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Electromagnetic decay into a narrow resonance in an optical cavity
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The spontaneous electromagnetic decay of a two-level atom coupled to a narro~ cavity resonance

is investigated rigorously in terms of the (Hermitian) modes of the ' universe" rather than the (dissi-

pative) quasimodes of the cavity. Special attention is paid to the strong-coupling regime (atomic
linewidth I cavity resonance width y), in which there are signi6cant corrections to the golden
rule. In particular, spontaneous decay is most rapid for intermediate values of the quahty factor Q
of the cavity resonance. The photon line shape, the effect of several cavity resonances, and the com-

petition of several transitions are also investigated. The additivity of partial rates does not hold,
and in some circumstances, the addition of an extra decay channel may reduce the total decay rate.
These results are relevant to optical processes observed in dielectric microspheres, and also to usual

laser cavities.

I. INTRODUCTION

Many optical phenomena involve the interaction of
atoms (or molecules) with the electromagnetic field in a
resonant cavity C, such as linear laser cavities. A parallel
experimental program has recently been initiated on
dielectric microspheres with radii in the range
5-50 pm, e.g., liquid droplets acting as optical
cavities. Roughly speaking, rays confined within thc
microsphere by total internal reflection at a near-glancing
angle cause resonance when the circumference and the
wavelength are in suitable ratios. Resonance-enhanced
Auorescence, ' stimulated Raman scattering, and lasing
have all been reported.

In addition to potential applications, this experimental
program is of fundamental interest for two reasons. First
of all, thanks to the spherical symmetry, the electromag-
netic modes are readily computable, not just for the reso-
nant quasimodes but for all the modes of the universe,
i.e., the microsphere cavity C together with the outside
environment 8. In contrast, the evaluation of even one
quasimode for a linear cavity is quite cumbersome and
the consideration of all the modes of the universe, a more
proper approach, has been restricted to a one-
dimensional approximation. For this reason, these mi-
crospheres provide excellent opportunities for confront-
ing theory with experiment. Secondly, electromagnetic
cavity modes of extremely high Q(F10 ) exist in the
ideal situation of zero absorptive loss. According to the
golden rule, the width (i.e., decay rate) I of an excited
atomic level is enhanced by a factor It' over the corre-
sponding value I' ' in extendeded vacuum: I -KI' ',
where K ~ Q. Thus one may anticipate situations where
I & y, y =co/Q being the width of the cavity mode. Such
nontrivial situations have never been thoroughly studied
in the literature, since, "normally, " the density of states
in vacuum is a smooth function of frequency, i.e.,
efkctively y~ ~. Such cases of special interest, I ~y,
characterized as strong coupling (since I is proportional
to the square of the dipole matrix element), or equivalent-

ly, as decay into a narrow cavity resonance, will be the
main subject of this paper.

Dielectric microspheres of radius a are generally de-
scribed by the dimensionless size parameter x =2ma jA, ,
where A, is the electromagnetic wavelength in vacuum.
We shall take x-30, scaling to other values wherever
necessary. Other typical parameters might be
I -300I' '-3X10" s '(1 ns lifetime in vacuum); the
origin of the enhancement factor I /I'0' is well under-
stood ' and is also explained in Secs. II and III; the typi-
cal numerical value 300 is obtained from an evaluation of
the density of states. For an optical transition, say,
A, =0.5 pm, a value Q & 10 (Ref. 4) would make

y =to/Q 51, so that strong coupling is required in prac-
tice.

We shall stress that the golden rule, which underpins
the vast majority of discussions of optical phenomena, is
inadequate in the strong-coupling regime. For example,
the golden rule suggests that for a transition exactly
tuned to the cavity resonance, the spontaneous decay rate
should be proportional to Q. This was first pointed out
by Purcell some 40 years ago: The density of states in
the volume V of the cavity is increased from the vacuum
value Vto /n c to D modes (D being the degeneracy) in
a frequency interval y=to/Q, so that one expects an
enhancement factor of order (DQ/co)(Vto /tr c )cc Q.
We shall show that this proportionality breaks down
when Q is large; in fact, for Q larger than some Q', the
spontaneous decay rate decreases with Q, and eventually
goes as Q '. The photon spectrum also shows interest-
ing features. This paper studies these and related issues
for the spontaneous decay of a single atom coupled to a
narrow resonance in an optical cavity. Although dielec-
tric microspheres provide both the motivation and a
clear-cut strong-coupling example, the formalism and re-
sults are, in principle, general. Ho~ever, recent observa-
tion of cavity-enhanced decay of highly excited Rydberg
atoms' belongs to the less interesting weak-coupling
case.

