, the cross
correlation terms are finite as T~ ce, and therefore U de-
pends weakly on detection time T so that U does not van-
ish even if T~ oo.

We can also see in Eq. (16) that, if the two detectors
are so far away from each other that boo;(a; 5R)/c —1,
the visibility U will be very small. This suggests a way to
estimate how many fringes we can observe.

In the following, we shall assume that Thu; ~~1 and
b,co, (a, 5R)/c « 1 in order to achieve maximum visibili-

ty, and under these conditions A, , (r) will be approximate-
ly A, , (0) because

~
~

~
&&1/hem;, which is of the order of

the correlation time T„ofeach field. Equation (16) then
becomes

2&I, &(I, )

&i, &'[1+X,(0)]+(i,&'[1+X,(0)]+2(i, ) &i, )

(18)

III. FOURTH-ORDER INTKRFKRKNCK
EXPERIMENT WITH A BEAM SPI.IITKR

Usually we observe the interference pattern in some in-
terference plane. The observations are limited to a small
area because of the finite size of the beams and the finite
number of observable fringes. This does not cause much
diSculty for second-order interference because only one
detector is involved. However, two detectors are used in
fourth-order interference and it may be diScult to collect
the photons when the observation area is small. The
fourth-order interference phenomenon is also known ' '

to provide evidence for locality violation of quantum
mechanics. However, the detectors may have to be very
close due to the finite size of the observable area. The
possibility exists therefore that the two detection process-
es might interact with each other in such a short dis-
tance. In the following, a new type of fourth-order in-
terference experiment is described in which the two
detectors can be far apart.

Suppose now that two beams of light are incident from
diferent sides of a beam splitter which has transmissivity
V and re6ectivity % with 7'+%=1. After the beam
splitter, they come together to interfere. Usually, we ob-
serve the fringes in the plane on which either R] or Rz is
located (Fig. 2). Now we put two detectors in difFerent
sides of the beam splitter, one at R, and another at Rz.
Let the origin of the system on the beam splitter plane
and R'„Rz, ir', re& be the mirror images of R„Rz,ir„~z rela-
tive to the beam splitter (Fig. 2). We further assume that
R, , Rz are in the interference plane that is vertical to the
directions of incoming fields (Fig. 2). The fields at R„Rz
are given as follows:

I

1+ I [1+A, , (0)][1+hz(0) ]I
'~z

when (I, ) [I+A, ,(0)]=(Iz ) [1+A,z(0)]. Therefore, if

P ~+ ~(R„r)=~VS ',+'(R„i)+i&XI 'z+'(R„r),

(22)

~ '+'(R„r)=&&~ ',+'(R,, r) i&Xi'P ',+'(R—„r),
[1+A,,(0)][1+hz(0)]& 1, (21)

then U~& —,
' and the classical limit of U is exceeded. %e

can see that when condition (21) is satisSed, conditions
(10) are also satisfied for the intensities given above. To
satisfy condition (21), it is not necessary for both interfer-
ing fields to be nonclassical. One of them may be classi-
cal.

When we examine Eq. (18), we see once again that, if
one of the fields, say P„ is very nonclassical so that
A,(0)= —I„ then, no matter what kind of field the other
source emits, the visibility U is nearly one as long as the
nonclassical field S', is much stronger than the other
field; when both fields are very nonclassical so that
A, (0)= —1 for i =1 and 2, u is one for any combination
of strengths of the two fields. This is obviously nonclassi-
cal behavior of light and cannot be explained by classical
wave theory. Actually, we can see from Eqs. (18) or (19)
that the classical visibility v of the interference pattern
tends to zero as the ratio of intensities of the two fields
becomes either very large or very small.

where the prime means that a; is replaced by cc,
'. in Eq.

