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%e investigate quantum-mechanical second-harmonic generation for parameters such that clas-
sical electrodynamics predicts oscillations. Speci6cally we calcu1ate the Q distribution function in

a Gaussian approximation about the classical limit cycle. In the classical limit initial rapid col-
lapse of the Q distribution into the neighborhood of the 1imit cycle is followed by diffusion around
the limit cycle. The experimental signi6cance of this quantum di6'usion is discussed.

Second-harmonic generation in a driven optical cavity
is a particularly suitable system for investigating the in-
terface between quantum and classical dynamics. Classi-
cal electrodynamics predicts a range of behaviors includ-
ing self-pulsing, ' which has recently been observed, and
period doubling sequences to chaos. This variety is pro-
duced by a quadratic nonlinear coupling of the subhar-
monic and second-harmonic modes. Currently there is
much interest in how such dynamics, especially chaos,
can be described within the framework of quantum
mechanics. 's In the following we show for the example
of second-harmonic generation that the quantum dynam-
ics associated with classical oscillations is physically
straightforward. In the "classical limit" of large 6elds
and small nonlinearity the quantum dynamics reduces to
classical Liouville dynamics plus classical noise. Though
reasonable this result is not immediate from the Fokker-
Planck-type equation obeyed by the Q distribution since
its diffusion matrix need not be positive semidefinite any-
where on the limit cycle.

In order to obtain everywhere positive semide6nite
diff'usion one uses the Fokker-Planck equation for the
positive I' representation of Drummond and Gardiner.
This has the advantage of being equivalent to a system
of stochastic difFerential equations in a phase space of
double the classical phase-space dimension. Doree and
Schenzle have recently analyzed the attractors of the
deterministic part of these equations in this "doubled di-
mension" phase space. They found that corresponding
to a classical limit cycle attractor is an attracting two-
dimensional manifold that may be pictured as a topolog-
ical cylinder of limit cycles stacked into the extra "non-
physical" dimensions. Furthermore, this manifold is
noncompact so that individual stochastic differentia
equation trajectories may di8'use off to infinity. Hence, a
stationary positive I' representation does not exist. The
physical signi6cance of this, if any, is presently unclear.

Doree and Graham have presented preliminary work
using the dynamical equation for the %igner function
for second-harmonic generation. It contains third-order
derivatives which they ignore and subsequently approxi-
mate the system in the classical limit by the remaining
Fokker-Planck equation. %'e retain all terms in our
dynamical equation for the Q distribution.

Other quantum-mechanical systems whose classical
counterparts show oscillations have been studied. Gra-
ham has recently presented a summary of work on quan-
tum maps' and has also reported that the stationary
VAgner function for the quantized I.orenz model reduces
to the classical invariant measure in the classical limit. "
Graham and Tel' have constructed approximate sta-
tionary distributions for systems having deterministic
limit cycles. Satchell and Sarkar' have used a computa-
tionally intensive method to analyze the oscillatory solu-
tions of an anharmonic oscillator with a time-dependent
interaction Hamiltonian. The present work does not
deal with the stationary behavior and has a time-
independent Hamiltonian. Since the phase space of
second-harmonic generation has two complex, or four
real, dimensions it would be very expensive to solve nu-
merically by the method of Satchell and Sarkar. ' The
technique of Gaussian approximation around the
classical-trajectory point reduces the numerical burden
enormously.

The density operator p for intracavity second-
harmonic generation (SHG) satisfies the master equa-
tion

2

=(th) '[H, p]+ g y;(2a, pat —ata, p —pata, ) .
i=1

Subscripts 1 and 2 refer to the subharmonic and second-
harmonic cavity modes, respectively and a;,a; are their
boson creation and annihilation operators. The first
term contains the interaction Hamiltonian H de6ned by

(ih ) '0 = g i b,;a; a; +E(a i
—a—i )

+—X(a i az —a ia2 ),tz z

~here 5; is the cavity detuning of mode i, E is the
subharmonic driving 6eld amplitude, and 7 the non-
linear susceptibility responsible for the second-harmonic
generation. The final two terms in Eq. (1) describe the
damping of the modes at rate y;. %e note that the am-
plitude coupling to the reservoirs which leads to thi. s
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0(Q(a„az)&1,
m J fQ(a„az)d a, d az ——1.