The present problem is much simplified by separating
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the formalism into two largely independent parts. First
of all, one must solve for the electromagnetic modes,
leading to the local density of states p(co, r) or a quantity
6;J (co, r) describing the vacuum fluctuation of the electric
Geld, as sketched in Sec. II. In almost all cases of in-
terest, O';J can be represented as a Lorentzian, which is
then the input to the quantum-mechanical calculation of
spontaneous processes in Sec. IlI, in which one no longer
needs to know the details of the electromagnetic modes.
Competition between different atomic lines (as encoun-
tered in fluorescence) and the influence of several nearby
cavity modes (encountered for large dielectric micro-
spheres with a large density of resonances }are dealt with
in Sec. IV. Comparison with works in the literature is
given in Sec. V.

This paper is limited to the spontaneous decay of s sin-
gle atom in an optical cavity. Stimulation by radiation
with a narrow spectrum and the cooperative and
coherent interaction of many atoms in the strong-
coupling limit require a separate analysis. For compar-
ison, the much simpler weak-coupling limit I ggy, previ-
ously treated within the realm of the golden rule, will

emerge as a limiting case.

II. ELECTROMAGNETIC KIGKNFUNCTIONS

Consider an atom with a lower level a and sn upper
level b at position ro in a cavity. For E 1 transitions, the
relevant perturbation in the multipolar Hamiltonian is"

V= —P E(r()),

The normalization of (; has been chosen so that in
vacuum,

6 —= g 6;;~p„„(co)=co /m c

where p„„is the density of states per unit volume in ex-
tended vacuum. This choice is convenient because, as we
shall see, ( /p„„will turn out to be the enhancement fac-
tor for spontaneous decay in the weak-coupling limit.

Since spontaneous emission is essentially "stimulation"
by vacuum fluctuations, @,J(co, r) is all we need. This
function, in particular its trace 6, has been evaluated for
dielectric microspheres. It shows sharp resonances with
Q-10 or more, and with magnitudes 8/p„„-300 or
more at the rim of the rnicrosphere, where the internal
fields are concentrated. The function ( around each such
resonance constitutes s complete description of a Fox-Li
qussimode for this system. These resonances, due to
simple poles close to the real axis in the frequency plane,
are adequately represented by Lorentzians.

III. SPONTANEOUS EMISSION

A. Formalism

We shall only consider the states
~

b ) and
~

as ), where
the latter denotes the lower atomic state

~

a ) with one
photon in mode s, with amplitudes C(t} and D, (t) in the
interaction representation. Then in the rotating wave ap-
proxirnstion, one obtains the usual %'igner-%eisskopf
equations'

where P is the electric dipole operator and 8 is the elec-
tric field. A factor f =3n /(2n +1) should be inserted
if the cavity consists of a dielectric of refractive index n.
The field 8 can be expanded in terms of s set of eigen-
functions e labeled by an index s, with frequency co„

E(r)= (i /&2) g—(a, —a, )e(s, r), (2)

where the annihilation and creation operators satisfy
[a„a, ]=5„and the eigenfunctions are normalized to
one quantum per mode:

[1/(4m)] f d re(s, r) e(s', r)=@co,5„, (3)

ihdC/dt= g V,"D,e

iAdD, /dt= V, Ce

where AQ=E& —E, and

V, =(as
~

V
~

b) =( —i &/2)( a~P,
~
b)e;(s, ro) .

Eliminating D, then gives

dC(t}/dt= —(1/))t')g
i V, i' f dt'C(t')

0

t [0—cu, )(t —t')
Xe

(7a)

(7b)

where the integral is over the universe R, ssy, s sphere of
radius A. %e shall concentrate on the quantity Use (8) for

~
V, ~, insert a factor dco5(co —co, ) and as-

sume that the atomic matrix element is isotropic,
8,i(co, r) =[1 /(4m iirco)] g 5(co co, )e;(s, r)ei(—s, r) .

(a
~
P; [ b)(b

~

P
~
a) =M, =M5; (10)

In the case with spherical symmetry, for example,
e Oc A ', while the frequency spacing is 0 (A '), so that

g, ~Adco, and 8, is independent of the quantization
volume. Because of the normalization condition (4), C,J
is proportional to the frequency spectrum of E,.E at r
when there is half a quantum per mode, i.e., the vacuum
fluctuations; in particular,

(vac
i E;(r, t)E (r, t')

i
vac)

=2ir)rt f dco(,J(co, r)coe ' " ' ' . (5)

then

where 6 is understood to be evaluated at ro. We now as-
sume that 6 is a narrow Lorentzian centered at coo,

coo (y/2)'
~ c g +(y/2)
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where g=~ —coo .The first bracket is the value of
('(cookoo in vacuum, so K is the cavity enhancement of (

at the resonance peak, and is, as we shall see, the
enhancement factor of the decay rate as well, at least in
the weak-coupling limit. %e expect the total strength of
the resonance [i.e., the integral of (12} over g] to be in-

dependent of Q, so that K ~ y
' ~ Q. Then C(t} satisfies

dC(t)ldt= f dt' S(t t')C—(t'),

then I =Kl ' '=Klro. More generally, in view of (12)
and (6), we may write

I /I "'=e(n)/p„„(n),
which is a precise statement of Purcell's classic argu-
ment and agrees with an evaluation based on the golden
rule. '