(1). Substituting Eq. (22) into Eq. (3), we get, with the
same assumption used in deriving Eq. (5),

E, fi

FIG. 2. Fourth-order interference vnth a beam splitter.
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P»(R„t,Rz, t+r) =K {'TA[(X I,{R„t}I', {R,, t+r): &+ (X I ',(R, , t)I, (R,, t +~):& ]

+Tz(X:I,(R„t)Iz(Rz,t+r): &+Az(X:I ',(R, , t)I ', (R,, t +i):&

'Ty—l [(XE ',
—'(R„t)X' ', '(R„t+r)E ', +'(R, , t+r)E ',+'(R, , t}&+c.c.]] . (23)

As in Eq. (5), the first two terms are equal to autocorrelations for corresponding fields if the fields are homogeneous and
stationary, and can be expressed as

&XI,(R,, t}I"',(R,, t+ ):&=&I,&'[I+~,( }],
(24)

&X:I,'(R„t)I",(R,,t+ ):&=&I,&'[I+A,,( )] .

The middle two terms are the cross correlations between the two fields and the last terms are the interference terms. If
the two fields are also independent, these terms become

&X:I,(R„t}Iz(Rz,t+,):&=(I,&(I, &,
(25}

(X I z(R, , t)I', (R„t+r):&=(I, &(I, &,

&X[E', '(R, , t)P' '(R, t+r)E'', +'(R, t+r)P '+'(R„t)]&+c.c.

=(E', '(R„t)E'z '(R„t+r)E',+'(R„t+r)X''z+'(R„t)&+c.c. (r&0)
1 I tt ' ~ Kl Rl I R2 /C —7'] —lM ~{K2 Ri K2 R2 /c —7]

~
l(topi+60 )l (copz+cp" )

~
n, (top, +to' )n z(copz+tp" )e

p~
—up2) i t. {KI~'p~ —K2up2) RI —{Klcop2 —K2tt)p2) R2]/Xe e ' " ' +c.c. (r&0)

1 I tt t t t i co'[K
I {RI R2c]~ ~ 2 {RI R2 —&]

i
l(topi+co )l (copz+co )

i
n i(topi+cd )nz(copz+co )e

(26)Xe e +c.c. (r&0)
—i {cop~ —mp2) i [{K]cop&—K2mp2) R] —{K~up2 —K2~t)p2) R2]/

where we used the properties that R'„Rz,a', ,~z are the mirror images of R, ,Rz, ir, , irz. As before, we will ignore the con-
dition T & 0. With the assumption of

~
T(cop, —copz)

~
&& 1, the measured probability is

P, (x„x,T)=K 7%(I & 1+—J drA(r) +'TR(I & 1+—J drA (r)—T/2 T —T/2

+2(7 +R )(I, &&iz &
—2'TR cos[2n(x, —xz)iI. ]

T/2
X — dry, (tt, 5R, /c r)Xz{ttz 5Rz—lc r)—

T —T/2
(27)

where 5R, =R, —Rz and 5Rz=R', —Rz, x, and xz are
the coordinates of R& and R2 along directions of a

&

—~2
and K]—K2 respectively, and all the other quantities have

the same meaning as before.
Comparing Eq. (27) with Eq. (15), we can see that they

have the same form. If T=%= —,', Eq. (27) is exactly the
same as Eq. (15), except for a minus sign in front of the
interference term and a factor of —,'. The two detector in

this case are far apart from each other and the possibility
of interaction between the two detection processes can be
ruled out if fast switching is done.

It is not necessary for the two fields to come in from
dimerent sides of the beam splitter. If the two fields are
superimposed before they strike the beam splitter, the
factor i in Eq. (22) will be missing but otherwise the treat-
ment is the same. The result, however, is a little di6'erent:
in Eq. (27), the minus sign in front of the interference
term is changed to a plus sign. The difFerence exists be-
cause reflection at the beam splitter and the special way
the observation is made introduce an extra phase shift.

IV. FOURTH-ORDER INTKRFERKNCK
OF CORRELATED FIELDS

We have given the treatment for independent fields.
For correlated fields, however, we need to know the de-
tailed relation between the two interfering fields so that
we can calculate the cross correlation terms and the in-
terference terms in Eq. (5) or (23). In the following, we
will apply the argument presented in Sec. III to the two
fields generated in parametric down-conversion process-
es. (For interference without beam splitter, the treatment
is similar. Also see Ref. 8.)

