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We present a detailed derivation of a new, rotationally invariant formalism for the theory of
stimulated Raman scattering. The formalism is applied to Raman transitions of well-defined rota-
tional symmetry, e.g., rotational Raman (S) transitions, yielding the explicit dependence of gain on
light polarization, phase mismatch, and frequency offset. For a linearly polarized laser, the Stokes
fields parallel and perpendicular to the laser field are decoupled. Far from Stokes—anti-Stokes
phase matching, their gain coefficients are in the ratio of 4:3; at phase matching, both are suppressed
and have zero exponential gain. For a circularly polarized laser, the circularly polarized Stokes
fields circulating in the same and opposite senses as the laser field are decoupled. The gain of the
opposite-sense field, which is decoupled from the anti-Stokes field, is independent of phase
mismatch. Far from phase matching, the gain of the same-sense Stokes field is % that of the
opposite-sense field; at phase matching, the same-sense field has zero exponential gain. An unpolar-
ized laser is shown to have the lowest Raman gain; far from phase matching, its Stokes fields decou-
ple into two incoherent, oppositely circularly polarized fields, but at phase matching all Stokes po-
larizations have zero exponential gain. The gradual transition away from phase matching is also
treated explicitly, and it is shown that when the gain is suppressed the maximum Stokes growth
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occurs when the Stokes-laser beat is a fraction of a Raman linewidth off resonance.

I. INTRODUCTION

The theory of stimulated Raman scattering (SRS) has
undergone a great deal of development in the last two de-
cades, ranging from the initial steady-state, mono-
chromatic, ray-optics calculations for a dispersionless
gas' to more extensive theories, including the transient
response of the phonon,’ the broadband laser,> wave-
optics effects,* dispersion,5 and quantum-electrodynamic
effects.® An additional process which has been discussed
in the literature is the effect of Stokes—anti-Stokes (SA)
coupling and its dependence on the phase mismatch and
frequency offset from the Raman resonance in the associ-
ated four-wave-mixing process in which two laser pho-
tons are simultaneously converted to a nearly copro-
pagating Stokes and anti-Stokes photon.”~® The theory
of higher-order Stokes and anti-Stokes radiation at phase
matching has also been thoroughly discussed.!® The po-
larization of laser light scattered spontaneously by gases
has also been presented.!! Polarization of the light gen-
erated by four-wave mixing has been discussed.'? Also
there are treatments of stimulated Raman scattering us-
ing the Hamiltonian approach with only pump and
Stokes,'* and including the anti-Stokes field.'* Resonant
and nonresonant effects have been treated.'* However,
no general, rotationally invariant theory of the polariza-
tion dependence of the Raman gain has been formulated.
Such a theory is particularly crucial for the understand-
ing of rotational SRS, in which two units of angular
momentum are transferred to the molecules of the medi-
um. The transfer of angular momentum implies, for ex-
ample, that the four-wave mixing responsible for para-
metric gain suppression”® disappears when the (pump)

37

laser and Stokes light copropagate and are circularly po-
larized in opposite senses.'®

This paper describes in detail a new, rotationally in-
variant formalism for the Raman equations, which was
only briefly summarized by us previously.!” The starting
equations are the standard Hamiltonian given by Wang'?
and the Lagrangian density given by Shen and Bloember-
gen,” except that we take into account from the start that
the interaction Hamiltonian must be invariant under ro-
tation if the medium is isotropic.

We derive the polarization dependence of the Raman
gain for plane waves. The eigenvalue spectrum is ob-
tained by considering the growth of the phonon ampli-
tude along the axis of propagation of the pump light.
The corresponding eigenmodes of the phonon and the
eigenpolarizations of the field are then obtained. In gen-
eral, each eigenvalue is determined by the ratio of the
laser intensity to the phase mismatch, the offset from the
Raman resonance, and the polarization state or coheren-
cy matrix of the pump laser. We calculate the eigenval-
ues of the gain for linearly, circularly, elliptically, and
partially polarized lasers. Although there have been not-
able treatments of polarization in stimulated Raman
scattering in the past,'® to our knowledge this is the first
SRS formalism which is general enough to treat pump
light of arbitrary polarization, including partial polariza-
tion.

In general, there are three terms of three different sym-
metries under rotation which contribute to the Raman
effect: the “trace” (or scalar, J =0) term, invariant under
rotation; the “magnetic-dipole” (J =1) term, which trans-
forms like a magnetic dipole (vector); and the ‘“electric-
quadrupole” (J =2) term which transforms like a
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second-rank tensor. Each term may make a contribution
g5 to the gain.!” With no loss of generality, we will treat
the case in which only a single coefficient g§j’ is nonzero.
This will be exactly true for S (rotational) transitions
(J =2) and approximately true for many vibrational tran-

sitions (J =0) as well.