Nevertheless, (20) is incorrect at short times t «y
for which one has

where the kernel S is C(t) = 1 —(p,p, /2)t'=1 (yK—/8ro)t' . (23)

I dg
(3 /2} i{ t( f)(—t (')—

2n'ro (i+(y/2)2
r

The quadratic dependence on I;, of course, follows from
C(0)=0.

exp —~+id (t t'} .—yEC

4v0 2
(14}

In (14) b, is the detuning parameter and ~0 is the spon-
taneous lifetime in vacuum,

C. Strong-coupling limit

On the other hand, for K/ro»y, 5 /y,
' 1/2

yK
4 2 0

(24)

4MQ
Pic

(15)

(16)
I = —2Rep=y/2, (25)

The imaginary part gives rise to oscillations in
I
C(t)

I

and the envelope decays at a rate

and we have assumed y, 6 ~~coo, 0, so that the integral
(14) can be evaluated by integrating over the whole real
line.

The solution to (13), with initial condition C (0)= 1, is

C(t)=(p2 —p(} (p2e
I &f p2f

where p„p2 are, in general, complex with negative real
parts, and are the solutions to the secular equation

essentially independent of the detuning. The oscillatory
behavior may be interpreted as the emission and reab-
sorption of one photon. The net decay rate is then deter-
mined by the rate of leakage of the photon, i.e., y. More-
over, for b, =0, say we have (a) I ~ K 0: Q in the weak-
coupling limit [see (21)], while (b) I ccycaQ ' in the
strong-coupling limit [see (25)], so the decay will be most
rapid for intermediate Q. This point will be elaborated
below.

p p++ ib, + =0-.yE
2 4v.0

Note that C(0)=0, as is evident from (13).

(18)
D. Time dependence and effective decay rate

To display numerical results, it is convenient to de6ne
the dimensionless quantities

S. Weak-coupling limit Ko Ky~o, 8 =K——lyso (26)

I
c(t)

I

'=e-"' (20)

I = —2 Re@2 ———K (y/2)
ro 6 +.(y/2)

(21)

If the transition is tuned to the cavity resonance (b, =0),

We expect (at least in the weak-coupling case) that the
decay rate in an unbounded vacuum, 1/ro, is enhanced to
K lro due to cavity eff'ects. The division into weak- and
strong-coupling regimes will depend on the comparison
of this rate with the rate of photon leakage out of the cav-
ity, y. Thus the weak-coupling case is de6ned by
+ /&0 ((y, 1n which case %'e have

y .~ K (y/2)
2

' 2' (y/2) ib, —

»nce
I pi I

»
I pz I

«r ail b« the sho~es«imes (17) is
dominated by the second term, and

to describe the cavity resonance. The reason is that E0
will be fixed for a given species of atoms as Q is changed.
For dielectric microspheres with x -30, typical values
would be K-300, y-300 ns ', 70 1 ns, so K0 10.
However, for different dielectric microspheres, E0 scales
roughly as x, for the following reason. The quantity (

is approximately equal to the density of states p, which
satisfies

V pde- . - —D

when integrated over the resonance, where . . is the to-
tal number of states, V=(4m. /3)a is the volume of the
sphere, and D =21 + 1 -2x is the degeneracy, I being the
angular momentum. In the above estimate we have as-
sumed that p is everywhere the same order of magnitude
as its spatial average over the whole microsphere, which
is correct to a factor of about 3. Thus

E0 ct:Ky o= P dAP ——~ =XD x 2

x'
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The parameter R, on the other hand, varies as R 0:Q,
and by using (21) with 1)),=0 we see that R «1 {R»1)
will characterize the weak-coupling (strong-coupling)
limit.

~

C(t)
~

will only depend on R, the detuning in
the dimensionless combination A=I( 0

' ~oh, and time
in the dimensionless combination t =Ko~ t /~0.

Figure 1 shows
~

C(t)
~

versus t for both the tuned
(b, =0) and the detuned (b &0) cases. Exponential relax-
ation in the weak-coupling case (R «1) is analogous to
overdamping; underdamped oscillations occur for strong
collpllllg (R »1). Howcvcl, thc decay ls 111ost rapid for
intermediate coupling (R —1), analogous to critical
damping. To be more explicit, consider the efTective de-

cay rate I „

95

5

t = Ko'(t/T, &

I, '= "
t C t

Again it is convenient to deal with the dimensionless
combination I,=Ko '

&OI „and some arithmetic yields
'1/2-

j R
I

g
1

)(/2

Q +Q'
(R e )1/2 go g

(28)

R'—:1/(1+46, ), (29)