The process of parametric down-conversion is
known ' to generate two highly correlated photons.
The two photons have a wide bandwidth h~ and the
same polarization, and travel in well-defined directions
when hu~~coo. They can be described by a two-
photon state '
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I
+)= g 4(coi, toz)exp[ —i(x'i r~co~+zz. rztoz)/c+t(to~+toz)t]

I coi, coz), (28)

where the weight function 4(to„~oz) has the form of
f(~oi —~oo)5(2coo —toi —coz) and is symmetric with respect
to 6) i, f02 due to eIiergy conservation and the phase
matching condition, and therefore tI/(to, —too) is sym-
metric around uo. This state represents a iwo-photon
packet which is peaked at r, , r2 at time t. For con-
venience, we consider the time I; at which photon 1 ar-
rives at the detectors, i.e., r, is on the detection plane
(Fig. 3) while photon 2 has not yet arrived at the detec-
tion plane due to a path delay. If the beam splitter is re-
moved, then, at time t, photon 1 is located at r, and pho-
ton 2 at rz (Fig. 3). With the beam sphtter in, r', , rz are
the mirror images of r, , rz. Therefore, 5r =—( r',
—rz} trz ——(r, —rz) irz describes the path difference of
these two photons.

The autocorrelation of each field is zero for aB ~ be-
cause there is only one photon in each field. So the first

two terms in Eq. (23) are equal to zero. We easily find

this by substituting Eq. (28) into these two terms. The
cross correlation terms and the interference terms in Eq.

=f'(r ri)—,

&&:I'i«z t}Iz«i t+&):)= If«—&z} I'
=f'(r rz),—

(29}

(30)

with

and

~, =5r/c —[», (R, —r, ) —ttz (Rz —r', )]/c,
rz= 5r/c——[Kz (R, —r])—K', (Rz —ri)]/c,

f(r)=C f dto'
I
l(too+co')l(too to)Q(—co)e""',

which is real because of the symmetric property of i(i(to')
around ro'=0 and has a width of 5t -1/4to; and

(23) are now easy to calculate. Substituting Eq. (28) into
these terms, we obtain, after some simplification,

(X:I,(R„t)Iz(Rz, t+r):) =
I
f(r r, )—

I

&x[1I-'(R, , t)E', i '(R, ,-t+1-)E',+'(R, , t+7.)E,'+'(R„t)])+C.C.

—
irido(z&

—a&).(R& —r& )/c + la&0(a
&

—a2 (R2 r& )/c-=2f r Vlf r rze +c.c.

=2f (~ r, )f(r —rz) c—os[2m (x, —xz )/L], (31)

where x, —:(a, —
irz ) ~ ( R, —r, }/58 is the coordinate of detector 1 along the direction tt, —

a& and xz—:( a I
—ttz) ~ (Rz —r', )/58 is the coordinate of detector 2 along the direction trI —ttz, and I.=2ttc/(tooM) In derivi. ng Eqs.
(29), (30), and (31), we have used the properties that RI, Rz iri &z rl rz are the mirror images of Ri Rz tti tt»r~ r» «
spectively, and the origin was chosen on the BS plane. Combining Eqs. (29), (30), and (31}and integrating ~ over the
detection time T, we obtain, with V=%=—,