(4a)

(4b)

These important features distinguish the Q distribution
from other representations, such as the Glauber-
Sudarshan P representation, which may become negative
and indeed highly singular. Thus the Q distribution is
suited to our Gaussian approximation method.

In a sense made precise by Davis, ' ir Q(ai, az) is
the probability distribution for measuring the complex
amplitudes ai, az to the accuracy allowed by the uncer-
tainty principle resulting from the boson commutation
relation. This physical interpretation will be important
in our discussion of the classical limit of SHG.
Millburn has used the Q distribution to analyze the
quantum and classical dynamics of the anharmonic oscil-
lator and we refer to that paper for further discussion of
its interpretation.

After normal ordering and using [a,p]= —t),p and
its Hermitean conjugate we find that Eq. (1) implies that
the Q distribution satisfies

form of damping generates approximate continuous
"measurements" of the complex amplitudes a, and a2, '

a point we wi11 return to later.
In order to obtain a e-number equation equivalent to

the operator master equation (1) a variety of quasiproba-
b111ty d1strlbutlons may be 1ntroduced. %e shall use
the Q distribution function, defined as the diagonal ma-
trix elements of the density operator p in the coherent
state basis,

g(a„az)=(&a]I
ia &a, I )p( I a, &s

I a, &) .

where
I a, & is the coherent state with complex ampli-

tude a; of mode i F.rom this definition it follows that
n Q(a„az) is a genuine probability distribution satis-

fying

ai ——(X/yi) '(ai„+iai;),
az ——(X/y i) '(az„+iaz; ) .

Since it is a function of scaled amplitudes the Q distribu-
tion of Eq. (5a) is of course also scaled relative to that of
Eq. (3). At this point we note that the eigenvalues of the
difFusion matrix d'» are

~'=y'. y' I+-,'
I az I

I ——,
'

I az
I

and so it is negative definite whenever
I az I

& 2 (Fig. 1).
The limit X/yi~0 (or similarly I/y2~0) is a natural
classical limit for SHG because the diffusion term in Eq.
(5a) goes to zero in this limit. From Eqs. (6) this is the
large-field limit, and physically large fields and small
nonlinearity are expected to be well described by classi-
cal electrodynamics. For long enough times even small
quantum difFusion will become signi6cant so we also ex-
pect the classical limit to be a short-time limit. Of
course, the quantum-mechanical uncertainty principles
require a minimum phase-space volume, even in the clas-
sical limit, and so we are considering classical Liouville
dynamics.

After making the usual approximations Maxwell's
classical theory gives the following equations for the
classical field amplitudes

dair
i «ii 2 dazrbi ' b2 bz

d1 d'r d1 d~

where the b' are defined in Eqs. 5(b)-5(e). These are the
equations for the characteristics of the first-order part of
Eq. 5(a). So if the difFusion part of the Q distribution
equation (5a) were zero it would be the classical Liou-
ville equation. In the classical limit of small difFusion we
expect the difFusion terms to be a small perturbation of

a,g(a, r) =[—e, b'+-,'(X/y, )za, a, d'i]g(a, r),
b = —ai +kiai;+a) az„+ai;az +E
L. 2
tg + li ~ lQ le +A lrCX2i G li C2T

b =-y az, +~zaz;--, (ai, -at, »3 i i' f 2 2

L4 I A&b = —P CX2;
—m2Q2„—Q l,Q l;,

d = 1 —
—,'az„d = 1+—,'az„,ll 22=

(Sa)
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T= (air&ali&azr~ 2i ) ~

Ql yl Ely2

Vl Vl
(5h) REAL
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%e refer to the b' as the drift coef5cients and to the d'J
as the difFusion matrix elements, and all those not explic-
itly assigned a value are zero. The subscripts and super-
scripts i and j refer to the elements of the vector (5g)
which are scaled real and imaginary parts of the com-
plex field amplitudes de6ned by

FIG. 1. Limit cycle of Eqs. (7), az„vsaz;, defined by Eq. (6)
as dimensionless scaled real and imaginary parts of the com-
plex field amplitode of mode 2. Parameters: E' = 1 l. 11,
5,'. =52——0, y'=1, period =-2.312y, '. Diff'usion matrix 0 is
positive semide6nite only inside the shaded area. Note the
di8'erent scales on the axes.
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the classical solution defined by Eqs. (7). Thus in the
classical limit we associate the quantum Q distribution
arguments with the classical field amplitudes.