(30)

which turns out to be correct up to a factor of 2 even for
8 —1. Taking K0-10,8 —1, ~0-1 ns, and 5-10' s

gives I /1(0)-10, showing significant cavity enhance-
ment even when the atomic line and the cavity resonance
have little overlap (b, » I +y; in this case I -10' s

typically y —3X10"s ').
The fact that the most rapid decay occurs for inter-

mediate values of Q can be understood heuristically as
follows. The decay involves two processes: (a) the emis-
sion of a photon at a rate KI' ', with K 0-. Q, as discussed

by Purcell and (b) the leakage of the resultant photon
out of the cavity, at a rate y ~Q '. The slower of the
two processes is the rate-determining step, so that the ob-
served decay rate goes as Q for small values of Q and as

Q
' for large values of g.

and in (28) we have used the fact that R ~ Q . Thus, for
fixed b„ I, has a maximum value of (R ")'/ /2 at
8 =R', decreases for both large and small R, and is
symmetric under R /R ' ~R '/R. Assuming typical pa-
rameters Ko-10, coo-2mc/0. 5 )Mm, and ro-1 ns gives
Q'-10 /(1+4K )'/ . Thus the most ra)pid decay
occurs for an intermediate Q value; Q"-10' for exact
tuning, less if the transition is detuned. This conclusion
explains why very narrow cavity resonances (theoretical
Q&10 ) found in numerical calculations are not seen
spectroscopically.

For relatively simple molecules, the Auorescence and
Raman lines are so widely spaced that large detuning
must be the rule rather than the exception. In this case
we find from the weak-coupling result (21) that

g 3/2

I /I (o)

«R (ar, )2
'

K. Photon spectrum

The line shape will not be a single Lorentzian since the
decay is not in general a pure exponential. The ampli-
tude to hand a photon in mode s after the decay has oc-
curred is

5

t =Ko'(t/T, )

D, ( ao ) =( —i /A)V, f dt C(t)e (31)

FIG. 1. Decay of
~
C(t)

~

. (a) Tuned case 5=0. (b) De-
tuned case Ko '/ ~oh=1

and the intensity spectrum, normalized to f den I(to) =1,
1S
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I(co)= g ~
D, {ao)

~
5(co, —co)

=(2@M/A)8(co)c0
~

C[i(Q —c0)]
~

(32)

+ (&—g)'
2

(33)

where )=co—coo. Normally one expects that an oscilla-

(a}

—ll= 180

0.6

where C is the Laplace transform of C. Using (12}for 8
and (17) for C(t) then gives

'2 '2

I = + g(h —g)+2.0 2 +4;
2

tion C(t) will give rise to a spectrum
~
C[i(Q —c0)]

~

the shift by 0 is due to the transformation between the
interaction and Schrodinger representations. In this case
we see from {32)that the actual spectrum is multiplied by
the factor 8(~)co.

In the tuned case (/=0), the denominator in (33) is
proportional to

1 +1
16 4

—2+ —P+P, (34)

where g=Ko '~ rg represents the frequency shift from
coo in dimensionless units. Thus, for R & —„I consists of a
single peak centered at (=0, while for R & ,',I con—sists of
two peaks. In fact, for very strong coupling R ~~1, the
peaks occur at g=+ —,', with widths 5(-1/(2&R )~0.
These frequency peaks correspond to the oscillations
shown in Fig. 1, described by the imaginary part of p in
(24). All these features are shown in Fig. 2(a). For rela-
tively weak coupling, the width of the spectrum increases
with R or Q, while in the strong-coupling case the width
of each peak decreases with R or Q, which is just another
way of seeing the behavior in (28). Note that for strong
coupling (R »1) the frequency shift (g- —, in dimension-

less units} is large when compared to the width of the
cavity mode itself (y =Ko ~ roy —1/~R ) and the
width of the spectral line itself [5f-1/(2v'R )]. Thus
some care is necessary in interpreting the observed spec-
trum.

Figure 2(b) shows the spectrum for a detuned case.
For weak coupling the spectrum is centered at the nomi-
nal transition frequency c0=Q. As the coupling in-
creases, the spectrum again shows a double-peak struc-
ture, with the peak farther from the cavity resonance be-
ing stronger.

Cb)

a =6.64

FIG. 2. Photon spectrum vs (=KO '~ r0(co c00) Arrow in-— .
dicates nominal position of atomic line. Dilerent curves are la-
beled by values of R. t,'a) Tuned case 5=0. (b) Detuned case