II. CONVENTIONS

The following discussions involve the electromagnetic
field vectors and the phonon amplitudes. The following
conventions are utilized.

Let z be the direction of propagation of the light. The
complex optical electric field Ec may then be decom-

osed into circular components as
p
El=E 8, +E_%_,

where E | (E _), the complex amplitude of right-handed
(left-handed) polarization, may be expanded in terms of
spectral components as

Ei =2E]i=2Ejoiexp[l(ka —(l)}t)] .
J Jj

Here the sum is over all the spectral components of both
the laser and Stokes fields. The polarization unit vectors
are given by

8, =R£i§)/V2,

where X and § are unit vectors along x and y, respective-
ly. Hence,

|ECI’=|E, >+ |E_|*.

To obtain the corresponding real electric fields E7,
E, ,,and E_ , the complex conjugates must be added:

E,,=(1/V2(E_ 8, +E%%_),
E_,=(1/V2)E_§_+E*%,).

Hence,

E+,r'E+,r= |E+ |2 ’

EﬁFE»rztE~{2’

Ef=E+,r+E_,r ’

El'El'= |E, |*+ |E_|*+XE_E_+c.c.).

Since (E_ E _ + c.c.) oscillates at twice the optical fre-
quency, it does not contribute to the time-averaged inten-
sity ((E)?),

(ELED =C|E, [ +C|E_|?).

Now, the basis vectors €, and €_ are (X,¥) representa-
tions of photons of +1 unit of angular momentum along
the axis of propagation. Hence, an alternative expression
which explicitly exhibits the transformation properties of
the fields under a rotation of axes is obtained by rewriting
€. as a vector ket, €,= | ja) with j=1, so that
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E,,=(1/V2(E,|1a)+E% |1—a)), (1
E/l= 3 E,, - (2)

a=*1

These fields will be used henceforth; thus, the subscript
will be dropped. A similar convention will be used below
to write the real phonon amplitude Q7 in a form that ex-
plicitly exhibits that the phonon transforms under rota-
tion like a rank-J spherical tensor,

Or =(1/V2NQ,,{IJm | +QX(J—m |) . 3)
III. ROTATIONALLY INVARIANT EQUATIONS

-The procedure to derive the equations of motion uti-
lizes the Lagrangian density and an interaction Hamil-
tonian following Wang.!*> The energy of the interaction is
given by

Hiy =23 P E; , )

where P, is the induced polarization at the ith molecule
and E; is the electric field of electromagnetic wave at the
ith molecule.
The form of the above Hamiltonian for a Raman in-
teraction, without the linear material response, is'>
H, =3 3a/3q) % 5qmE;oEp » (5

!

where da/9dq is the differential polarizability at optical
frequency w, and polarization 3 caused by excitation of a
transition m at molecule i, and by light at frequency o;
and polarization a; g;, is the excitation amplitude of
transition m at the ith molecule; and E ja is the amplitude
of the light field at frequency o, and polarization a.

We assume that the differential polarizability is ap-
proximately independent of the exciting modes j and k.
This assumption is equivalent to neglecting the dispersion
in the susceptibility. We also assume that the medium is
isotropic and consists of a single species of molecules of
density N. Thus, one may write'3

Q0,=N" g, , 6)

where (g,,, ) is the expectation value of g, .

A further assumption is that the susceptibility itself,
for a given molecule and rotational state, is independent
of rotational orientation and light polarization, Hence,
the interaction Hamiltonian may be written

H,=N(@a/3Q)3 O I :ETET, 7

where O T and ET are given by Egs. (1)-(3). Note that
our starting assumption, that the interaction Hamiltonian
is invariant under rotation, taken together with the impli-
cation of Eq. (3) that the phonon amplitude transforms
like a spherical tensor of rank J, implies immediately that
only sums of bilinear combinations of the field which
transform’like a rank-J tensor can appear in H,,. This
will be seen explicitly below.

Upon combining the bras of Q and the kets of E, one
has the following expanded expression for the interaction
term H;:
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Hy=(N/2)0a/3Q) 3, QuE.Eg{Im |11aB)+2Q,E,Ef{Jm|1la —B)+Q,ELE}{Im |11 —a —B)

m,a,B

+OrELER(] —m | 11aB)+2Q%EE5(J —m |11a —B)+QLEXE}(] —m |11 —a —B) . (8)

Had we not assumed the form of Eq. (3) for the phonon,
the most general form, which would have included a su-
perposition of tensors of ranks 0, 1, and 2, would have
yielded instead a sum of terms with different values of J.
This more general case is beyond the scope of this paper.

