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A detailed presentation of an analytic variational Dirac-Hartree-Fock (VDHF) procedure that
avoids the problems of spurious roots and collapse is given. The conditions for the avoidance of
spurious roots are discussed, as well as the behavior of the one-electron and total energies as upper
bounds under variations of the nonlinear parameters or the dimension of the basis sets. The im-

plementation of the VDHF procedure and the Breit-interaction corrections is presented for
Slater-type basis sets, with emphasis on the computational ef6ciency of the calculations. The
Breit-interaction corrections in particular are reviewed in detail. Optimized results are presented
for the He, Be, C, and Ne isoelectronic sequences.

I. INTRODUCTION (2.1)

The aim of this paper is to provide a detailed presen-
tation of a recently introduced analytic variational
Dirac-Hartree-Pock method' (VDHF) that avoids the
problems of spurious roots and variational collapse.
This is a successful implementation of an analytic
Dirac-Hartree-Fock (DHF) procedure proposed in the
pioneering work of Kim in 1967. Since then several at-
tempts have been made which were unsuccessful due to
either the incompleteness of the basis set used (because
of the elimination of negative-energy states from the
basis set)2' or the lack of appropriate conditions to
avoid spurious roots. '

A short review of the DHF equations and the VDHF
procedure is presented in Sec. Il, together with a discus-
sion of the basis set used. Examples of the behavior of
the energy eigenvalues as the nonlinear parameters of
the basis set are changed are persented, as well as exam-
ples of the convergence of the results as the dimension of
the basis set is increased. In Sec. III a review of the
Sreit interaction and its implementation in VDHF calcu-
lations is presented, together with a comparison of the
results obtained when difkrent forms of the Breit in-
teraction are used. The implementation of the pro-
cedure, using Slater-type basis sets for the calculation of
VDHF energies and Breit-interaction corrections, is re-
viewed in Secs. IV and V, respectively. Emphasis is
given to the computational eSciency of the calculations.
Finally, in Sec. VI optimized values of the nonlinear pa-
rameters, one-electron and total energies, and Breit-
interaction corrections are given for the He, Be, C, and
Ne isoelectronic sequences.

II. THE VDHF METHOD

In the one-electron case, the relativistic Dirac equa-
tion for the case of a Coulomb potential can be written
as

with

2 Z
Hg) =cts ' p +Prn c

r

where a and P are the usual 4X4 Dirac matrices.
Atomic units are used throughout, with c = 1/a
used sometimes to avoid confusion between the Dirac
matrices c; and the 6ne-structure constant u
= 1/137.03604.

The solutions to (2.2) can be written in the form

.g(r) ~ ( )
r

r

T=2j —1 (2.3)

where OJI is a two-component spherical spinor. The
functions g(r) and f (r) are the large and small radial
components, respectively; these names derive from the
fact that for bound states they satisfy the identities

f Z2
g dr= ,'(1+a E}=1—-

(2.4)

f f dr= —,'(1 ot E)=—

f (g' f')«= &0113—I 0& =ct'E . (2.5)

A similar identity is satisfied by the variational solutions
to the DHF equations. ' %e shall come back later on
to Eq. (2.5} in the context of the VDHF calculations.

With a solution of the form (2.3), the radial part of the
equations for the case of a central potential uncouples.
It is then advantageous to define a two-component radial
spinor

where Z is the nuclear charge and n is the nonrelativistic
principal quantum number. Using (2.4) we can write the
virial theorem in the form
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g(r)
f (r) (2.6)

can be avoided by imposing on the basis set differential
conditions at the origin.

Consider the expansion at the origin:

This spinor satisfies the radial equation

HD, +=ED+,
where the radial Dirac Hamiltonian is given by

g =r (go+gir+ ' ' ' ),
f =r"(f +f r+ )

In the nonrelativistic limit (a~0), at the origin,

g r i+1

(2.12)

(2.13)

d
dr

(2.8)

where» is the Dirac quantum number»=k(j+ —,') for
I =j+-,'.

The exact bound-state solutions to (2.7) are of the
orm

4 „=r"e
n, ~

i=0

where

[»2 (az )2]1/2

Q]

~,

(2.9}

(2.10)

In order to provide a finite-basis-set representation of
the solutions to (2.7), following the nonrelativistic model,
one could attempt to use a set of radial basis functions
that decay exponentially at inlinity and close to the ori-
gin behave as rr. Such a general representation can be
achieved with a basis set of the form

1

p =rr+'e
o

I

(2.11)
0

P&+, rr+'e ——" 1, i =01, . . . , N —1.
*

It has been shown9 that upon diagonalization of the
Hamiltonian (2.8) in the basis set I((}I one gets N
positive-energy eigenvalues that are upper bounds to the
exact values for the bound states and N negative eigen-
values that are lower bounds to —iiic2. There is, howev-

er, a spurious root appearing for the states with positive
» that is degenerate with the lowest positive-energy vari-
ational solution with a negative «of the same magnitude
[e.g., for «=1, a spurious "lp, ~2" state appears that is

degenerate with the Is, &2 state («.=—1) obtained varia-
tionally with the same nonlinear parameters]. This
spurious root does not affect atomic-physics calculations
involving hydrogenic ions, ' ' allowing the use of basis
set (2.11}to perform accurate relativistic calculations in-

volving sums over the complete energy spectrum. The
same is not true, however, if one applies this basis set to
VDHP calculations. Due to the presence of the spurious
roots, this approach fails to provide energy bounds when
shells with x ~ 0 are present in the electronic
con5guration to which the VDHF procedure is applied.
An approach to eliminate these spurious roots from the
pos1tlve-energy spcctruID ls therefor c necessary.

In the one-electron Coulomb case, it has been shown
that the spurious roots in the positive-energy spectrum

For states with x &0 this means that gp~o in the non-
relativistic limit, with g1 remaining as the lowest-order
coefficient in the expansion (2.12) of g. The necessary
constraint on the basis functions that will force them to
satisfy (2.13) can be obtained by replacing (2.12) to first
order in the radial Dirac equation to obtain' '

gp —aZg, +(»—y —1)f, =aEgo,
(2.14)

(»+y+1)gi — +aZf i aEfo . ——
a

From these equations we obtain

(q+2aZ)gi+(1 2aZq)f i
= fo

2g (2.1S)

(2.16)

+ ga ar
2 Z
, +—f,

+ gfpbb(r)f, —+v,b(r)fb]=e, f, , (2.17)
l

b

e, =c.,—mc 2 (2.18)

and c., is the energy of an electron in shell a. The
screening due to all other electrons is contained in the
terms under the summations (without these summations
we recover the Dirac equation). In these terms, the fol-
lowing de6nitions were used:

r
Pbb(") =g Cbb r k+ i

I bb(" i idr i

k

(2.19)

r
v,b(r)=QD, bkr k, P,b(r, )dr, ,

k
k+1

I',b(r) =g, (r)gb(r)+f, (r)fb(r),

cbk =~ko(2jb+1»

(2.20}

(2.21)

(2.22)

Condition (2.1S) is level independent, and can then easily
be implemented in the basis set. The question is if this
condition can also be applied to the VDHF scheme.