' in Eq. (23),

T/2 T/2 T/2
Piz(xi, xz, T)=E dr f (r 7, )+ —dr f (r rz) 2c—os[ 2—n( x&

—xz)/L] d~f (r ~&)f (r —rz)—T/2 —T/2 —T/2

=K'I 1 —U cos[2m(x, —x, )/L]I „

where the visibility U is
T/2

2 7 V T$r/z, r/zf dr f (r r, )+ f —dr f (r rz)—
—T/2 —T/2

From Eq. (33), we find that whether U is close to unity de-

pends . mainly on the di6'erence ~, —v 2
=26r /c

—2n.(x, +xz )/(cooL), but not very much on the detection

time T. So the interference does not disappear even if
T &&1/b, to. This property is peculiar to fourth-order in-

terference with correlated fields, and is not encountered

for second-order interference. For independent fields, as

T~ ao, the cross correlation terms go to 00 whereas in-

terference terms stay 6nite and therefore U tends to 0.
For correlated fields, however, the cross correlation

terms have the same order as the interference terms for

Nonlinear
Medium

FIG. 3. Interference via a beam splitter in the parametric
down-conversion process and the localization of the two down-

converted photons.
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p=(1 —0g v(~i) I ~l&02&(~1&O21+Pp2
GAP

I

(35)

where q&(co, ) is a normalized weight function,

p2= ~

%'&('P ~, with ~%'& defined by Eq. (28). We can
easily calculate the intensities of the two fields, which are

=(1—g) g ~
l(coi)

~
'()2(co, )

g ~

l(coo+co')g(co')
~

all T as long as ~,0=~20 and the path is balanced, and

they. all stay finite as T~ (x). That is why U does not go
to zero when T~oc. %'e shall assume T ~~1/Aco and
Eq. (33) becomes

J dr f(r ri—)f(r—r2)
(34)

J deaf (r)

U is therefore proportional to the autoconvolution of
f(r). If ~r, r2~ —&&5r —I/des, then u=o, and the

fringes disappear; if
~
r, r2

~

—&&5t —1/b, co, then U=1,
and we get the sharpest fringes. So 5t is the e6'ective

width of U. By measuring U as we change 5r, we should
be able to determine 5t, which is a measure of the correla-
tion time T, of the two photons generated in parametric
down-conversion processes. This has been confirmed

by a recent experiment in which 58 was chosen to be

close to zero. In that experiment, however, the visibility

U did not quite reach 1 when ~, —~2 ——0. This is probably
due to the finite size of the detectors, for, if the fringe
spacing is not much larger than the size of the detectors,
we expected to measure an average modulation with de-

creased visibility. The measurement of T, by auto-

correlation was also used by a French group. In their
experiment, the signal was very strong and nonlinear
spectroscopy was used to detect the signal. This general
method has been used for many years to measure ul-

trashort pulse length. In the interference method, on the
other hand, the signal can be very weak because photon
counting is used.

Note in Eq. (34) that, for a fixed path difference 5r, if
x i,x2 are too large, i.e., if the detectors are placed too far
from the peaks of the wave packet, then

~
r, —r2

~

will be
larger than 5t and U will be close to 0. So this provides a
way of estimating the number of interference fringes.

As we mentioned in Sec. II, if A, , (r) = —1 for i = 1 and

2, the visibility U does not depend on the ratio of intensi-
ties of the two interfering fields„which is a conclusion
that has no classical analog. Here, we consider such an
example.

Suppose that one of the down-converted fields, say field

2, is reduced by a filter, so that the other field contains
some unpaired single photon states. The efFect of filter
can be modeled as a beam splitter with transmissivity g.
It can be shown from general arguments that the densi-
ty matrix of the system has the form

=g—g ~

l(coo+co')P(co'}
~

1
(37)

Therefore, the intensities of the two fields vary as g
changes. If g«1, then (I, & ~&(I2&. On substituting
Eq. (35) into Eq. (23), we immediately see that the first
term of Eq. (35) will not contribute to P,2 and the result
is the same as Eq. (32), except for the factor g. So the
visibility v has nothing to do with the constant g which
determines the ratio of intensities of the two fields. This
property of the two highly correlated photons is due to
the characteristic of the measurement process. In the
fourth-order photon detection processes, only photon
pairs are registered as coincidence and highly correlated
photons come in pairs. Therefore the unpaired photons
will not be counted as coincidence. Here we are ignoring
accidental coincidences which can be held to a low rate.