With the above Hamiltonian, one then has the interac-
tion term for the Lagrangian density. The Lagrangian
density L may be written

L =Lem +Lmat +Lint ’
where

L=[ET?—(BT?]/87,

to E { and Q. One obtains the following set of equa-
tions:

OPE, =(47/c?)3?/3t*(3L;y /AE} ) , 9)
(3%/0t2+ w3 +2I3/0t)Q, =3L,,, /3Q . (10)

In Eq. (9) the D’Alembertian notation is used. In Eq. (10)
the phenomenological damping constant I' has been in-
troduced in the usual way. To complete these expres-
sions, one must evaluate the right-hand sides. To do this
one must take the derivatives with respect to the (com-
plex) quantities QO =q,—ig, and E}=e, —ie,. These
derivatives may be expressed as follows:

BT is the magnetic field strength, d 3 9%, 95 9 1|3 i
) - 3Q; 9q, 3Qr 9q, 3Qr 2 |dq, dq, |’
Lmat=%§[(gz)2—wg(Qm) ] ’ 5 __l_ _a_ i—a—-
3E* 2 |3e; ' de,
@y is the Raman resonance frequency, and L, , =H,,.
Now take the variation of the Lagrangian with respect =~ Upon performing the algebra, one has
J
3L, /AE% =N /V'2(3a/3Q) tz QuE Im|11a—y)+QrE(J —m|1la—7)
+QnEX(Um |11 —a—y)+QrEX(J —m |1l —a—v) |, (1)
aLim/aQ,,‘=(N/\/5§)(aa/aQ) S 2E,Ef(J —n|1la —B)+E Ez{J —n|11aB)
B
+EMEL(J —n |1l —a—PB) |. (12)

Now the temporal frequencies of the right-hand sides
of Egs. (9) and (10) must equal the temporal frequencies
of the respective left-hand sides. The temporal frequency
of a specified component j of E, is »; and the temporal
components of Q are w, =wy+ Aw, the Raman frequen-
cies. Note that the optical frequency @; of a component
of E_, is always greater than zero for the forward-
propagating case considered here and that w;>w, for
Raman scattering. Thus the last two terms of the sums in
both Egs. (11) and (12) may be eliminated by invoking the
frequency-matching condition. The first terms also sim-
plify considerably, and one arrives at the following equa-
tions:

O’E;, = — (4mw? /c*)(N /V'2)(3a /3Q)
X [T Umllla—y)0,E;,_,

Aw m,a

+{J —m|1la —y)QnE;, .|, (13

-
(32/0t2 +wd+2I3/31)Q,

=(N/V2)3a/3Q)3 3 (J —n|lla —B)
k

Aw a,B,
XEkr+,aEI:B ’
(14)
where E;, is the jth mode (frequency w;) of polarization
a, jr+ is a mode index corresponding to the ‘“upshifted”
frequency w; +wy+ Aw, and jr — is a mode index corre-
sponding to the “downshifted” frequency w; —w,—Aw.
Equations (13) and (14) may be expressed in a somewhat
more familiar form using the slowly varying envelope ap-

proximation. The usual expression relating the envelopes
to their fields is as follows:

Q,=qg,explio,t) ,
E;,=E} expli(k;z—w;t)] .

Then one may drop the second derivatives with respect
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to time and propagation path in this approximation.
Also one may apply the standard assumption that the Ra-
man frequency w, is approximately the Raman resonance
frequency w, i.e., the Raman linewidth I' is much less
than the Raman resonance frequency @, A further as-

J
8 19 o v 1o2 |0 2mik; 3
82+uj 3 +(2ik;)" VY Ej,,—-—njz (N /V'2)(3a /3Q)
9 1
—+(I—iAw) |g,=—=
ot 2i , 2

where v;=w;/k;, Vi is the transverse Laplacian operator, n

(N/V2)(3a/3Q) [ S (J—n|1la—B)E;,, Elfexplidk, z)

sumption is that the axial modes of the electromagnetic
fields are far apart compared to the Raman linewidth so
that only modes separated by precisely @, combine to
contribute to the phonon amplitude. With these assump-
tions one may derive the following result:

S Um|lla—v)g,E)_ ,explibk;_z)

+{J —m |1la—y)gmE), ,explidk; z)|, (13)