Consider the radial DHF equations for an electron in
shell a (the indices a and I2 denote closed electronic
shells):

f.' ». Z+ f g. +———Qljtbbb(r)g. +v.b(r)gb]
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j, k jb

0 otherwise .

if I, +Ib+k iS even,

Consider first the case in which the index a denotes a
p»2 shell. Due to the constraints (2.23) imposed on the
index k in Eq. (2.31), the lowest-order contribution at
the origin in (2.30b) is

g=r (g +g, r+ . . ),
f =r (fo+f, r+ ) .

Calling

kr
Qabk(r)=r k+i Pub(r1)drl

r +

(2.24)

(2.25)

this can be rewritten as

r k „P,b(x)dx
Q,bk(r)= k f x P,b(x)dx+r" +' fr 0 4+1

„P,b(x }dx

@Pbbs

x —r

+ A~bkr
k+1

~here A,bk is the constant

„P,b(x)dx
abk x

(2.26)

(2.27)

Using now the expansion (2.24) in (2.26) we obtain

with

Po b =go gob+foofob .

Then close to the origin

1 ~Qg P'bb(r)g (r} g CboA bo gor b

(2.29)

(2.30a)

1 eb+k—g V~b{r)gb(r) g Dabk Aabkgobrr
b, k

(2.30b)

o
Collecting terms of order r ' in Eqs. (2.17) we ob-

tain

0 (2.31}

Therefore, the lowest power of r in the radial large and
small components of the VDHF one-electron wave func-
tions is the same as the one for the pure Coulomb case.
As in the Coulomb case, in order to avoid the appear-
ance of spurious roots, this term has to vanish in the
nonrelativistic limit in the case of shells with x ~ 0.

To find a first-order condition similar to (2.15) for the
VDHF case, we expand ebb(r) and v,b(r) at the origin.
With this purpose in mind, we expound g(r) and f (r) at
the origin as in Eq. (2.12) but treat the lowest power of r
as an unknown:

FQ
~aa(80a r (2.32)

Therefore, for p ~&2 shells we recover Eqs. (2.14) and con-
ditions (2.15), if in the right-hand side of Eq. (2.14) we
substitute

aE~aE =aE —g CboA bo A—gpDg, o
b

(2.33)

In other words, the di8'erentia1 constraints to impose on

p, &2 states in the VDHF case are the same as those for
the one-electron Coulomb case.

In the case of shells with ~&2 the analysis becomes
more complicated. As an illustration consider the d3/2
states. In this case, if a =2 in Eq. (2.30b) denotes a ~=2
shell and b =1 a v= 1 (p, zz) shell, then the lowest-order
contributions in (2.30b) come from the terms

y2 ye+1
D220 ~ 220 02+D211 ~ 211 01

where

y, +1=1+[1—(aZ) ]'~ (y2=[4—(aZ) ]'~

(2.34)

(2.35)

A straightforward analysis of the DHF equations (2.17)
at the origin shows that the lowest power in an expan-
sion of the d3&z large and small components must be y2

y)+1 .
and that a term in r ' is absent in the expansion at the
origin. Therefore, an expansion of the radial com-
ponents of the d3/3 states at the origin can be written as

the sum of two series in powers of r: one starting at r ',
g)+2

and a second one starting at r . Of these, only the
term in y2 will have the wrong nonrelativistic limit and
then yield a spurious root. It is then suScient to require
the d3&z basis set to satisfy conditions (2.15}to eliminate
the spurious roots from the positive-energy spectrum. A
similar argument holds for states with higher values of
x'y 0.

It is interesting to note that the mixing of different
powers of r occurring in Eq. (2.30b), will occur in gen-
eral whenever shells with difFerent values of

~

x
~

are in-
volved in the calculation. This implies that convergence
of the results could be improved by adding terms with
these different real powers of r in the basis representing
each shell. However, the numerical feasibility and ad-
vantages of this procedure should be studied at low Z,
where y is "almost" an integer and degeneracy in the
basis set may occur, and at high Z, where the corre1a-
tion effects are very small.

In this work, a single value of y has been used for
each of the basis sets representing each shell. As a
consequence of the previous argument, for the states
with x ~ 0 we use the same type of basis sets that satisfy
conditions (2.15), as proposed in Ref. 10, with the added
flexibility of multiple exponential parameters.

The variational solution of Eqs. (2.17) will be written
as the linear combination
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4=pa)P;J . (2.36)

In the case a ~ 0, the bispinors ((};J are given by

1
P. J

=r~+ e
E,J Q

L

(2.37a)

j =1,2, . . . , M, i =O, I, . . . , E—1. (2.37b)

In the case a & 0, for i = 1, P, , and P~+ i, are given by'

2(Z+aA, )
=rre ' q+1,J' nZ(1+2K+2y)

1

(2.38a)

2q(Z+xA, , )

for all other values of i the bispinors ((), J are given by

1
r r+'e

i,j o
4

i =2, 3, . . . , X —1, (2.38c)

(2.38d)

with i =0 only if j =1, and

j 1y2y ~ ~ ~ y 3f e (2.38e)

1+f dr 8t —Q v,»„4»,
T'

(2.39)

where HD „ is the radial Dirac Hamiltonian (2.8), 4» is
the radial one-electron eigenvector of shell b, p&b is
defined in Eq. (2.19), and v,„„is given by Eq. (2.20) with
the replacement

The diagonalization of the DHF Hamiltonian matrix
(2.39) yields a set of linear coeKcients in the expansion
of the wave function for shell a in terms of the 8, „.
This linear combination minimizes the total energy for a
given set of nonlinear parameters.

The calculation of the direct and exchange terms as-
sumes knowledge of the wave functions for the shells la-
beled by the index b. The initial guesses for the large
and small components g» and f» used in the direct and

I.et the bispinor 8, denote in general the rnth ortho-
normal basis vector of the set used to represent the shell
a, built with basis vectors of the form (2.37) and (2.38).
The radial DHF Hamiltonian matrix for shell a con-
structed with this orthonormal basis set, will be given by

H, „=f dr8t HD„8, „+f dr8, —gp»»8, „
1

b

exchange integrals are, in this work, the variational solu-
tions of the one-electron Dirac Hamiltonian with the
basis functions (2.37) and (2.38). This starts the usual
iteration process to obtain self-consistency, i.e., the
eigenfunctions obtained for each shell as solutions of the
VDHF equations do not di8'er from those assumed for
each shell (obtained from the previous iteration). Each
step in the iteration process yields for the one-electron
orbitals SM positive-energy and JM negative-energy
eigenstates for shells with x~0 and NM positive-energy
and %M+1 negative-energy eigenstates for states with
x g0. There are no spurious roots in the positive-energy
spectrum.

The total energy E of the system under consideration
is given by

E =g I; + —,
' g (J,q —K;.), (2.40)

where the sum is taken over all electrons, J;~ and E;~ are
the direct and exchange integrals, respectively, and I, is
the expectation value of the Dirac Hamiltonian for an
electron in shell a: I, = (4,

~
(H& mes—)

~
4, ).