Ko ' v'oh=0 5

IV. SEVERAL ATOMIC LINES
OR CAVITY RESONANCES

A. Effect oE several cavity resonances

For weak coupling the efFect of the cavity is local in
frequency, so that I depends only on the value of 8 at Q.
However, in the strong-coupling case we may have to
consider the efFect of several resonances, especially for
large dielectric microspheres with a high density of reso-
nances. (a) For large Ko, say, Ko & 100, only a single res-
onance matters, the results of Sec. III apply, and K0 can
be scaled out in a simple way. (b) For intermediate Ko,
say, E0-10, several neighboring resonances have to be
taken into account, and the situation is relatively com-
plex. (c) For small Ko, say, Ko &1, many cavity reso-
nances come in; then as far as the gross features of the
spectrum are concerned, 8 can be replaced by its average
value C,„over many resonances. For dielectric micro-
spheres, these ranges correspond to the size parameter
being (a) "small, " say, x &10, (b) "intermediate, " say,
x -3X 10, (c) "large, " say, x & 10 . These estimates of x
are obtained by using the typical value E0-10 for
x -30 and scahng by Ko ~~

The condition for case (a) is obviously that the frequen-
cy shift 5co is small compared to the typical spacing c0»
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between cavity resonances. In the strong-coupling case,
we have already shown that 5' =Eo /2'. On the other
hand, consider the total number of states in an interval

sp~

~
azs ) as C(t), Di, (t), and D2, (t) in the interaction rep-

resentation, where, as before,
~
a, s ) denotes the atom in

state
~
a, ) together with one photon in mode s. We then

obtain, in analogy to (11),

(35)
dC(t)

dI, f dt's( (co)(o f dt'C(t')

because in an average sense (as made precise by an
asymptotic sum rule ) the density of states must be the
same order of magnitude as in vacuum. Now assume
that a certain fraction f3 of the integral is due to reso-
nances; by de6nition there is only one resonance in the in-
terval to, , and since p- 8 (Ref. 4), by (12) we see that the
left-hand side of (35) is f 3 '(to /n c3)(m/2)Ey, so that where we have assumed

i(n( ca—i(r —t )'
)& M, e

i (n2 cu)—(t —t I'
+M2e

(37}

&o &o
Q) 8

2f3 ro ro
(36)

since f3-0.2. ' Thus 5ai/to, o- 1/(16+Eo), so that for
Eo &100, say [case (a}], 5to/to, o&0.01 and neighboring
resonances are too far to be relevant.

On the other hand, to replace 6 by its average 6,„
would require many cavity resonances within a frequency
interval I (I —I' '-ro ' because 6,„is roughly the same
value as in vacuum), i e , I ./t. o,„-1/(8Eo) »1, which is
satisfied if Eo & 1, say [case (c)].

8. Competition between atomic lines

In practice, fIuorescence spectra involve the competi-
tion between many atomic transitions. As a simple mod-
el, consider an atom with an upper level b and two lower
levels a„a2 with allowed transitions b ~a( (frequency

Q, ) and b-+a (2frequency Qz), as illustrated in Fig. 3.
The "normal" way of dealing with such a situation is to
calculate the partial rates I „,I',2. (The subscript e
serves as a reminder that even the partial rates may not
be given by the golden rule, and that these are e+ectiue
partial rates, as discussed in Sec. III.) Then one obtains
the total rate I,'=I „+I,2 and the branching ratios
8„'=I,„/I,', @=1,2. The prime indicates that we ex-

pect the addition of partial rates to fail in general, so that
these are only nominal values.

Denote the amplitudes to be in ~b), ~a(s), and

4Mtoi/Ac =4Mtoz/Ac =1/ro . (40)

Note that 1/ro is now the partial rate for one of the tran-
sitions in vacuum, and the vacuum lifetime is ro/2
Moreover, let the two cavity resonances have the same
strength

& I r ~&o=&2r z&o=&o

so that the widths of the two resonances are now de6ned
by the two remaining dimensionless parameters,

R„=E„/y„ro, (M= 1,2 .

Furthermore, let the two atomic lines be exactly tuned:
Q, =to, , Q2 ——co2. We put these into (37) and assume

I Qi —Qz I » r ( )'2

and ignore oscillating terms with frequencies of order
0,—02. Mathematically, this means that the first
(second) term in (39) multiplies only the first (second)
term in the large parentheses in (37), while physically this
means that, for example, a photon emitted in b ~a, +Ace
does not have the correct frequency to be absorbed in
a2+fm~b, even as a virtual transition. Then some ar-
ithmetical calculation shows that C(t) obeys (13), but
with the kernel now being

(a„s
~
P;

~

b )(b
~

P
~
a„s)=M„5;, @=1,2 . (38}

Next assume the presence of two cavity resonances cen-
tered at m, and co„

co„' (y„/2)
'ir c (N —co ) +(7'~/2)

%'e shall illustrate only with some simple choices of pa-
rameters. First of all, the matrix elements will be chosen
to be equal: M, =M2 =M; the frequencies co], co2 will be
regarded as fairly close (since we expect to„to& to corre-
spond to electronic transitions while their difference
represents a vibrational shift), so that

(41)

FIG. 3. Level scheme for two competing decay channels.

which is just the sum of two terms as in (14) with 6=0.
The time evolution of C(t) is readily solved in terms of its
Laplace transform C(p),
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(p +y&/2)(p +y, /2)
c(p) =

p (p +y, /2)(p +y, /2)+, [2p +(y, +y, )/2]
4~2

and the effective decay rate cao be determined from

I- = J"«lc(r) lz= f", IC(-g) I'. (43)

Some arithmetical calculation then gives, for
r, =x, '"~,r„

to investigate these nonradiative couplings in detail.
These issues become ummportant if experiments could be
performed on single isolated atoms.