, (14")

; is the refractive index at optical frequency w;,

Ak; +=I;j, +—k; is the wave-number difference of light differing in frequency by the Raman frequency o,,

Ak;
cy

jr——k;, and Aw=w, —w, is the difference between the Raman frequency and the Raman resonance frequen-

Equations (13') and (14') are the frequency-matched expressions for the slowly varying envelopes of the electric fields

and the optical phonons. They are the rotationally invariant generalization of the multiwave Raman equations present-
ed by Armstrong et al.?® and discussed by Ackerhalt.?! These equations include the effect of energy-level degeneracy

presented by Zabolotskii et al.?*

IV. RESULTS

One may observe how the above expressions reduce to those previously given in the literature for pump and Stokes
radiation only, in the steady-state, for various symmetries. Under these assumptions the equation of the Stokes en-

velope E,, reduces to

7k, (Nda /3Q)?

9,13 _
¥ 2nlw,(1—iAw/T)

—_ il ; —1lg2
az+v5 EY +(2ik,)~'V{ |E;

where all subscripts s pertain to the Stokes frequency and
E,, is the pump envelope of frequency component w,
equal to o, +,.

With the above expression, one may identify the Stokes

amplitude gain,
7k, [N(3a /3Q)]?
" 2n20,T[1+(Aw/T)Y]

8 (w,) (16)

When one notes that by definition over photon amplitude
Q is a factor of V2 smaller than that of Wang, this ex-
pression becomes identical to his.> However, we now
find that the Stokes gain also depends on the polarization
of the pump and Stokes radiation. To pursue this polar-
ization dependence further, it will be useful to consider
Stokes and pump radiations which are plane waves, and
to perform the calculation in the retarded frame, with the
assumption that the group velocities v, and v, of the
pump and Stokes radiation are equal. It is convenient to
study the polarization dependence using the phonon am-
plitudes and their growth in the direction of propagation
of the pump radiation. This will then determine the
growth of the Stokes radiation, as may be seen from Eq.
(14) or (14'). To account properly for the parametric

S (J-—m|lla—y)J —m|[11B—p)E}XE,E

m,a,B,p

(15)

sy

f

gain suppression as a result of the SA coupling,” the
anti-Stokes field 4 will be included with the pump field P
and the Stokes field S. Furthermore, spectrally broad
pump light is of interest so an arbitrary number of longi-
tudinal modes will be included.

In order to simplify the notation used in the equations,
one may define a reduced phonon R, proportional to
the slowly varying phonon amplitudes g _,,,,

R""‘”=q_mcxp[i(kp —k;)z]
X [2%%w,(T' —iAw)/N(3a/3Q)] . (17a)

R may then be expanded in spherical tensors of rank J
and various components m (—J <m < +J) as follows:!”

RYV=3 (Um|1la—B)P,,S},

a,B,n

+ Aa,nPE,ne —iAk'Z) s

(17b)

where (Jm |11aB) is a Clebsch-Gordan coefficient,
F, , is a spherical component a of the amplitude of axial
mode n of field F (=A4,P,S), and Ak is the phase
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mismatch given by 2k, —k , —kg. The form of Eq. (17) is
intuitively obvious: The field amplitudes are rank-one
spherical tensors which must be combined as indicated in
Eq. (17b) to form spherical tensors of rank J so that both
sides of Eq. (17b) transform in the same way under an ar-
bitrary rotation of coordinate axes. Let the (plane) waves
propagate along slightly different directions centered on z
so that AKk lies primarily along the z direction. The equa-
tions for the spatial evolution of the waves are then

8,55, =g 3 (1B|1Ju—M)P, Ry,
: 2
(18)

(J) zAkz
3, 4,,=—g "k, /ks) 3 (la| 1T uM)IP, ,Rype
z s P
A sum over J on the right-hand sides of Eqgs. (18) gives
the general case where g!’’ is a Stokes amplitude .gain
similar to Eq. (16):

7k [N(3a/3Q )" *N

(J)
o . (19)
& 2n20, D(1+iA)

Here A is the normalized frequency offset (w, —w,)/T" and
N is a normalization which arises from the Clebsch-

Gordan coefficients; they may be calculated by inspec-
tion:

N(O 3 N(l) 2 N(Z) ‘/5/3

To find the eigenvalues of Eqs. (17) and (18) in the
small-signal limit of no significant pump-light depletion,
we differentiate Egs. (17) with respect to z and substitute
Egs. (18) into the resulting equation. We obtain

azR'(nJ) J)tz(DmM+B )RM
—iAk 3 h\gAg ,Phae %, (20)
a,B,n
where
DY _2 dr("J;#M s
” (21
B, -——(k /ks)meauMCa# )
d,‘,,’,;ﬂM——z(Jmilla —B)X1B|1Jp—-M),
(22)
b,‘,,!()zyM=§<Jm [ 118 —a){1B|1JuM) ,
hllg=(Im|11a—B), (23)
and C,, is the coherency matrix of the pump laser:
=3 P,,P}, . (24)
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Differentiating Eq. (20) with respect to z and substituting
Eq. (18) into the resulting equation yields'’

2R =g*(D+B)3,R —iAk[3,R —g*(D+B)R]
—iAkg*BR 25)

where R is now understood to be a column vector with
2J +1 elements given by Egs. (17), while D and B are ma-
trices with matrix elements given by Egs. (21); we have
suppressed the superscripts and subscripts to simplify the
notation. Equation (25), which determines the phonon
growth for arbitrary phase mismatch, is the primary re-
sult of this paper.

Following Ref. 17, one obtains the eigenvalues and
eigenvectors of Eq. (25) by substituting

R =R e"" (26)

so that u represents the complex eigenvalue, normalized
to goly (I is the laser intensity); the real part of u is pro-
portional to the gain. Since Eq. (25) is homogeneous in
R, the roots u must satisfy

det{u(u +ik)] —u(D+B)m—inkD]1=0, 27)

where I is the identity matrix, n=g*/g,l,, and
k=Ak /gy, is the phase mismatch factor.

Before discussing the roots u in the general case, we in-
vestigate the limits of both small and large phase
mismatch. According to Eq. (27), the eigenvalues u in
the phase-matched limit (| k| << 1) are obtained by di-
agonalizing the matrix D+ B. On the other hand, far
from phase matching ( |k | >>1) we find instead that the
eigenvalues are obtained by diagonalizing D; this may
also be seen directly from Egs. (17) and (18) when the
terms in those equations proportional to the anti-Stokes
field are neglected.

Let us now consider the possible values of J. The
J=0, J=1, and J =2 phonons correspond to scattering
with isotropic, magnetic-dipole, and electric-quadrupole
rotational symmetry, respectively, as described by Plac-
zek.!” All three types of scattering may contribute to the
electronic Raman effect. For a Q(0) vibrational transition
the selection rules allow only J =0, i.e., the phonons car-
ry no angular momentum. In this case, as we will show
below, the eigenvalues of the (scalar) phonon are just
those calculated by Shen and Bloembergen’ and the
Stokes polarization is identical to that of the pump. Far
from an electronic resonance, the J =1 scattering is
negligible for both the vibrational and rotational Raman
effects.!”” Although Q(j) vibrational transitions (js£0)
may in general contain elements of both /=0 and J =2,
J =0 often dominates (e.g., for diatomic molecules). For
all pure rotational (S) transitions the selection rules allow
only J=2. After a brief discussion of the J =0 case, we
will focus our attention on the case of electric-quadrupole
scattering (J =2).

For J =0, the phonon and fields may be written, using
Egs. (17) and (18) in the small-signal limit, as follows:
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Ry=(00[111—1)[P_S* +P_S* +exp(—iAkz)( A4 P* +A_P*)], (28a)
%si =g!%1£1|10+10)P, R} , (28b)
%Ai=—g§°)*(k,, /kg){1+1]|10+10)P R yexpliAkz) , (28¢)
3
—P,.=0. 28
az (28d)

It is evident from Eqgs. (28b) and (28c) that both S and 4
have the same polarization as the pump light. With this
in mind, the scalar equation for the components of S and
A parallel to the pump light are sufficient to describe
their evolution. Hence, evaluating the Clebsch-Gordan
coefficients and simplifying, one has

(0)

%S:%—[ | P|2S +explinkz)P24*], (292)
3 g(O)t
5A=" ‘3 (k4 /kg) | P|*A4 +expliAkz)P2S*] .

(29b)

Accounting for the normalization chosen in the definition
of g!% in Eq. (19), these are the well-known equations for
scalar-field SA coupling.”