It is found that once self-consistency is achieved for a
certain set of nonlinear parameters, the total energy E is
alioays an upper bound to the exact (numerical) DHF
values. One can then obtain the best representation for
a given basis set (i.e., best set of nonlinear parameters)
by minimizing the total energy with respect to the non-
linear arameters in the basis set. In previous at-
tempts, ' a minimization was not possible because the
total energy could collapse below the exact value. For
this reason Kim introduced the idea of using a relativis-
tic virial theorem to find the best value of the total ener-

gy, with no guarantee that the result would provide an
upper bound to the exact value. In our case, in which
the variational result does provide bounds, the virial
theorem is used to construct an ef6cient optimization
technique for the variational calculation of DHF ener-
gies. Moreover, this technique provides a natural cri-
terion for the maximum accuracy to pursue in the
minimization process.

In Fig. 1, we display the way in which the total energy
typically behaves as the nonlinear parameters are varied.
In this example the calculations are done for carbon,
with a simple basis set for each of the s and p orbitals.
This basis set consists of one exponential parameter and
seven powers [M =1 and N =7 in Eqs. (2.37) and (2.38)].
In Fig. 1, the open circles describe the total energy as
the nonlinear parameter for the s shell is varied with the
parameter for the p shell 5xed at its optimal value. The
closed circles describe the variation of E as the p param-
eter is varied with the s parameter 6xed at its optimal
value. In each case, A,o in the abscissa denotes the op-
timal value of the parameter being varied. In both cases,
the total energy is always an upper bound to the exact
value Eo. A similar behavior has been observed in all
He-, Be-, C-, and Ne-like systems investigated.

In Figs. 2—4 we present similar graphs for the 1s, 2s,
and 2p one-electron energies. These are not upper
bounds to the exact values (eo), in general, although
they are always upper bounds for the values of the non-
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FIG. 1. Values of the total energy E of carbon relative to
the optimized value Eo, as a function of the nonlinear parame-
ter k for the s shell (open circles) and the p shell (solid circles).
A basis set with one exponential parameter and seven powers
has been used for each shell. Ap is the optimal value of the pa-
rameter being varied.

FIG. 3. Values of the one-electron energy e(2s) of the 2s
shell of carbon relative to the optimized value eo(2s), as a func-
tion of the nonlinear parameter A, for the s shell (open circles)
and the p shell (solid circles). A basis set with one exponential
parameter and seven powers has been used for each shell. A,o is
the optimal value of the parameter being varied.

linear parameters that optimize the total energy. The
lack of bounds on the one-electron energies is a conse-
quence of the inadequate screening provided by ihe
nonoptimized wave functions describing the other elec-
tronic shells. This is apparent in Figs. 2-4, where the
one-electron energy has a minimum when the parameter
of the basis set representing its own shell is varied, but
goes through a saddle point when the parameter
representing another shell is varied, i.e., when the
screening due to that shell is changed.

In Table I we show the convergence of the results for
C as the dimension of the basis set is increased. The op-

timal values of the one-electron energies for the 1s, 2s,
and 2p shells, and of the total energy are shown for
different numbers of powers in basis sets with two ex-
ponential parameters, i.e., M =2 and X =2, 3, 4, 5, and
6 in Eqs. (2.37) and (2.38). As in all systems investigat-
ed, the total energy and the one-electron energies con-
verge uniformly from above to the exact numerical
value.

The computational details of the calculations dis-
cussed in this section are presented in Sec. IV. Results
for energies and wave functions for He-, Be-, C-, and
Ne-like ions are presented in Sec. VI.
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FIG. 2. Values of the one-electron energy e{ls) of the 1s
shell of carbon relative to the optimized value eo( ls), as a func-
tion of the nonlinear parameter k for the s shell (open circles)
and the p shell (solid circles). A basis set with one exponential
parameter and seven powers has been used for each shell. Q is
the optical value of the parameter being varied.

FIG. 4. Values of the one-electron energy e(2p, &2) of the

2p&&2 shell of carbon relative to the optimized value eo(2p&y2),
as a function of the nonlinear parameter A, for the s shell (open
circles) and the p shell (sohd circles). A basis set with one ex-
ponential parameter and seven powers has been used for each
shell. Q is the optimal value of the parameter being varied.
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TABLE I. Optimal values of the one-electron energies and total energy for carbon. N and M are
the number of nonlinear parameters and of powers used in the basis set, respectively. The numbers
between parentheses are the errors in the last digit of the total energy as given by the virial-theorem
optimization method.

—11.318
—11.344
—11.351 838 0
—11.351 855 4
—11.351 866 6

—11.351 866 8

—0.702
—0.711
—0.716 846 0
—0.716 855 0
—0.716 862 82

—0.716 862 83

—0.378
—0.385
—0.389 718 1

—0.389 724 6
—0.389 730 2

—0.389 730 2

—37.675(50)
—37.654(17)
—37.657 413 2(93)
—37.657 417 2(72)
—37.657 421 7(23 )

—37.657 421 8

III. THE BREIT INTERACTION

+Br +G ++ret (3.1)

where HG is the Gaunt interaction and H„, is the retar-
dation interaction. In their work, Mann and Johnson
present three alternative versions of the Breit interac-
tion. The first version is that proposed by Breit

For the calculation of the Breit-interaction correc-
tions, we follow the analysis of Mann and Johnson. ' In
their work it is emphasized that it is incorrect to use the
Breit interaction to determine the self-consistent
field' ' because the Breit interaction follows from
quantum electrodynamics in jirst-order perturbation
theory. Therefore, in this work the Breit-interaction
correction is not obtained by adding the Breit operator
to the Hamiltonian to be diagonalized. The correction
will be obtained as a perturbation correction to the total
energy.

The Breit interaction is usuaBy written as the sum of
two terms:

where ~ is the energy transferred by the virtual photon.
HB, approximates Hz, to order m, thus providing an
approximation suitable for the study of light atoms
[(aZ)' «1j."

The third version of the Breit interaction is a simpler
form of Eq. (3.3) that can be used in the case in which
the electrons are described by eigenfunctions of a local
Dirac Hamiltonian:2 ' '

HG =HG = — ai a2cos('coR ), (3.4a)

H,",, = ——[1—cos(coR)] . (3.4b)

As pointed out by Mann and Johnson, it is the matrix
elements of H' that should be used within the DHF
method.

We summarize now the results obtained in Ref. 15 for
the matrix elements of the Breit interaction. The two-
electron matrix element of HB„after averaging over the
projection quantum number in each shell, is written as

E~Br E~6+E ~ret
ab ab ab (3.5)

uHG= — a)'a2 ~R
(3.2a) where a and b are a shorthand for the quantum numbers

describing electrons a and b, and

+ret
a (a, .az-a, .na2 n), (3.2b) ,6 abJ J J ) /+1D

2jb+1 2J —1
' 2J+3Jb+

where a is the fine-structure constant, 8 is the interelec-
tron separation, the components of a are Dirac matrices,
and n=R/R. This is the approximation used by Kim
and Grant' in their self-consistent calculations.