It is also interesting to consider the branching ratios

8„=g ~D~(oo)
~

S

da) a)~~ C ~ 0
~ri

where [ ]„indicates that only the p,th term in (39) is to be
kept. $ome algebraic calculation then leads to

+1 48] +1 48. 2

g 2(g 2 ~ )z+Pz(g 2 1 /4)z
(44)

+ 1/(4R z )
"&-z -z z z -z

8m+R, g (g &) +—0 (g 1/4)—
(48)

and Bz is obtained from (48) by interchanging R, and

1 1 1 1 1

4+R,Rz
'

2 QR,
(45) 0.5

(a)

depend symmetrically on R, and R z, and g has the same
physical meaning as in (34).

The integral (44) equals

I,=(I „+I,z)/[1+I „l,z(1++R iRz)], (46)

where the denominator shows that the addition of partial
rates fails, and, in fact, I, ~I,'=I'„+l,z, e.g., for
E. , = 1, 8.2

——100, I,=0.39, and I,' =0.60. %e may un-
derstand this phenomenon roughly as follows. Suppose
R, 1 and Rz))1, then the process b~az+fuu occurs
rapidly, but does not contribute much to the decay. Now
the system spends only a fraction of the time in

~

b ), so
that the process b~a, +fico is suppressed accordingly.
In fact, for

Rz)(R, +1+R, ') /R, ,

we would have I, gI, &, i.e., the addition of a decay
channel may /ower the overall decay rate. However, if
one line is weakly coupled (e.g., I,z, Rz small) then addi-
tivity of partial rates approximately holds.

Here we must consider possible direct transitions be-
tween

~
a, ) and

~
az ), neglected in the above treatment.

Radiative transitions are forbidden because
~
a, ) and

~
az) must have the same parity (since they couple to

~

b ) by El). Higher multipolar transitions are further
suppressed by the relatively small phase space and the ab-
sence of cavity enhancement. For nonradiative transi-
tions (e.g., induced by collisions), we must distinguish two
cases. (a) The strongly coupled transitions connects to
the lower level (R z )) 1 in Fig. 3). We may represent the
nonradiative processes by coupling the atom to a bath at
temperature T. Then when the system oscillates to

~
azs ), the bath will not signi5cantly induce a transition

to
~
a, s &, Provided iri(nz —n, ) ))ks T, which is likely in

practice. The above analysis theo rexnains approximately
valid. (b) The strongly coupled transition connects to the
upper level (R, ))1 in Fig. 4). Then when the systems
oscillates to

~
a, s ), the bath will rapidly induce a nonra-

diative transition to
~
azs ), and the above analysis

without the bath becomes incorrect. It will be interesting

2

'I 00

0

FIG. 4. Photon spectrum for the decay b~a&+Ace vs

j=KO '
~0(co coo). (a) Fixed R2 ——1 —and various R, as shown

on the curves. (b) Fixed 8, =1 and various 82 as shown on the
curves.
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R2. Somewhat surprisingly, this integral happens to
equal the nominal branching ratio obtained by the addi-
tivity of rates

~e1
BI ——81—=

el+ e2
(49)

dC(t)
dt f dco 8(co)co

0 t'C t'

+M (Q) i(n —cuNt —t')

where, assuming isotropic matrix elements,

y (a„~ P,
~

b &(b
~ Pj ~

Q„&5(Q—Q„)=—M(Q)5,J .

Then the kernel 5 is

S (t r') = — des— d Q 8(co)cd(Q)e'"2~
fi

(52)

and since M (Q}may be assumed to be broad, S(t t')is-
significant only for t t'~0, so that —(13) becomes Mar-
kovlan„

dC(t) 1 +i5 C(r), —
dt 2

where I,„are obtained by (28) with R„in place of R, and
also setting R '=1 since we are considering a tuned case.
%e stress that the total rate does not satisfy additivity,
even though the branching ratio does. In fact, the equali-
ty 8, =8', is merely an accident and does not hold in the
general case with detuning or for cavity resonances with
different stre gths (E,y,+E y . Nevertheless, (49)
does confirm that a decay channel with intermediate R
would dominate when different channels compete.