U. HIDDEN-VARIABI. KS THEORY
IN INTKRFKRKNCK KXPKRIMKNT

Fourth-order interference phenomena are an example
of the nonlocal behavior of quantum mechanics. ' ' In
Eq. (32) with U =1, we can see that Pi2 vanishes if
x, —x2 NL and is ——maximum if x, —x2 ——(X+ ,' )L—
where N is an integer and L is the fringe spacing. When
two highly correlated photons are generated simultane-
ously and then travel far apart, one might think that
what happens to one photon will not disturb the other as
long as there is no action-at-a-distance. This is the kind
of locality discussed by EPR. However, as we have just
seen, whether we can detect a photon at x, strongly de-
pends on where the other photon is detected. This
phenomenon implies that quantum mechanics violates
the locality of EPR form and a hidden-variables theory,
as EPR suggested, is needed to restore the locality.

Hidden-variables theory has been well-studied for
Bohm-type EPR Gedanken experiments by Bell and
other workers, ' who proved that this theory cannot
give the same results as quantum mechanics for some
cases and is violated in several experiments. ' Polar-
ization correlations experiments are examples of Bohn-
type EPR Gedanken experiments. In fourth-order in-
terference experiments, the quantity we consider is the
position correlation. In the following, we will follow the
procedure that Clauser et al. ' used to derive Bell' s
inequalities, in order to obtain inequalities for position
variables, and we show that these inequalities are violated
by the predictions of quantum mechanics.

Consider the interference experiment with a beam spli-
tter in Figs. 2 or 3. Let p&(xi, A, ) denote the probability
of detecting one photon at position x, in a time period T
by detector I, given some other hidden variables A, , and
p2(x2, A, ) is a similar quantity for detector 2. The locality
property requires that the detection of one photon at x,
is independent of the detection of another photon at x2.
Thus we write the joint probability of detecting two pho-
tons as
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+plz(xi xz } plz(xi xz }+piz(x i xz }

+p,z(x', ,xz) —p, (x', ) —pz(xz) &0 (41)

piz(x»xz, A, )=pi(x»A, )pz(xz, A, ) .

Since A, are hidden variables, the measured quantities are
ensemble average over all k with some weight function
g(A, ), that is

p;(x)= f dk. g(A}p,-(x, A) (i =1,2)
(39)

p, z(x„xz)= f dA, g(A. )p, ( x, ,A)pz( xz A. ) .

%'e now use the following inequalities:

—XY &xy —xy'+x'y+x'y' —x'Y —yX &0,
in which 0 &x,x' &X and 0 &y,y' & Y. By putting
X =F=1,p, (x„A,)=x, p, (x'„A,)=x', pz(xz, A, )=y, and
pz(xz, ~)=y, and pz(x„A, )=y, multiplying g(A, ) and in-
tegrating over A, in inequalities (40), we obtain

These are Bell s inequalities with respect to position vari-
ables.

The quantum mechanical predictions for these quanti-
ties are given by2

p, (x, ) =r) f {I(x&,t) )dt, (42)
T

pz(xz ) =rl f {I(xz,t) )dt,

p,z(x»xz)=ri f f (X:I(x,, t, )I(xz, tz):)dt, dtz

(44}

where g is a constant which will be given later and it has
been assumed that p;(x; ) (i =1,2) and p, z(x, ,xz ) do not
change signifjcantly in the detection areas and the two
detectors are identical. Let us consider the experimental
situation treated in Sec. IV. With the help of Eqs. (23)
and (29)-(31),we have

P i(zx, ix)z=(T lr/4) dr f (r r, )+ — dr f (r—rz) —2cos[2rr(xi xz)/L] — dr f(r r))f(r ——rz)
2

'
T 2 T 2 T

T —T —T

where we have put 7'=A =—,'. Using Eqs. (22), (28), (42), and (43), we obtain

1 g I
1(~0+~'4'(~'

I

' .