The second form of the Breit interaction is the nonlo-
cal generalization of (3.2), obtained by treating in
lowest-order perturbation theory the exchange of a sin-
gle transverse photon between two atomic electrons.
This interaction is given by

Dg bj (~, +ab )

2jb+1 J(J+1)

E&ret
D r2abJ~ 2j +1 (2J+1)(2J—1)

+ (J+1)'
(2J+1)(2J+3)

(3.6)

A
HG = ——a, a2cos(coR ),

8 cos(d) —1
ret li Zj

co R

(3.3a)

(3.3b)

J(J+1)+ 2J l abJ

where D,bJ is defined in Eq. (2.23), a, , = —a„and

(3.7)

T bJ = (&I dl'~J+) Nl' P'Jy) Q)P) I b f'( P b I"2
0 0

T,bJ ——I dr, J dr~'J(cur )yz(cur )U+b(r, )U+b(r2),

(3.8)

(3.9)
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J —1
oo 2J+1 "&

X,bz —— dr, dr2 —2 co&J 'i(d'or )yj+&(d'or& )+ P,b(ri)P, b(r2)
0 0 CO f'

2u—~J+',(~r & )yj &(~r & )P,b(r, )P,b(r2) (3.10)

U,*b(r)=g, (r)fs(r)+f, (r)g, (r} . (3.12)

The relevant value to calculate, to be added to the to-
tal DHF energy, is the averaged Breit-interaction energy
for the atomic system. In terms of the two-electron ma-
trix elements, this quantity is given by

(2, +1)
Ea, ——g q, q~(E,'s +EJ }+,'q, (q, ——1} . E,'G,

a&b

(3.13)

where q; represents the number of electrons in shell i.
In all the calculations performed in this work, the

transverse form of the Breit interaction Ea, has been
used. The strategies followed to calculate the integrals
(3.8)-(3.10} in a Slater-type basis set will be reviewed in
Sec. V.

It is interesting to compare the differences between EG
and E& and between Erets Erets and Eret for a certain
isoelectronic sequence. Relativistic effects increase as
(aZ); therefore, one expects the values of EG and Ez,
and E„,and E,'„ to differ more and more as the nuclear
charge is increased with the total number of electrons
fixed. In other words, calculations that include only
unretarded terms will have an appreciable loss of accura-
cy for large values of Z. On the other hand, one expects
the local potential calculation E,",, to converge towards
E,'„ for large values of Z, as correlation effects become
smaller (by 1/Z) relative to the nuclear Coulomb poten-
tial.

As an example, results for the carbon isoelectronic se-
quence are presented in Table II and in Figs. 5 and 6.
The points marked in Figs. 5 and 6 correspond to the
values presented in Table II. The closed circles in Fig. 5
show the magnitude of the Gaunt-interaction energy EG
relative to the VDHF energy: EG/EvDHF. This relative
contribution increases almost linearly with Z
(EG/EvDHF-Z"). The open circles show the relative
contribution to the total energy of the retardation term
E,'„. E,'„afI'ects the sixth or seventh digit of EvDHF for

where &'J and yj are spherical Bessel functions,
co=

~
e& —e,

~
is the energy carried by the virtual pho-

ton, and

(zb —x, )

J+ 1+1 /2

low values of the nuclear charge, but changes the fourth
dlglt of EvDHF for large values of Z. This limits the ac-
curacy of any DHF calculation that does not include the
retardation term. In Fig. 6 we show the differences
EG EG—(closed circles}, E'„, E„„—(open circles), and
E,'„E„",, —(squares) relative to the VDHF total energy
for difFerent values of Z in the carbon isoelectronic se-
quence. For low values of Z only the eighth or ninth
significant digit in the calculation of the total energy will
be affected if E&, is used instead of E&,. For large
values of Z, however, the co=0 approximation is in-
correct to the fifth significant digit of the total energy.
The relative difference between E«t and E'„', decreases
with Z, as expected, from 19% for Z =6 to 9% for
Z =75. This decrease is, however, not sumcient to de-
crease the error introduced in E»HF by using E" in-
stead of E'. This error affects the sixth digit of EvDHF
over the whole range of values of Z, and in fact E,"„is
more accurate than E„, for Z ~ 34.

P~) (r)
p";J(r)= ~,d( )

(4.1)

to denote the upper and lower radial components of a
basis vector with indices i,j [Eqs. (2.37) and (2.38)] be-
longing to the set used to represent the electron states
with quanta. m number ~. %'ith this notation, a typical
matrix element of the radial DHF Hamiltonian can be
separated into four contributions:

(yu
~

~radial
~

yu ) ~ +0uud+~ud +~add

with

IV. MATRIX ELEMENTS
OF THE RADIAL HAMILTONIAN

In the VDHF method, in order to calculate the expec-
tation value of the DHF Hamiltonian, it is necessary to
calculate its matrix elements within a basis set; in our
case the set defined by Eqs. (2.37) and (2.38). In this sec-
tion we discuss the actual implementation of the method
presented in Sec, II. Emphasis is given to the aspects of
speed and e%ciency in the computation of the large
number of matrix elements to be calculated during the
self-consistent iterative calculations.

Let ~ denote the Dirac quantum number that
identi6es the one-electron eigenstates, and use the nota-
tion

@by (~)
Huu f d yuu Z yuu y f dryuu

~b" yuu

+QD„IL f dr/;"",'(r)gb(r) f dr' —,~, [rtp,","(r')gb(r')+P";J"(r')gb(r')],
b p + (4.3a)
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TABLE II. Values of the Breit-interaction corrections to the VDHF total energy for different ions in the carbon isoelectronic se-

quence. E denotes calculations without retardation effects (co=0), E' is the transverse form of the Breit interaction, and E"
denotes the values in the local-potential approximation.

EYDHF

6

9
10
11
12
13
14
15
16
17
18
20
25
30
35
40
45
50
55
60
65
70
75
80
85
9Q

—37.657 421 7
—53.853 523 1

—73.073 086 9
—95.313509 1

—120.575 921
—148.863 269
—180.179661
—214.530086
—251.920 274
—292.356 631
—335.846 199
—382.396 637
—432.016210
—540.498 839
—866.110668

—1270.688 22
—1756.141 86
—2324.839 52
—2979.664 89
—3724.093 24
—4562.289 72
—5499.237 45
—6540.904 95
—7694.469 12
—8968.615 42

—10373,9500
—11 923.5787
—13633.9433

0.002 903 1

0.004 971 5

0.007 875 6
0.011 7600
0.016769 4
0.023 048 9
0.030 744 3
0.040 001 8
0.050 968 3
0.063 791 3
0.078 6190
0.095 600 6
0.114885 9
0.160971 9
0.327 192 1

O.S82 0444
0.946075 8

1.441 073 7
2.0904101
2.919469 7
3.956 170 1

5.231 682 7
6.781 294 0
8.645 559 1

10.872 076
13.517621
16.651 393
20,360080

0.002 903 1

0.004 971 6
0.007 8760
0.011 760 7
0.016770 6
0.023 051 1

0.030 747 9
0.040007 6
0.050 977 1

0.063 8041
0.0786374
0.095 626 1

0.114920 7
0.161033 0
0.327 3904
0.582 553 5

0.947 191 5

1.443 252 2
2.094 303 5
2.925 952 9
3.966 351 4
5.246 888 0
6.803 013 5

8.67S 337 0
10.911322
13.567 312
16.711614
20.429 353

—0.000 058 5
—0.000 128 5
—0.000 237 4
—0.000 393 3
—0.000 604 5
—0.000 878 9
—0.001 224 8
—0.001 650 2
—0.002 163 2
—0.002 772 0
—0.003 484 2
—0.004 308 1