We now return to the more complicated case of
electric-quadrupole scattering. At the phase-matching
angle we find that for quantization along z the matrix

D + B is already diagonal; Eq. (20) reduces to
,RP=(mg® /2)(1+iM)"C,, —C__)RZ, (30

where m =0,£2. Thus for pump light which is right cir-
cularly polarized ( + ), the full gain occurs at the phase-
matching angle with the Stokes radiation left circularly
polarized (—). (Note that g{?’ is the resonance Stokes-
amplitude gain for the + — — transition.) The + — +
transition (m =0) has zero gain, however, because of
parametric gain suppression associated with the allowed
SA coupling. For light with a coherency matrix which
corresponds to equal amounts of left- and right-circular
polarization, e.g., linearly polarized or unpolarized light,
the gain is zero for all the phonons, i.e., we have com-
plete parametric gain suppression at phase matching. It
is apparent that the gain varies continuously between its
high value and O as the polarization is varied between
these two limits, e.g., for either elliptically or partially
polarized light.

Far from phase matching we must diagonalize D. Con-
sider the case A=0, which leads to the highest gain. We
find that for circularly polarized (+) pump light the
three eigenvalues are u=1, {, and 0; the first two eigen-
values correspond to circularly polarized (—) and (+)
Stokes light, respectively. For linearly polarized light,
say along x, we find instead u =§, %, and 0; now the first
two eigenvalues correspond to Stokes light linearly polar-
ized along x and y, respectively. As expected, these are
precisely the relative gains which would be predicted
from the ratios of the spontaneous rotational Raman

cross sections.'” For unpolarized light we obtain u =1,
1, and 1. Evidently, far from phase matching, unpolar-
ized light may be though of as being “decomposed” by
the rotational Raman effect into two mutually incoherent
circularly polarized components, each with half the total
intensity; this yields the larger eigenvalues of 1. Off reso-
nance (i.e., A5£0) all the above results apply except that
each eigenvalue is multiplied by a factor of (1+iA)~".
We return to the general solution of Eq. (27) for arbi-
trary values of k. In Fig. 1 we have plotted the normal-
ized gain Re(u) for a linearly polarized, circularly polar-
ized, and unpolarized pump laser, all on Raman reso-
nance (A=0) and with 0, <<w,. The positive (negative)
branches are predominantly Stokes (anti-Stokes) roots
when k5£0, and correspond to amplification (attenuation).
The plots show that the transition between the phase-
matched an unmatched regimes occurs around k=1, as
expected. Note that no root crossings occur except at
k=0; thus, for a linearly (x) polarized pump laser the
dominant root corresponds to parallel (x) Stokes polar-
ization for all values of k5£0. The plot for an unpolarized
pump shows the maximum gain to be smaller than for a
linearly polarized pump throughout; indeed, the larger
unpolarized-pump eigenvalue is identical throughout
with that for x —y, while the smaller is identical with
+— +. We remark that in view of Egs. (13') and (14')
an unpolarized multimode laser may be viewed as a type
of single-mode laser whose polarization is modulated on a
short time scale compared to the phonon lifetime I'~/;
our result should apply to any such arbitrary modulation.

L 1 L
1.00
+ — —
XX o = —— e —— -
=T L e — e —— —
- 22T T ey i Y
3 k
o 000 —
[ S
N -
N ——
\\ —————————————
===
-1.00
T T
0.0 25 5.0

PHASE — MISMATCH FACTOR ( «<)

FIG. 1. Normalized gain Re(u) vs phase-mismatch factor
calculated from Eq. (12) for A=0. Solid (dashed) curves; circu-
larly (linearly) polarized pump light, with sample polarizations
given for each. Unpolarized-pump solutions (#) coincide with
those for x —y and + — +, as shown.
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0.00 1 1 L 1 I
-5.0 o

NORMALIZED PHASE MISMATCH ( «)

FIG. 2. Maximum normalized resonant gain vs  for various
pump polarization ellipticities. The quantity § indicates the ra-
tio of the minor to the major axis of the polarization ellipse.

Re (u)

-5.0 0 5.0

PHASE MISMATCH FACTOR (« )

FIG. 3. Maximum normalized resonant gain vs « for various
degrees of circular polarization. The parameter a is given by
a=C,_ /(C ,+C__).

0.666

0.333

Re (u)

NORMALIZED PHASE MISMATCH (&)

FIG. 4. Maximum real part of the six normalized roots vs
normalized phase mismatch. The normalized frequency offset is

varied. The laser is linearly polarized. The anti-Stokes—Stokes
wave number ratio is 1.22.
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NORMALIZED FREQUENCY OFFSET (A )

FIG. 5. Maximum real part of the six normalized roots for
linearly polarized light. Non-negative momentum mismatches «
are shown. Anti-Stokes—Stokes ratio equals 1.22.