Equation 5(a} may be solved in the classical limit

Xiy, ~0 by making the ansatz

Q(a, r)=z(a, ~)exp[ —2(X/y, ) P(a, ~)] . (8)

Substituting this into Eq. 5(a) we find to highest order in

(X/), )-', "
5&+b'e, + ,'d"e-, C, =0,

where the subscripts denote partial differentiation with
respect to the vector elements of Eq. (5g) and summation
is implied by repeated indices. Following Ludwig ' and
Kubo et al. we now expand P and the b' about the
deterministic trajectory ad(~) which solves Eqs. (7).

P(a, r)=P(ad+5a, v)

=P (r)5a'+ 'P (r—)5a"'5a'+

b'(a, ~) =b'(ad+5a, r) =bo(~)+bk5a" +

(10a)

(10b)

where we have noted P{az(r), ~)=0. ' Substituting in

Eq. (9) and equating the terms constant, linear, and
quadratic in 5a separately to zero, we find

;=0,
p;,+b "pk, ——0,
& J.+b "Nijk+b "0k, +d "0k Pij =o ~

(1 la)

(1 lc)

4+4 B+BT4+@DC=0,dt (12a)

Due to Eq. (11a) our Gaussian approximation to the Q
distribution will be centered on the deterministic trajec-
tory, while Eq. (11b) confirms that P, is constant along
the deterministic trajectory. The final equation (1 lc) can
be written in the matrix form

I 20

~ lo

PERIOD

FIG. 2. Tangential variance 5a, 450,, (dimensionless),
~here 5e, is the unit vector tangential to the deterministic tra-
jectory, vs time, in units of the period, for limit cycle of Fig. 1.
The boxes mark the same point on the limit cycle. Note the
linear growth from period to period.

where 4 is to be calculated numerically. That our ap-
proximation Eq. (14a) is valid only near a trajectory
point (a&(~), r) limits its application to times sufficiently
short that significant difFusion away from this point has
not occurred. The method of Gaussian approximation
just presented is equivalent to the moment expansion de-
scribed by van Kampen. z For further discussion of this
relationship see Kubo et al.

Our interest is in parameters for which the classical
system, Eqs. (7), has an attracting limit cycle on which
the diffusion matrix 0 is everywhere nonpositive
semidefinite e.g., Fig. 1. When the detunings h], h2 are
zero the dynamical system, Eqs. (7), is invariant under
complex conjugation, which accounts for the symmetry

~J=&v Bj=bi Dv="" (12b)

5a =a —az(~), (14b)

where the derivative is along the deterministic trajecto-
ry, parametrized by time, and we have explicitly assured
the symmetry of @. The linearized drift matrix B and
diffusion matrix 0 must be evaluated along a determinis-
tic trajectory defined by Eqs. (7). Hence, coupling the
20, 6rst-order, nonlinear, ordinary differential equations
(7) and (12a) together we can numerically solve for the

ll'
It can be shown that the coefficient z(a, r) in Eq. (8)

is"

z(a, r)=c det[4]'~

with c a normalization constant. So our Gaussian ap-
proximation to the Q distribution, valid for X/y, ~0
and near the deterministic trajectory point {ad(~},r), is

Q(a, ~}=-cdet[4]' exp[ —2(X/y, ) 5aT@5a],

LLJ

m 0.8—

~~ 0.6

~ 0.4
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FIG. 3. Orthogonal variance 5a045ao vs time for limit cy-
cle of Fig. 1. The curve is for 5uo orthogonal to the limit cycle
tangent vector Specificai. ly 5ao ——i —[i 5a, ]5a„where i has
components a&„——I, a&; ——a2, ——a2; ——0. Other orthogonal vari-
ances behave similarly. Note the variance axis range is —,

' that
of Fig. 2.
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under reQection in the real axis of the projected limit cy-
cle, Fig. 1. %e note that analytic approximations for the
llIDit cycles valid near the Hopf bifurcation point, have
been presented. We solve the system of equations (7)
and (12a) for an initial coherent state on the limit cycle
so that 4 is initially the identity matrix and the (scaled)
initial variances are —,'(X/y, ) . In Fig. 2 we have plotted
the variances 5a 45a versus time for 5tz tangential to
the limit cycle and in Fig. 3 for a direction orthogonal to
the limit cycle.