—0.005 251 8
—0.007 529 8
—0.015 873 1

—0.028 778 8
—0.047 204 1

—0.072 084 1

—0, 104 332 5
—0.144 844 2
—0.1944992
—0.254 175 6
—0.324 759 3
—0.407 159 5
—0.502 354 9
—0.611418 6
—0.735 575 2
—0.876 314 1

—0.000 058 6
—0.000 128 6
—0.000 237 7
—0.000 393 9
—0.000 605 6
—0.000 881 0
—0.001 228 3
—0.001 655 7
—0.002 171 6
—0.002 784 1

—0.003 501 7
—0.004332 7
—0.005 285 4
—D.007 589 4
—0.016069 6
—0.029 291 6
—0.048 346 7
—0.074 356 5
—0.108 478 8
—0.151 9152
—D.205 9159
—0.271 793 2
—0.350 926 2

O.AAA 766 6
—0.554 870 1

—0.682 897 1

—0.830 632 0
—1.000045 4

—0.000 069 7
—0.000 147 9
—0.000 266 9
—0.000435 2
—0.000 660 6
—0.000 951 4
—0.001 315 5
—0.001 761 2
—0.002 296 4
—0.002 929 3
—0.003 667 8
—0.004 5199
—0.005 493 6
—0.007 837 7
—0.016 379 8
—0.029 531 9
—0.048 249 9
—0.073 467 9
—0.106098 2
—0.147 033 9
—0.197 154 6
—0.257 334 8
—0.328 458 3
—0.411 440 5
—0.507 252 6
—0.616966 9
—0.741 815 3
—0.883 267 3

-5.0

-3.0-

-4.0—

-5.0—

-6.0—
1.2

log10 IE)

1.6 1.2

la/10 tKI

FIG. 5. Values relative to the total energy Ev&HF of the
Gaunt interaction EG (solid circles) and the retardation term

E,'„(open circles) for dieerent values of the nuclear charge Z
in the carbon isoelectronic sequence.

FIG. 6. Values of the difference EG —EG (solid circles},
E„'„—E„, (open circles), and E,'„—E,",, (squares) relative to
the total energy Ev&HF for different values of the nuclear
charge Z in the carbon isoelectronic sequence.
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(4.3b)

(4.3c)

Hdd f g gad + pad+ y f pry'» pad
i J 2 /J

b
r

++D„si f dr/;", j (r)gb(r) f dr' z, fp;"~ (r')g&(r')+pj (r')gb(r')],
b r

(4.3d)

where p»(r) and D„bl are defined in Eqs. (2.19) and
(2.23). The functions gb(r) and fb(r) stand for the large
and small radial components of the eigenstates of each of
the shells in the electronic configuration; gb and f» are
of course not known a priori

In this work, variational hydrogenic Coulomb eigen-
states were chosen as initial guesses to start the calcula-
tion. With this initial guess, all the matrix elements in
Eq. (4.3} can be calculated, and the expectation value of
the total VDHF energy can be minimized with respect
to the linear (variational) parameters in the expansion of
Eq. (2.36}. This is achieved by the diagonalization of the
DHF Hamiltonian matrix. This diagonalization yields a
new set of functions g„and fb that are in general
diferent from the initial guess. The new functions are
now used in Eq. (4.3},and the DHF equations are solved
again to obtain a new set of eigenvalues and eigenfunc-
tions. This process is continued until self-consistency is
achieved, i.e., until the change in all the eigenstates is
smaller than a certain convergence criterion.

The whole process is then repeated for different sets of
the nonlinear parameters A,, in Eqs. (2.37) and (2.38), un-
til the total energy (2.40) is minimized. There are stan-
dard strategies for nonlinear minimization. 2 In this
work, a new and very efficient minimization method
based on the relativistic virial theorem (2.5) (Ref. 14) has
been used. This method is based on the fact that the
virial theorem (2.5) is satisfied in the VDHF case at the
variational minimum. Its strategy is to follow the direc-
tions defined by the gradients with respect to the non-
linear parameters, of the expectation value of P and of
the total energy, to And the minimum of EvDHF. For a
finite (incomplete) basis set, the values of the nonlinear
parameters for which E and (P) are stationary do not
coincide. Therefore, at a precision better than the
difference between these stationary points, the method
fails to continue to minimize. This method has then the
added advantage that it provides a natural end to the
nonlinear optimization procedure, i.e., it decides at
which point it is worthless to continue minimizing the
total energy.

In this work, the radial basis vectors are expressed in
terms of the normalized basis functions

where

(4.4b}

(4.4c)

(4.4d)

The matrix elements of H" and H ", the 6rst term in
H"", and the first two terms of H"d can all be written as
linear combinations of the integral

f dr/i $2
1

I (r/, +r/ +m+1) [(~j, ) (~j, )

(4.5)
[I (a'i)l (a2)]' (g g )"i+"&+

The calculation of the direct and exchange terms in
(4.3a) and (4.3b) is more involved. These terms can be
written as linear combinations of the integrals
VL (1,2, 3,4;0,0) that are special cases of the general in-
tegral

VL(1,2, 3,4;m', m)

L +2m'

L +1+2(m' —m)r)
(4.6)

VL (1,2, 3,4;m', m)= WL~(1, 2, 3,4;m', m)

+ Wz~(1, 2, 3,4;m', m), (4.7)

The case m '&0, m &0 will be used below to calculate
the Breit interaction.

The integral (4.6) can be expressed in closed form in
terms of hypergeometric functions. Writing

(k, )r
I (o )

r"'exp( —A. r),
lp

(4.4a)
where 8 ~ is the contribution to VL from the domain
r2~r& and W~ is the contribution from the domain
r2 & r), we obtain
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W)(1,2, 3,4;m', m)= ' ' ' ', ,F, [l,q+2m+l, rI, +q, +K+2m'+2;(&, +A,, )/&]N(1, 2, 3,4;m)
q]+F2+I. +2m'+1 jl l2

(4.8a)

(the equation for W is the same with g3, g4, j3,j~ sub-

stituted for g, , g2, j2,j2), where

(4.8b)

Only terms involving difFerent values of the sums i, +i2
or i3+l4 need to be calculated.

(iv) For each set of nonlinear parameters, only a few
of the hypergeometric functions in (4.8) need to be calcu-
lated. The rest can be obtained using the recursion rela-
tions

F ( l„b;c + 1;z}= [—c (1 z)F (—l, b;c;z)

I (q+2m +1)
[I'(a, )I (a 2)l (o 3)l (o 4) ]' F( l, b +1;c;z)

+cF(1,b —1;c;z)]/[(c —1)z],
(4.9a)

The number of integrals of the form (4.6) to be calcu-
lated is, in principle, very large for the size of basis sets
used in the present work. A straight calculation of all
these terms in each of the iterations would make use of a
prohibitive amount of computer memory and CPU time.
There are, however, several shortcuts to make the calcu-
lations more efFicient.

(i) The integral (4.6) is invariant under several permu-
tations of the functions in the integrand, like 1~2„3==4;

1,2~3,4; etc. It is necessary therefore, to calculate only
a subset of the possible combinations occurring in (4.6).

(ii) The basis set used is not changed during the itera-
tion process leading to self-consistency. Therefore, the
integrals (4.5) and (4.6) need to be calculated only once
for a given set of nonlinear parameters. They can then
be stored and reused in each of the iterations.