Re (u)

NORMALIZED FREQUENCY OFFSET (\)

FIG. 6. Maximum real part of the six normalized roots vs
normalized frequency offset. The normalized phase mismatch is
varied. The laser is circularly polarized. The Anti-

Stokes—Stokes wave number ratio is 1.22. The curve shape is
Lorentzian.
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FIG. 7. Maximum real part of the six normalized roots vs
normalized frequency offset. The normalized phase mismatch is

varied. The laser is unpolarized. The Anti-Stokes—Stokes wave
number ratio is 1.02.
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FIG. 8. Maximum real part of the six normalized roots vs
normalized frequency offset. The normalized phase mismatch is
varied. The laser is unpolarized. The Anti-Stokes—Stokes wave
number ratio is 1.22.

Figures 2 and 3 give plots of the maximum gain versus
k for various pump-light polarization ellipticities and de-
grees of polarizations, respectively. The gradual transi-
tion from large helicity (circular) to small helicity (linear,
unpolarized) is noteworthy.

In Fig. 4 we plot the maximum gain as a function of
phase mismatch « for various values of frequency offset A,
with linearly polarized light. For small (nonzero) x the
maximum gain occurs near A =1, i.e., half of linewidth off
resonance. This result is similar to that obtained by Shen
and Bloembergen in their scalar theory.’

Figures 5-8 show the homogeneous line shapes for
various propagation geometries and polarizations. Fig-
ure 5 shows line profiles for linearly polarized light and
various values of the phase mismatch. Figure 6 shows
that the theory verifies the Lorentzian line profile regard-
less of phase mismatch for circularly polarized light. Fig-
ure 7 demonstrates how the SA coupling shifts and
broadens the line profile near phase matching for unpo-
larized light; Fig. 8 shows the same effect, despite the
larger Raman shift.

V. CONCLUSIONS

A new rotationally invariant formalism for Raman
scattering has been derived. It has been applied to J =0
(scalar) and J =2 (electric quadrupole) transitions and has
given results which duplicate and extend the work of oth-
er authors. Of special interest are the predictions regard-
ing unpolarized light and the eigenvalue spectrum of six
eigenvalues for a given pump polarization for § Raman
transitions. For a linearly polarized pump, all eigenpo-
larizations of the stimulated Stokes light are suppressed
for phase-matched propagation.

The method used also has a useful intuitive interpreta-
tion. The optical phonons are viewed from the outset as
coherent molecular excitations which carry angular
momentum, an obvious consequence of the selection rules
as discussed by Placzek.'®

Our treatment of unpolarized light has some interest-
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ing implications. Since the Raman gain coefficients de-
pend on the polarization of the incident light, it is not ob-
vious what happens if the light polarization changes as a
function of time. The fact that the gain is essentially in-
dependent of laser spectral width makes this an especially
intriguing question, since the broadening of the laser
spectrum associated with the time-dependent changes in
the polarization do not necessarily affect the gain of the
temporally correlated component of the Stokes radiation.

A simple interpretation of our results on unpolarized
light is as follows: the phonons, i.e., coherent molecular
excitations, may be viewed as a “detector” of the polar-
ization of the incident laser light, since the degree of Ra-
man conversion, which is the “output signal” produced
by the phonons, is sensitive to the incident light polariza-
tion. What happens if the polarization changes as a func-
tion of time? Viewing the phonons as a detector with a
finite response time 7 (given by ~ 10 times the phonon
lifetime, the factor of 10 arising from the nonlinearity of
SRS?), we would argue that the answer depends on how
rapidly the polarization changes compared to 7~'. If the
polarization changes occur on a time scale much longer
than 7 then the detector should respond to the instan-
taneous polarization, emitting a strong (weak) signal
when the light is circularly (linearly) polarized. On the
other hand, if the polarization changes significantly on a
time scale of 7 then the detector cannot follow the instan-
taneous polarization. (This is the limit of unpolarized
light which we have treated mathematically in Sec. III
using our model of a multiaxial-mode laser with the vari-
ous modes polarized differently and the mode spacing
much greater than the Raman linewidth; in this model,
the instantaneous polarization of the laser is obviously
fluctuating on a time scale much shorter than 7.) Since
the detector should average over the polarization fluctua-
tions, we might have thought that it could, in principle,
treat the light as an incoherent mixture of any two or-
thogonal polarizations. However, this cannot be correct
since the magnitude of the signal would then depend on
the choice of basis. Remembering that SRS may be
thought of as an instability, we would expect that the
choice of basis which maximizes the Stokes-light growth
would be the one which would eventually dominate. In
the simple case in which the SA coupling may be ignored,
this is indeed what is found mathematically: the phonons
“resolve” the unpolarized light into two incoherent, cir-
cular components of equal intensity; the gain is thus half
the gain of circularly polarized light. The case of perfect
phase matching, in which the SA coupling dominates the
phonon response, is more complicated and cannot be un-
derstood from this simple argument; as discussed in Sec.
IV, the gain is nevertheless suppressed when the incident
light is unpolarized.