The important point illustrated by these graphs of the
variances concerns their behavior at a fixed, but arbi-
trary, phase-space point on the limit cycle from one
period to the next. Such a point is marked by the boxes
in the figures. The tangentia1 variance, Fig. 2, grows
linearly from period to period while the orthogonal vari-
ance, Fig. 3, quickly reaches a small value which is con-
stant from period to period. Having made these essen-
tial observations we now clarify some details of the
graphs. The previously mentioned symmetry of the
dynamical system under complex conjugation accounts
for the underlying periodicity of the variances being half
the limit cycle period. The behavior of the variances
within a period follows, of course, from the details of the
variation of the drift and diffusion around the limit cy-
cle. Also the particular orthogonal variance plotted is a
fuu". ,tion not only of the dynamics but also of the partic-
ular choice of orthogonal direction from the three-
dimensional orthogonal subspace, which is different for
different tangent vectors.

We have previously mentioned that Q(a&, tx2) may be
interpreted as the probability distribution for "measur-
ing" the complex amplitudes tz„az. Now the observ-
ables corresponding to the real and imaginary parts of a,.
do not commute, so the measurement of a; will be limit-
ed by the uncertainty principle resulting from the boson
commutation relation. It is thus in a generalized sense
that we refer to a measurement of the non-Hermitean
operator o, ' ' "' %ith this understanding Fig. 3 may
be interpreted as showing that if we start with initial
coherent state~

I tz, )8 I a2) on the classical limit cycle
and measure the coherent amplitudes after about a
period we will 6nd them to be concentrated on the clas-
sical limit cycle. From Fig. 2 we see that the tangential
variance about the deterministic amplitude, at a particu-
lar trajectory point, increases linearly with time. Ac-
cording to Eq. (14a) the variances scale as (X/y, ) so
that in the classical limit, 7/y, ~0, the orthogonal
spreading and the rate of tangential spreading, as pro-
portions of the unscaled amplitudes, both approach zero.
This very reasonable description wouM be expected if
the classical dynamical system Eq. (7) were perturbed by
classical noise. However, this does not follow immedi-
ately from the Q distribution dynamical equation (5a)
since the diffusion matrix 0 is nowhere positive

semide5nite on the deterministic limit cycle in the
current example, Fig. 1. Although our Gaussian ap-
proximation cannot describe the stationary state it is
consistent with the expectation that diffusion around the
entire limit cycle occurs, as found by Graham, " for the
quantized Lorentz attractor.

It is important to realize that although the probability
distribution for measuring the complex amplitudes is
governed by the classical equations, in the classical limit,
quantum phenomena such as squeezing2' ' may still be
present. This is a manifestation of the fundamental
quantum-mechanical nature of the system which may be
probed by making appropriate measurements, such as of
the squeezing. This fundamental quantum nature is en-
sured by the strictly diff'erent interpretation of the Q dis-
tribution arguments and the classical complex ampli-
tudes. Nevertheless, the complex amplitudes behave
classically over short enough times in the limit X/y t~0.
In order to understand why it is the complex amplitudes
that behave classically we note that the damping in Eq.
(1) acts like a continuous measurement of the complex
amplitudes insofar as it tends to diagonalize the density
matrix in the coherent-state basis. '"' That the particu-
lar measurements made on a system may be important in
determining its classical limit has been emphasized by
Lamb and recently by Meystre and %right.

Consider an experiment having y&
——yz ——20 MHz and

X= 10 kHz so that g/, = 5 X 10 and the oscillation
frequency is roughly 3y, /2n =6 MHz. ' From Fig. 2
we see that the tangential variance is increasing by about
10(X/y, ) per period and thus will reach unity after
about 4X10 periods or 60 msec, assuming tangential
difFusion to continue at the rate given by the Gaussian
approximation. Hence, if other technical sources of
noise disturbed the oscillation phase by much less than a
period over 60 msec one might hope to see the funda-
mental quantum phase diffusion as a broadening of order
10 Hz on the 6-MHz oscillation signal. Increasing the
ratio X/y, will increase the broadening.

In summary we have calculated the "quantum
diffusion" correction to the classical periodic oscillations
that occur in second-harmonic generation. These quan-
tum corrections only become important for times so long
that it may be diScult to detect them in current experi-
ments against the background of technical noise. An al-
ternative interpretation of our results is that we have
verified from quantum mechanics that the oscillatory dy-
namics of the field amplitudes in current SHG experi-
ments are accurately described by classical mechanics.
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