(iii) For a given set of nonlinear parameters, the ex-
change of powers i,~i& or i3~i4 in (4.6) is irrelevant.

= I(c —b)F( l, b —1;c;z)

[c —2b+—(b —1}z]F(l,b;c;z)) /[b(1 —z)] .
(4.9b)

V. MATRIX KI.EMENTS
OF THE BREIT INTERACTION

In Sec. III the Breit interaction was written in terms
of the expressions (3.8)-(3.10) that consist of integrals
involving products of two spherical Bessel functions and
four basis functions of the form (4.4). In order to calcu-
late these terms in closed form, we perform a power ex-
pansion of each of the products of Bessel functions need-
ed. The standard expansions of&'J(x) and yJ(x) are "

g'J(x) =
m

( 1)k 2k+ J
0 k!2 (2J +2k +1)!!

TABLE III. Values of the optimized nonlinear parameters for basis functions of the form {2.37) for the x= —1 states {$1/2
states) in He-, Be-, C-, and Ne-like ions. The parameters are scaled by the nuclear charge Z.

Z

2
3

5
6
7
8

9
10
11
12
13
14
15
16
17
18

1,1/Z

0.594 921
0.609 794
0.631 289
0.647 071
0.686056
0.829 059
0.849 786
0.833 691
0.854 533
0.854 533
0.854 533
0.875 063
0.896 941
0.892 798
0.892 798
0.915 117
0.919297

2.380 86
2.440 38
2.440 38
2.440 38
2.488 55
2.567 04
2.567 04
2.544 82
2.54482
2.544 56
2.544 56
2.S54 83
2.59046
2.70796
2.707 96
2.707 96
2.718 15

0.273 470
0.292 915
0.307 561
0.329 430
0.345 902
0.363 197
0.385 170
0.400 385
0.420404
0.441 424
0.468 130
0.486 621
0.476 799
0.500 638
0.494 764

Be

1.425 60
1.439 86
1.439 86
1.484 83
1.480 53
1.515 21
1.51686
1.SSS 39
1.567 68
1.565 52
1.565 52
1.64021
1.625 49
1.624 10
1.625 74

A, l /Z

0.276 53S
0.292 037
0.308 409
0.322 473
0.337 178
0.352 555
0.368 632
0,385 442
0.403 020
0.421 398
0.440 615
0.465 315
0.465 315

1.306 66
1.366 25
1.428 5S
1.442 84
1.4S7 26
1.471 84
1.518 29
1.508 89
1.523 98
1.541 41
1.556 83
1.572 43
1.572 43

0.286 624
0.311307
0.339977
0.358 504
0.371 141
0.384 224
0.393 829
0.403 675
0.417 905

1.409 77
1.456 02
1.485 70
1.484 90
1.499 75
1.499 75
1.499 75
1.499 75
1.537 24
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(2J + 1)!' 2k —J —i

0 k!2"(2J+ 1) (2J —2k + 1)

(5.2)

Using these expansions for each of the products
&'~(cur )yJ.(cur ) and regrouping the terms with the
same power of co, we obtain the following general expres-
sion:

&'z+ (cur& )yj»(nor) )

The terms in the basis-set expansion of the integrals
(3.8)-(3.10) are of the form

g„(1,2, 3,4)= f "«, f "«,g, (r, g, (r, g, (~2)
0 0

&&(4(r, )~„(co'r, )y„(cur, ) .

(5.5)

Using the definitions (4.6), (5.3), and (5.4) this can be ex-
panded as a series in powers of ~:

J+q(2J —2q —1)!! "( 2»

(2J+2q+1)!!p~ »+'

p
211l

gm, m m 2(m'
=0 '=0

(5.3)

Q„(1,2, 3,4)
oo

2m ~ g0
+1) ~ ~ ~ n, m', m —m'

m =0 m'=0

XV„(1,2, 3,4;m', m). (5.6)

and

q =1,0, —1

( —1) +' (2J+2q+1)

ff (2J+2q +2m +1)

(2J —2q + 1)
X

g (2J —2q —2m '+ 1 )
m'=0

(5.4)

Let R ~ be a typical term in the basis-set expansion of
the retardation term (3.10). R» differs from (5.5) in the
relative order of the Bessel functions involved, and in the
limits of integration,

&„»(1,2, 3,4)= f «i f dr, g, (r, )(2(r, )g,(r, g,(r, )
0 0

Xg„»(~&( )y„+»(~&) ) .

(5.7)

Using the definitions (4.7), (4.8), (5.3), and (5.4) we obtain
in this case

2n —2q —1 !!
(5.8)

The Breit interaction can therefore be written as an
expansion in powers of co=he, where he is the energy
difFerence between the two electron states involved in the
calculation of Eqs. (3.6) and (3.7). Each term in the ex-

pansion in co involves a linear combination of hyper-
geometric functions. The same computational shortcuts
described in Sec. IV also apply here.

%ith the method described above, one avoids the need

TABLE IU. Values of the optimized nonlinear parameters for basis functions of the form (2.37)
and (2.38) for the x=1 states (p&&2 states) in C- and Ne-like ions; and for the ~= —2 states (p3/2)
states in Ne-like ions. The parameters are scaled by the nuclear charge Z.

6
7
8
9

10
11
12
13
14
15
16
17
18

A, i/Z

0.179441
0.187 624
0.196 180
0.205 127
0.214481
0.224 262
0.229 868
0.233 259
0.236 699
0.236 699
0.236 699
0.242 617
0.246 195

0.673 266
0.679 999
0.686 799
0.693 667
0.700603
0.700 603
0.700 558
0.703 072
0.696041
0.696041
0.696041
0.699 729
0.699729

A. l/Z

0.217 705
0.227 633
0.223 103
0.220 872
0.220 872
0.221 889
0.225 162
0.226 198
0.229 534

A,2/Z

0.750 533
0.735 094
0.716 521
0.713228
0.713228
0.706096
0.706096
0.69903S
0.699035

k) /Z

0.21699S
0.220 196
0.309 064
0.326 857
0.341 763
0.357 348
0.369 94S
0.369 945
0.382 985

k2/Z

0.769 620
0.78S 089
0.823 970
0.914 800
0.995 356
1.083 005
1.178 373
1.219910
1.237 904
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TABLE V. VDHF values (in a.u.) of the 1s-subshell energy and the total energy for several ions of
the helium isoelectronic sequence. These values are obtained using a basis set with two exponential

parameters and six powers per exponential, for each of the large and small components. The numbers

between parentheses are the errors in the last digit of the total energy as given by the virial-theorem

optimization method.

e(ls}

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18

—0.917990688 2
—2.792 635 394 6
—5.668 149 524 6
—9.544 788 733 4

—14.423 138486
—20.303 983 463
—27.188282671
—35.077 162 827
—43.971 916565
—53.874002 344
—64.785 045 089
—76.706 837 241
—89.641 340072

—103.590 685 22
—118.557 176 38
—134.543 291 21
—151.551 683 37

—2.861 813 342 1(4)
—7.237 205 520 7(3)

—13.614001 410(3)
—21.993 149 188(4)
—32.375 989 218(1)
—44.764 201 119(4)
—59.159794 044(1)
—75.565 105006(1)
—93.982 799 546(1)

—114.415 873 36
—136.867 654 51
—161.341 805 96
—187.842 328 57
—216.373 564 30
—246.940 19980
—279.547 270 23
—314.200 163 58

—2.861 749 564 7(4)
—7.236 947 773 9(3)

—13.613335 212(3)
—21.991 780 042(4)
—32.373 542 520(1)
—44.760 222 033(4)
—59.153 747 357(1)
—75.556 374 959(1)
—93.970 689 631(1)

—114.399606 10
—136.846 371 20
—161.314566 41
—187.808 11077
—216.331 264 10
—246.888 630 54
—279.485 16241
—314.12616433

for numerical integrations and is able to achieve high ac-
curacy in the calculation of the Breit interaction. The
expansion in powers of co converges very fast even for
large values of the nuclear charge. The number of even
powers of io needed to obtain the total energy accurate
to ten significant digits, varies from a few for small Z to
about 30 powers for large Z.