ACKNOWLEDGMENTS

The authors are grateful to M. Feld for helpful criti-
cism. This work was supported by the U.S. Office of Na-
val Research under Contract No. N00014-84-C-0629.



1596 R. HOLMES AND A. FLUSBERG 37

*Present address: Science Research Laboratory, 15 Ward
Street, Somerville, MA 02143.

'E. Garmire, F. Pandarese, and C. Townes, Phys. Rev. Lett. 11,
160 (1963); R. Hellwarth, Phys. Rev. 130, 1850 (1963); see
also, W. Kaiser and M. Maier, in Laser Handbook, edited by
F. Arecchi and E. Shulz-Dubois (North-Holland, Amster-
dam, 1972), and references therein.

2R. Carman, F. Shimizu, C. Wang, and N. Bloembergen, Phys.
Rev. A 2, 60 (1970).

3Y. D’yakov, Pis’'ma Zh. Eksp. Teor. Fiz. 11, 362 (1970) [JETP
Lett. 11, 243 (1970)]; S. Akhmanov, Y. D’yakov, and L.
Pavlov, Zh. Eksp. Teor. Fiz. 66, 520 (1974) [Sov. Phys.—
JETP 39, 249 (1974)]; 1. Zubarev, A. Mironov, and S. Mi-
khailov, Pis’'ma Zh. Eksp. Teor. Fiz. 23, 697 (1976) [JETP
Lett. 23, 642 (1976)]; J. Eggleston and R. Byer, IEEE J. Quan-
tum Electron. QE-15, 648 (1979).

4B. Perry, P. Rabinowitz, and M. Newstein, Phys. Rev. A 27,
1989 (1983).

5A. Flusberg, D. Korff, and C. Duzy, IEEE J. Quantum Elec-
tron. QE-21, 232 (1985), and references therein.

6M. Raymer and J. Mostowski, Phys. Rev. A 24, 1980 (1981);
M. Raymer and L. Westling, J. Opt. Soc. Am. B 2, 1417
(1985).

7Y. Shen and N. Bloembergen, Phys. Rev. 137, A1787 (1965); N.
Bloembergen, Non-linear Optics (Benjamin, New York, 1964);
for a review, see also, A. Penzkofer, A. Laubereau, and W.
Kaiser, Prog. Quantum Electron. 6, 55 (1979).

8B. Perry, P. Rabinowitz, and D. Bomse, Opt. Lett. 10, 146

(1985).

M. D. Duncan, R. Mahon, J. Reintjes, and L. L. Tankersley,
Opt. Lett. 11, 803 (1986).

105, P. Hickman, J. A. Paisner, and W. K. Bischel, Phys. Rev.
A 33, 1788 (1986).

1IN. J. Bridge and A. D. Buckingham, Proc. R. Soc. London
295, 334 (1966).

123, F. Lam, D. G. Steel, R. A. McFarlane, and R. C. Lind,
Appl. Phys. Lett. 38, 977 (1981).

13C. S. Wang, Phys. Rev. 182, 482 (1969).

147 T. Lin, Phys. Rev. A 33, 3210 (1986).

15p. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).

16y, Averbakh, A. Makarov, and V. Talanov, Kuant. Elektron.
(Moscow) 5, 823 (1978) [Sov. J. Quantum Electron. 8, 472
(1978)].

17A. Flusberg and R. Holmes, Phys. Rev. Lett. 58, 2039 (1987).

18G. V. Venkin, Yu. A. Ilinskii, G. M. Mikheev, Kvant.
Elektron. (Moscow) 12, 608 (1985) [Sov. J. Quantum Electron.
15, 395 (1985)].

19G. Placzek, in Handbuch der Radiologie, edited by E. Marx
(Akademische Verlagsgesellschaft, Leipzig, 1934).

20y, Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan,
Phys. Rev. 127, 1918 (1962).

213, Ackerhalt, Phys. Rev. Lett. 46, 922 (1981).

22A. A. Zabolotskii, S. G. Rautian, V. P. Safonov, and B. M.
Chernobrod, Zh. Eksp. Teor. Fiz. 86, 1193 (1984) [Sov.
Phys.—JETP 59, 696 (1984)].