The integrand in (48) is just the photon spectrum for
the decay 5 ~a, +%co, with g=EO ' ro(co co, ). —Figure
4(a) shows the spectrum for fixed Ri ——1 and various R, .
The spectrum is always double peaked even when this
transition is weakly coupled (R «& I), and there are no
other cavity resonances in the vicinity. (Note that we
have assumed

~
Q, —Qi

~

large. } In other words, when
several competing channels coexist, the spectral lines can-
not be interpreted independently. Figure 4(b) shows the
same spectrum for fixed R1 ——1 and different R2, clearly
demonstrating that "the other" decay channel can drasti-
cally afFect the shape of the line under consideration. In
these figures, the areas under the curves just give the
branching ratios.

The above discussion with two (or, more generally, a
few) lower levels is only relevant to simple molecules.
For complex molecules, e.g. , dyes, one must consider a
large number of lower levels a &,az, . .. forming a continu-
um. Then (37) becomes

I . 2n
d Q

6'(co)coM(Q)—+~5= ddt
2 ft i (co—Q+i E)

(54)

The important point is then that S(t t')—has a broad
frequency spectrum even if 6(ru} is narrow, so that the
usual results —an exponential relaxation rate I plus a
frequency shift 5—are obtained. Therefore the strong-
coupling case does not arise for a continuous fluorescence
spectrum.

V. DISCUSSION

There are several possible approaches to the problem
of electromagnetic interaction when the electromagnetic
modes are afFected by the environment (a cavity, or near-
by walls) and are no longer plane waves. One could first
solve the atom together with the plane waves, obtaining
the usual vacuum decay rate, and then consider the effect
of the environment on the emitted photon. This intuitive
approach, often adopted in elementary discussions, as-
sumes that the atom does not "know" about the environ-
ment, only the emitted photon does. The observed
enhancement' as well as suppression' of electromagnet-
ic decay for highly excited Rydberg atoms placed in tiny
cavities point to the inadequacy of such a point of view.

More correctly, one must solve for the electromagnetic
field together with the cavity or walls in the first instance,
and then couple the atom to the normal modes of this
combined system. This approach has been extensively
discussed using linear-response theory' or electromag-
netic eigenfunctions, "' mainly for nearby surfaces, but
also for cavity effects. ' The approach in Ref. 16 is
similar to the present work, but only the weak-coupling
case is discussed there. The work in Ref. 6 is strictly one
dimensional and again restricted to second-order pertur-
bation theory, i.e., the adoption of the golden rule in
some guise. To our knowledge, there has been no
theoretical work pertaining to the strong-coupling limit.

A third approach uses the discrete (dissipative) quasi-
modes of the cavity rather than the continuous (Hermi-
tian) modes of the universe, ' in terms of which some of
the results given here are known. The equivalence is
sketched in Appendix A. The quasimode approach is

C. Background in cavity resonance

Even for a fairly sharp resonance, 6'(co) contains some
background in addition to (12). Mathematically, the
background can be represented by a second, broad
Lorentzian, in the manner of (39}. It can readily be
shown that for a single atomic decay 5 ~o+fico into the
sum of two Lorentzians, the time dependence is again
given by (13) and (41), so the results of Sec. IV B can be
directly applied to this case.

The second Lorentzian (i.e., background) is broad, so it
belongs to weak coupling (R i « 1},and the additivity of
rates apply. The rate for the background alone, I",z, de-
pends only on the background contribution to C(co), typi-
cally two orders of magnitude below the resonance con-
tribution, and hence negligible on resonance. However,
the background sets a lower limit of —1/ro to the total
decay rate.
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usuaBy justified in the following way. Let the central sys-
tem C (here the cavity) be described by a Hamiltonian Hc
and the bath 8 (the rest of the universe) be described by a
Hamiltonian Hz, with the two subsystems coupled by an
interaction term Hr ',

a =ac+08+~r .

The efFect of Ht is then eliminated and expressed as (a} a
dissipation and (b) a fluctuating force acting on C."
There appears to be a little-noticed difhculty in applying
such arguments to problems of the present type, which
may be characterized in general as involving leaky cavi-
ties. ' For example, the degrees of freedom of C are
E(r, t), r &a, while those of 8 are E(r, t), r ~a. The two
are coupled not by a term in the Hamiltonian but by
boundary conditions. The Hilbert space of wave func-
tions satisfying suitable boundary conditions, hence the
subspaces for C and 8, "know" about each other through
the conditions at the interface. Formally, the Hilbert
space of the universe, &, then is not given by the direct
product &,e&ii. This problem has prompted extensive
studies of models "strings" in which subsystems are cou-
pled by boundary conditions, ' ' but to our knowledge a
satisfactory basis for the quasimode approach is still lack-
ing.

We may regard the present work in another light.
Usual derivations of the golden rule pertain to a broad
density of states, y~ 00. The opposite case of one non-
dissipative electromagnetic mode, i.e., y strictly equal to
zero, has also been studied in detail, ' again with em-
phasis on the inapplicability of the golden rule. The
present work then provides an interpolation between
these extremes. Similarly, departure from the golden rule
for electromagnetic decay into a continuum (y~ ao ) and
into discrete modes (y~O) has been studied for the
2p-1s transition in hydrogen; 2 the present formalism of
narrow resonances (ao ~y ~0) in principle provides an
interpolation between the two.