There is another advantage in. the use of the expansion
(5.3): The term —a jR in H,"„[Eq.(3.4b)] and the term
[(2J'+1)/co ](r ' Ir +

) in I'"' [Eqs. (3.7) and (3.10)]
are exactly canceled by the lowest-order term (m =0) in

the expansion of

(2J + 1)~'~(o)r ( )yJ (a)r ) )

co~J i(cdr( )gg+i(cilr) ),
respectively. In other words the lowest-order cancella-
tion occurring in (3.4b) and (3.11) can be extracted
a priori, avoiding in this way the loss of numerical accu-
racy.

TABLE VI. VDHF values (in a.u. ) of the 1s and 2s-subshell energies and the total energy for several ions of the beryllium

isoeleetronic sequence. These values were obtained using a basis set with two exponential parameters and six powers per exponen-

tial, for each of the large and small components. The numbers between parentheses are the errors in the last digit of the total ener-

gy as given by the virial-theorem optimization method

5

6
7
8
9

10
11
12
13
14
15
16
17
18

—4.733 498 0
—8.188 200 9

—12.655 791 4
—18.130367 1

—24.6105190
—32.096 294 5
—40.588 405 9
—50.087 958 34
—60.596 338 84
—72.115 165 80
—84.646 263 97
—98.191651 54

—112.753 533 6
—128.334 298 8
—144.936 518 5

e(2s)

—0.309 322 07
—0.874 080 27
—1.694 814 51
—2.768 517 26
—4.094 272 97
—5.671 854 52
—7.501 339 80
—9.582 975 77

—11.917 121 8
—14.504 223 5
—17.344 798 9
—20.439 432 02
—23.788 768 24
—27.393 512 86
—31.254 429 73

—14.575 892 2(l)
—24.245 166 3(2}
—36.425 154 7{3)
—51.114501 69(3)
—68.314413 16{20)
—88.027 228 46{1)

—110.256007 7(1}
—135.004 381 78(S)
—162.276 489 86(1)
—192.076 951 43(5)
—224.410 S53 69(9)
—259.283 746 70(3)
—296.70164265(3)
—336.67101769{1)
—379.198 815 22(2}

E+Ep,
—14.575 1897(1}
—24.243 685 3{2)
—36.422 459 2(3)
—51.11005807(3)
—68.307 59000(20)
—88.017296 27(1)

—110.242 138 6(1)
—134.985 649 29(5)
—162.25186848(1)
—192.045 31628(5)
—224.370 980 12(9)
—259.234 309 82(3)
—296.641 21684(3)
—336.598 076 05(1}
—379.111729 02{2)
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TABLE VII. VDHF values (in a.u. ) of the 1s, 2s, and 2p subshell energies and the total energy for several ions of the carbon
isoelectronic sequence. These values were obtained using a basis set with two exponential parameters and six powers per exponen-
tial, for each of the large and smaB components for each shell. The numbers between parentheses are the errors in the last digit of
the total energy as given by the virial-theorem optimization method.

7
8

9
10
11
12
13
14
15
16
17
18

—11.351 866 6
—16.313 131 7
—22.296 027 8
—29.292 361 4
—37.299 436 8
—46.316554 1

—56.344 0160
—67.382 729 6
—79.434 021 0
—92.499 537 9

—106.581 196
—121.681 149
—137.801 769

—0.716 862 8
—1.472 291 5
—2.489 749 0
—3.763 208 5
—5.290 706 1

—7.071 517 7
—9.105 460 3

—11.392 641
—13.933 349
—16.728 001
—19.777 114
—23.081 290
—26,641 204

—0.389 730 2
—1.047 011 7
—1.962 681 0
—3.133227 9
—4.557 283 8
—6.234 292 8
—8.164 108 9

—10.346 830
—12.782 716
—15.472 148
—18.415 605
—21.613646
—25.066 906

—37.657 421 7(23)
—53.853 523 1(20)
—73.073 086 9(13)
—95.313509 1(11)

—120.575 920 8{7)
—148.863 268 9(6)
—180.179661 3(1)
—214.530085 7(6)
—251.920 273 7(1)
—292.356 630 9(4)
—335.846 1993(10)
—382.396 637 3(22)
—432.016210 3(27)

—37.654 577 2(23)
—53.848 680 1(20)
—73.065 448 7(13)
—95.302 142 4(11)

—120.559 755 8(7)
—148.841 098 9(6)
—180.150 141 9(1)
—214.491 734 1(6)
—251.871 468 6(1)
—292.295 611 5(4)
—335.7710644(10)
—382.305 344 8(22)
—431.906 576 1(27)

[ 2 (~Z)2]1/2 (6.2)

where ~ is the Dirac quantum number identifying the
electronic shell.

In all cases, the total energy has been optimized with
respect to (i) the linear coefficients in the expansion

VI. RKSUI,TS

In this section, results of the VDHF calculations are
presented for members of the He, Be„C, and Ne isoelec-
tronic sequences with values of the nuclear charge up to
Z =18.

In all cases, Sister-type basis functions of the form
(4.4) were used, with two exponential parameters and six
powers for each of the configurations:

g, , =Nr~+'e ', i =0, 1, . . . , 5, j =1,2, (6.1)

where X is a normalization constant.
The nonlinear parameter y in (6.1}has been chosen to

reproduce the exact behavior of the one-electron wave
function at the origin, i.e.,

(2.36), by diagonalizing the radial VDHF Hamiltonian
matrix; and (ii) all the nonlinear coefficients A. in (6.1),
using the virial-theorem optimization method.

The values of the optimized nonlinear parameters
scaled by the nuclear charge Z are presented in Table III
for the a= —1 shells (s&/2 states), and in Table IV for
the a=1 shells (p, /z states) and the ~= —2 shell (p3/2
states). Tables of the optimized linear coefficients have
not been included because of the large amount of space
required. These can be obtained from the author.