(45)

(46)

As the fields propagate in well-defined directions, we can use a one-dimensional treatment and change summation to in-
tegration by using the correspondence

1 1 1V&-- &-2...f'"'
where A is the detection area. Hence, Eq. (46) becomes

pi(xi )-pz(xz)=r)T f dco'
I
1(coo+co')y(t0')

I

'
ZmcA

1
z f dc@'

I
1(t00+t0')l(too co')g(to') I—

2m'cA
I

I (tuu) I

=IT,'"
I
1'(~0)

I

(47)

rt=aocA / I
l(too)

I

where ao is the quantum eN][ciency of the detector. Then

Eq. (47) becomes

p, (x&)=pz(xz}= rt T f dr f (r)
L

ap= I /ao .

(49}

where we have assumed that the bandwidth b,co of g(tu')
is much smaller than mo. In one dimensional treatment,

q is given by

I
piz(xi, xz ) = ( 1 —u cos[27r(xi —xz )/L] I (50)

I &2+ I —2I /ao (0, (51a)

where I is the integral defined in Eq. (49) and u is defined
in Eq. {34). Equations (49) and (50) are the quantum-
mechanical predictions. Substituting Eq. (49) and (50)
into the right inequality of inequalities (41), we obtain,
with xi —xz 3L/8, xi —xz ——L/8, x ixz 5L/8, —— ——
x', —xz 3L/8, and u= ——1,

In Eq. (45), if T~~ I r, I, I rz I, and 5t, which is the

width off (r), we obtain i 2+1—2/ao(0 . (51b}
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p iz(x „xz~ 8„82,A, ) =p )(x ), H„A. )pz(xz, Hz, A ), (52}

according to the locality assumption, and we take the
measured quantity to be given by

The inequality is violated as long as ao ~ 0.83.
In a real experiment, it is difFicult to obtain a photon

detector with quantum efFiciency larger than 0.83, there-
fore this result is not practical for a test of hidden-
variables theory. In the following, by introducing two
auxiliary assumptions, we will derive another Bell's in-

equality with respect to position correlations, which can
be tested by the set-up described in Sec. IV.

We assume that the two interfering 6elds in Fig. 2 have
orthogonal polarizations so that they do not ordinarily
interfere. In order to obtain interference, we place a po-
larizer in front of each detector (see Fig. 4). Let

p 1(x„H„A,) be the probability of detecting one photon at
position x i at detector 1, given the orientation angle I9

&
of

polarizer 1, with some other hidden parameters A, needed
to describe the system completely in the hidden-variables
theory, and let pz(XZ, HZ, A, ) be the corresponding proba-
bility for detector 2. p)(x), N), A, ) and pz(xz, oo, A, ) are
similar quantities with the corresponding polarizers re-
moved. As in Eqs. (38) and (39), we write the joint proba-
bility of detecting two photons at detectors 1 and 2 as

Coincidence
Counter

FIG. 4. Interference experiment for testing Bell s inequalities
with respect to position correlations.

(53)

712(x 1 &X 2& 81& 82)

= I dA, g(A, )p)(X„H„A,)pz(XZ, HZ, A, ),
From inequalities (4D), by putting p 1(x (,8(, A, )=x,
p) (x ),H„A, ) =x', pz(X2, 82, A ) =y, izz(x 2, 82, A, ) =y', and

p) (x(, oo, A, ) =X, pz(xz, ao, k, )= Y, and with the assump-
tions (i) p, (X, , H, , A, ) (p;(x;, oo, A. ) (no enhancement as-
sumption), (ii) p, (x;, oo, A. ) =p, ( x,', oo, A, ) (homogeneity as-
sumption), we obtain, after multiplying g ( A, ) and in-
tegrating over A, ,

i 12 XI'X2& ~' ~ ) P)2 xi&X2—&81&82) P)2 XI &xz H&l 8&)2+11 2 xl &xz&81 &82)+P )2(xi&xz&81&82)

Plz (X) &Xz &~&82) Plz (X) &Xz &81 &~ }—
of

(54a)

—1 &S &0,

~ =[P)2(xl &xz&81&82) Plz (lx&zx&18&8)2+Pl 2(x& )zx8&1 8&2)+712( lx&X2&81&82)