It should also be noticed that whenever the kernel
S(t t') is concen—trated at small values of t t' [as in-
the "usual" case of broad h(ru), or in (52)], then the for-
malism becomes identical to that of %eisskopf and
signer. '

%e must also discuss the application of the present for-
malism to the usual linear laser cavities, which belong to
the strong-coupling case R ~ 1, i.e., I ~y, as is evident
from the fact that laser linewidths are determined more
by the cavity loss characteristics (y) than by the atomic
line shape (I ). Moreover, the atomic line usually covers
many cavity resonances, i.e., Ko 5 1. These estimates are
given in Appendix B. Strong coupling is even more cru-
cial for stimulated processes, especially at gain threshold
(formally y~O, so that 8 a: I/y ~ ao). For this reason,
the extension of this work to stimulation by electromag-
netic waves of narrow bandwidth y can be very interest-
ing.

However, laser cavities suffer from three drawbacks in
the present context. First of all, there seems to be little
experimental work on spontaneous processes, for which
the theory, as developed here, is simplest. Secondly,
many cavity resonances are involved, complicating the
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APPENDIX A

In this appendix we sketch the connection to the quasi-
mode approach. Consider a "two-state" system

0 = ias)
1

()
= Ib&

where s indicates a photon in a single quasimode s. Let
the energies be 5 and 0 (i.e., frequencies are measured
from the center of the quasimode coo}; then taking fi= 1,
the Hamiltonian is

o. —iy/2

where the diagonal term iy/2 repr—esents the dissipa-
tion of

~

as ) and e represents coupling between
~

b ) and

~

as ). The energy eigenvalue E satisfies

analysis. Finally, the structure of the electromagnetic
modes is less well known. For example, an important pa-
rameter is the fraction f&

of modes which are resonant,
the rest (1 f&

—) being background. In dielectric micro-
spheres, the fraction 1 —f3 corresponds to nearly radial
rays which do not su8'er total internal reAection, while
the fraction f&

corresponds to tangential rays;

f3-O.2—O. 4, and is accurately computable for any given
experimental situation. In linear laser cavities, the frac-
tion 1 f, —describes rays at a large angle relative to the
laser axis, which therefore escape; the fraction fi de-
scribes rays nearly parallel to the laser axis, which are
therefore well confined and hence resonating. The rela-
tive importance of these two classes of modes is, to our
knowledge, not well studied. One-dimensional models
are likely to be unrealistic because there are no o6'-axis
rays. Thus experiments dedicated to spontaneous pro-
cesses as well as a detailed calculation of electromagnetic
modes are both necessary before the results obtained here
can be applied in detail to laser cavities.

To summarize, spontaneous decay in the strong-
coupling regime shows many unusual features: nonex-
ponential decay, maximum decay rate for intermediate Q
values, nonadditivity of partial rates, and the possible
reduction of the total decay rate upon the addition of an
extra decay channel. The strong-coupling limit is experi-
mentally accessible and the design of experiments to
directly observe some of these interesting features should
be contemplated. For example, a single transition be-
tween two levels in general shows up as double peaks in
the photon spectrum. Analogous phenomena for stimu-
lated processes will be relevant to lasers, and are under
investigation.
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E + b—E —(o + 6)=0.
2 2

loss e per reflection (including absorptive losses). Then

y-ec/L .

On the other hand, the time dependence of the upper
state is given in the interaction representation by
C(t) ~ei' with p given by (18), or in Schrodinger repre-
sentation by e'~ ' " so that E =5+i@. Inserting this
into (18) shows that E satisfies

The density of states at the waist is

p(4A, L)- IpdV= p-
so that the integra1 over one resonance is

(82)

E + —b E—
2

=0,
+D

(A3) re

1 c 1
p dco p Gfco

res 4g L res 4A, L
(83)

so that the two descriptions give the same time depen-
dence if we identify

assuming no degeneracy. On the other hand p, or 8, is
parametrized as (12), so

o' =Ko/4' .2 (A4)

Apart from the fact that such a comparison is neces-
sary to identify parameters such as o in terms of funda-
mental quantities, the quasimode description is also han-
dicapped by not distinguishing photons in the quasimode,
so that one is unable to discuss the photon spectrum in a
simple way.

COf pdco
res ff C

giving

1 cECy-
Sm L

%e then obtain

(84)

(85)

APPENDIX 8

Here we estimate the parameters describing a linear
cavity. Consider a laser cavity with length L, a waist
area, say, 4A, (an optimistic estimate), and a fractional

1 «o 1 LXo- R-
8~ L 8~~F2 ggo

For typical parameters, c~o —L, e —10 -10, we

would have Eo-1/(Sm) &&1, R —10 -10 &&1.
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