In Tables V —VIII we display the optimized VDHF
values for the one-electron energies and the total ener-
gies for He-, Be-, C-, and Ne-like ions, respectively. In
all cases these values sre upper bounds to the numerical
DHF solutions and, in general, differ from those solu-
tions in the last digit quoted. The numbers between
parentheses in the columns for the total energy are the
errors in the last digit of the total energy provided by
the virial-theorem optimization method. This error is
given by the difference

~

E —(P )
~

at the point in which
the minimization process came to an end. The values

TABLE VIII. VDHF values (in a.u. ) of the 1s, 2s, 2p, and 2p-subshell energies and the total energy for several ions of the neon
isoelectronic sequence. These values were obtained using a basis set with two exponential parameters and six powers per exponen-
tial, for each of the large and small components for each shell. The numbers between parentheses are the errors in the last digit of
the total energy as given by the virial-theorem optimization method.

z
10
11
12
13
14
15
16
17
18

—32.817470 3
—40.826 5740
—49.864 792 7
—59.925 489 3
—71.006 252 3
—83.106 533 2
—96.226 821 0

—110.368 280
—125.532 561

—1.935 845 3
—3.082 402 3
—4.496 468 8
—6.171 3190
—8.104 1314

—10.293 639
—12.739 342
—15.441 174
—18.399 346

—0.852 829 0
—1.801 417 4
—3.013 354 0
—4.483 865 3
—6.210924 0
—8.193623 2

—10.431 628
—12.924 944
—15.673 800

—0.848 265 9
—1.794008 8
—3.001 745 4
—4.466 379 1

—6.185 500 2
—8.157 772 6

—10.382 388
—12.858 834
—15.586 780

—128.691 969 2(20)
—161.895 968 0(1)
—199.150 1372(4)
—240.451 870 7(2)
—285.802 800 3(7)
—335.206 897 9(9)
—388 669 697 7(18)
—446.197918 5{23)
—507.799 261 9( 39)

—128.675 329 3(20)
—161.872 609 5(2)
—199.118376 7(4)
—240.409 830 9(3)
—285.748 409 3(7)
—335.137889 0(9)
—388.583 608 6{18)
—446.092 091 0( 23 )
—507.670 841 2( 39)
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TABLE IX. Values of the Gaunt and retardation contributions to the transverse form of the Breit interaction [Eq. (3.3)] for He-,
Be-, C-, and Ne-like ions.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

He
Er

10 a.u.

0.006 377 74
0.025 77470
0.066 61982
0.13691453
0.244 669 80
0.397 908 62
0.604 668 65
0.873 004 71
1.210991S

1.626 726 0
2.128 3306
2.723 955 2
3.421 780 5
4.230020 2
5.156924 5
6.210782 5
7.399925 0

10 a.u.

0.070 6340
0.149 319 1

0.272 303 8
0.449 556 2
0.6910685
1.006 S58 3
1.406 972 1

1.901 489 4
2.500 525 9
3.214 237 7
4.052 825 8
5.026 539 7
6.145 681 8
7.420 6114
8.861749 5

Be

—0.000 384 9
—0.001 217 1

—0.002 751 2
—0.005 1936
—0.008 752 8
—0.013688 3
—0.020063 S
—0.028 241 0
—0.038 387 8
—0.050 723 2
—0.065 469 4
—0.082 852 0
—0.003 1002
—0.026 446 S
—0.053 1290

El
10 ' a.u.

0.029 0309
0.049 7150
0.07.8 756 4
0.117600 1

0.167693 5
0.230488 9
0.307 442 9
0.400018 1

0.509 683 0
0.637 912 8
0.786 1903
0.956005 9
1.148 858 9

Er
10 ' a.u.

—0.000 585 43
—0.001 285 06
—0.002 373 70
—0.003 93307
—0.006 044 52
—0.008 789 21
—0.012 248 18
—0.016 502 29
—0.021 632 25
—0.027 718 55
—0.034 841 51
—0.043 081 22
—0.052 517 54

Er
10 ' a.u.

0.175 354 2
0.247 493 5
0.338 001 3
0.449 018 3
0.582 688 2
0.741 158 1

0.926 578 7
1.141 105 4
1.386 898 2

10 ' a.u.

—0.008 955 27
—0.013908 58
—0.020 396 66
—0.028 620 24
—0.038 778 42
—0.051 068 91
—0.065 688 09
—0.082 830 95
—0.102 690 98

obtained for the Gaunt and retardation contributions of
the Breit-interaction corrections are given in Table IX.

The one-electron energies can be interpolated by a
polynomial expansion in powers of Z '. However, an
intuitive understanding can be gained if instead we ex-
press the one-electron results in terms of screening pa-
rameters. This can be achieved if for each value Z; of
the nuclear charge we express the DHF one-electron en-
ergies e, as one-electron Dirac-Coulomb energies with a
screened value of the nuclear charge Z; —cr;(Z):

a (Z; —a;)
In —

~

x
~

+[ir2 —a2(Z; —a;)z]'~ I'

(6.3)

where n is the (nonrelativistic) principal quantum num-
ber.

1+o,g+o 2$o(Z)=ac
1+o 3(+o 4g

or the polynomial

(6.4a}

o'(z)= g o';g', (6 4b}

with the one giving the better fit having been chosen. In
(6.4), for each value Z, of the nuclear charge,

(6.5)

A least-squares fit has been made for each of the one-
electron states in each of the isoelectronic sequences.
The screening function cr(z) is approximated by either
the polynomial ratio

TABLE X. Coefficients for the expansion of the nuclear-charge screening o(Z) defined by Eq. (6.3}. The coefficients refer to Eq.
(6.4a) or (6.41), as indicated in the third column of the table.

He

Be

1s
2$

2p
2p

(a)

(a)
(a)

(b)
(b)
(a)
(a)

0.645 033 274

0.923 345 676
2.426 946 974

1.235 876 949
3.605 359 950
4.234 277 519

1.902 001 343
6.065 198029
7.388 121 020
7.395 011 823

—0.682 865 651

—0.153 751 657
—0.358 618997

0.405 192024
—0.227 503 438

1.224 416 342

0.766 005 760
—0.264059 853

2.081 115 133
5.2S3 331 366

—0.394 319895

—1.022 858 592
—0.653 357 202

—0.236 959 677
—0.310210991
—0.759 972 283

—0.375 019811
—0.904 295 779
—0.674 522 347

4.342 137 591

—0.639 217 963

—0.342 686 559
—0.188 822 026

0.136323 520
0.675 587 641
1.488 879 172

0.226 292 679
2.0S4 064 262
2.411 440 175
5.586 937 210

—0.440 167 370

—0.815 948 331
—0.821 575 571

—0.060 271 54S
—0.450958 476
—0.876 083 852

—0.173 514 510
—1.720 005 847
—0.653 397 069

5.328 347 281
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with Zo being the nuclear charge of the neutral atom of
the isoelectronic sequence under consideration. The
variable g in (6.5) is zero for the neutral atom and is al-
ways smaller than 1: 0 & g ~ 1. Therefore, o 0 is the
screening of the lowest member of the sequence and the
coefficients in the expansion (6.4) will be of similar or-
ders of magnitude.

The values of the coeScients o,- are given in Table X,
where in the third column it is indicated if Eq. (6.4a) or
(6.4b) was used. The interpolated one-electron energy
values obtained using Eqs. (6.3)-(6.5) with the
coeScients of Table X agree in general to the fifth
significant figure with the exact values. The use of (6.4)

to extrapolate the values of the one-electron energies has
been tested for carbon, yielding values accurate to better
than 1% up to Z =90.
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