—plz(x ) &xz& m & 82) —@12(x(,X2, 81, m )]tp iZ(Xi, XZ, ~ & oo ) . (54c)

Qf the two assumptions above, the first one is fairly natural, but the second one needs a bit more discussion. If there
was only one 6eld, this assumption would be reasonable, as long as x;,x,

' are not too far apart. When there are two
6elds, they might interfere with each other to generate a modulation, but this kind of interference will not occur here
because the polarizations of the two 6elds are orthogonal. Therefore the second assumption is also reasonable. Here we
only consider those hidden-variables theories in which the homogeneity property (ii) is satisfied for one field; in princi-
ple p)(x), 8), A, ) could change rapidly with x, even for one field in some unusual hidden-variables theories. We also ex-
clude those hidden-variables theories in which g (A. ) depends on position x. Therefore inequalities (54) are somewhat
less general than inequalities (41). But as we will see, they are violated by the predictions of quantum mechanics and
can be tested in a real experiment like parametric down-conversion, even with detectors of small quantum efFiciency.

Now let us examine the quantum-mechanical predictions. We will consider the process of parametric down-
conversion. In order to make the polarizations of two interfering fields orthogonal to each other, we need to rotate 90
the polarization of one of the two photons, say photon 2. Then, Eq. (28) is replaced bv

&(a) .r&ce) +a& r—2ro2)/r + & (n&) +co2)&,
CO ~, CO2 e' (55)

Because of the polarizers, the E fields at R„R2 are changed to

X' '+'(R„t)=&'TP ', +'(R„t)cosH, +i &AE (z+ '(R„t) sinO, ,

E '+'(Rz, t}=v TX' z+ '(Rz, t) sinHz i &%P ', + '(Rz, t) co—sHz,

where 9i, 6Iz are the orientations of polarizers 1, 2, respectively. Following the same procedure as before, we obtain

i)12(x )»2 81 82) =& I
&' cos'Hi »n'82+&' cos'82»n Hi+2&» «sHi »n81 «sHz»nHz cos[21r(xi —XZ )/L] I

(56)
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By using the relation p, z(oo) p,z(8)+p, z(8+m/2), we

easily obtain

K
p, z(x„xz, oo, m/4) p, z( x, , xz, n/4, oo }=—,

E
p, z(x„xz, oo, oo )=—.

In particular, if we choose (i) x, —x z —3L /—S,

x, —xz L/8,——x', —xz ——5L/8, x', —xz ——3L/8; or (ii)

x, —xz=L/8, x, —xz —3L/8—, x', —xz —L/8, —x', —xz
=L /8, we find in Eq. (54c) that

(~2u —1)/2 for set (i)
—(~2u+1)/2 for set (ii), (60)

which violates the inequahties (54) as long as u &0.707.
Therefore the hidden-variables theory is in conflict with
quantum mechanics with respect to position correlation,
and the demonstration of violations does not require a
large quantum efficiency for the detector.

VI. SUMMARY

where E is a constant and u is defined in Eq. (34). If we

choose 8,=m /4, 8z ———n. /4 and T=%=—,', we have

p, z( x i, xz, n/4', m /4) =—[1—u cos2m(x i
—xz )/L] . (58)

E

that for some states of light, the visibility of the interfer-
ence does not go to zero even though the ratio of the in-
tensities of the two interfering 5elds is much larger than
I, and in some special cases, the visibility does not even
depend on the ratio. It was pointed out that quantum
6eld and classical Seld may interfere to generate nonclas-
sical effects. Interference between independent fields was
studied in detail, and it was shown for this case that the
interference pattern does not go away when the detection
time T is of the order of the reciprocal bandwidth of the
Selds, as long as their spectra are symmetric around the
same center frequencies. For some correlated 6elds, the
visibility v does not depend very much on the detection
time T and the interference pattern is present even when
T~(N. A new type of fourth-order interference experi-
ment with a beam splitter was proposed, in which the two
detectors are far apart from each other and EPR-type lo-
cality is violated by quantum mechanics. The interfer-
ence of two photons generated in the parametric down-
conversion process was analyzed as an example of in-
terference between correlated fields. A method of
measuring the correlation time T, of the two down-
converted photons was described. Finally, the hidden-
variables theory was applied to two different interference
experiments, and corresponding to each experiment,
Bell's inequalities with respect to position variables were
derived and shown to be violated by the predictions of
quantum mechanics.

The theory of fourth-order interference has been stud-
ied in a general format. %'e have generally proved that,
for classical Selds with independent random phases, the
visibility of the interference cannot exceed —,. The condi-

tions under which this classical limit is exceeded have
been investigated. The necessary condition is that the
sum of the autocorrelations of the two interfering flelds is
less than the sum of the cross correlations between the
two fields at two points. Another nonclassical effect is
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APPENDIX: PROOF OF INEQUALITIES (8}AND (9) FOR CLASSICAL FIELDS
AND INEQUALrr Y (I) FOR QUANTUM FIELDS

We first write each term in the inequalities in Glauber-Sudarshan P-representationz9 ~' as follows:

(&Ii(R],t)Ii(Rz, t+~}:)=I dIaj'HIaj)Ei(Ri, t)Ei (Rz, t+r}Ei(Rz,t+r)Ei(Rit),

(X Iz(Ri, t)Iz(Rz, t+w):) = I d IajP(Iaj )Ez (Ri, t)Ez (Rz, t +~)Ez(Rz, t+r)Ez(R„t),

(L:I,(R, , t)Iz(Rz, t+r):)= I d IajP(Iaj)E', (R, , t}Ez (R„t+r)Ez(R„t+r)E,(R, , t),
(X:Iz(Ri,t)Ii(Rz, t +i):)= I d t jPa( j j)aE (Rzi, t)Ei (Rz, t+&)Ei(Rz, t+r)Ez(Ri, t),
(X[E I '(R, , t}E,' '(R„t+r)E I+'(R„t+r)P ',+'(R„t)])+cc.

= I dIajP(Iaj)E", (R„t)Ez(Rz, t+~)Ei(R„t+~)Ez(R„t)+cc.
(A 1)

(A2)

(A3}

where E„E;,etc. in the rhs of these equations are c numbers and defined by X,'+'
~
Ia j ) =E;

~
[a j ), E,' is the com-

plex conjugate of E;. P( I a j } is non-negative for classical fields.
Consider the following two inequalities:

~
E, (R„t)E,(R„t+~)XEz(R„t)E,(Rz, t+~)

~

'&0,

~
E,(R,, t)Ei (R,, t+r)EEz(R, , t}Ez (R,, t+~)

~

'&0 .
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Expanding the lhs of each inequality above and multiplying by the non-negative number P( I a ) ) and integrating over

I a I, we immediately obtain the inequalities (8}and (9}.
All the arguments above are for classical fields. For nonclassical fields, P( I a I } may be negative, therefore we cannot

use the method above. Let us consider the opera. tor

'(R2, t +&)~'i+'(Ri, t)+E' ', +'(Ri, t +r)P 2+'(R„t),

with r & 0. We then construct the following inequality:

(o'o»o.
Substituting Eq. (AS) in and expanding the lhs of this inequality, we obtain

(A9)

(P i (Ri, t)X p (R2, t +r)f i (Ri, t +r)X i (R |t) ) + (X p (R ,i)tX I (Ri, t +T)X I (Ri, t +1 )E p (Ri, t) )

k[(gI '(R, , t)X', '(R, , t+r)EI+'(R, , t+r)E,'+'(R„t))+c.c. ]&0 (~&0) (A10)

which is inequality (8) for r )0. By interchanging (R2, t +r) and (R, , t) in Eq. (AS), and following the same procedure,
we can easily prove that inequality (8) is also true for r &0. Inequality (9) is violated for some nonclassical states.
Therefore, only inequality (8) is generally satisfied by nonclassical fields.
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