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Pendular Fabry-Perot cavities as a paradigm for the dynamics of systems with delays
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~e consider the dynamics of the suspended mirror of a pendular Fabry-Perot cavity, taking into
account the delays due to the 6niteness of the velocity of light. %'e obtain an approximate equation
for the asymptotic motion which allows a simple analysis of the behavior of the mirror and in par-
ticular of the instabilities that cavities with a large enough 6nesse or length can develop. The re-

sults, which are of relevance in cases of actual interest, can in principle be tested using presently
available cavities. A pendular Fabry-Perot cavity then appears as a perhaps ideal example of a de-

lay system where theory, numerical, and laboratory experiments can be compared.

I. INTRODUCTION

Delay differential equations (also known as retarded,
hereditary, difFerence difFerential equations, or equations
with deviating arguments), that is, differential equations
for a function x evaluated not only at time t but also at
the retarded argument (t r) (the delay—or time lag r be-
ing in general a function of t and x), occur in the descrip-
tion of countless physical phenomena, ranging from pop-
ulation dynamics' to acoustics, optics ' and classical
field theories, when the finite velocity of the propaga-
tion of the interaction must be accounted for.

The mathematical theory of such equations, that we
shall henceforth assume to be purely retarded and with
constant delays (see Refs. 7 —9 for precise definitions), is
poorly known, except when linear with constant
coeScients, and exact solutions cannot in general be
given in a closed form. Indeed, in contrast with ordinary
difFerential equations, the solutions of delay equations,
whatever their order of difFerentiation, depend in general
on an initial function specified over some interval of
length r, that is on an infinite set of initial conditions.
For generic initial data, the solution is not C, but is,
however, of increasing smoothness: it is C' from t =0
onwards and C" from t =(n —1)r onwards.

In general, one then must resort to approximation
schemes. One of them, initiated by Lagrange, ' consists
in transforming the retarded equation into an ordinary
difFerential equation by replacing the function of the re-
tarded argument by the first terms of a Taylor series, that
is, by setting

x (t r) =x (t) rx(t)— —
or

x (t r)=x (t) rx(t)+—r~X(t)l2, —

for example. Although often efficient, this procedure can
be grossly incorrect, even for arbitrarily small delays, if
the order of the resulting ordinary equation is higher
than that of the original delay equation, unless an ap-
propriate order reduction is performed. "

A more elaborate approach, associating a predictive,
that is, ordinary, difFerential equation to the retarded sys-
tem, has therefore been developed in order to tackle the
problem more rigorously. It was initially conceived to
solve the problem of motion of particles in classical field
theories' ' and relied on the analytic dependence of the
system on a tuning parameter (or coupling constant). It
has been recently adapted to allow a description of the
evolution from static to "laminar" and even "turbulent"
regimes in processes involving delays. ' ' The approach
essentially exploits the seemingly general property of
spontaneous prediction, ' ' that is of rapid oblivion of
the initial conditions. This allows one to attempt to ap-
proximate asymptotically the general solution of the re-
tarded equation (which depends on an arbitrary initial
function) by the general solution of an ordinary
difFerential equation (which depends on a finite set of ini-
tial conditions). More precisely, the method consists in
constructing a cascade of dominant reductions, that is a
series of ordinary difFerential equations, each of which
pertains to a difFerent regime of the system, and of which
the solutions asymptotically approach the exact solution
in the regime considered. The order of differentiation of
the dominant reduction is believed to increase as the be-
havior of the system evolves towards an increasing com-
plexity.

This concept of a cascade of dominant reductions as a
road to chaos specific to retarded systems has been par-
tially tested numerically' on a model of the hybrid de-
vice recently studied in nonlinear optics. ' ' lt, however,
needs further support since, mathematically, the ap-
proach can be justified by plausibility arguments only.

We wish to argue here that Fabry-Perot cavities (see
Fig. 1), in which one of the semitransparent plates is re-
placed by a harmonically suspended mirror, might be a
good paradigm for the dynamics of retarded systems:
they could illustrate the difFerent facets of the method
and probe its validity, either by means of numerical simu-
lations, comparing solutions of the exact (retarded} equa-
tion of motion with the solutions of the successive dom-
inant reductions, or by means of laboratory experiments.
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Indeed the parameter which characterizes the diferent
regimes is not merely the time lag, that is the round-trip
travel time r of light in the cavity, which is usually very
short. Rather, it is the ratio of the finesse I of the cavity
(which also measures the number of round trips of light
necessary to fill up the cavity) and the number of round
trips of light during a period 2ir/Qo of oscillation of the
mirror. In other words, for large I'~QO, the delays must
certainly be accounted for. However, it must be stressed
that even when Frf)o is small, the delays might be of im-

portance, even though further simplifications of the
method are then possible (see below). Hence, currently
available cavities, in particular those presently construct-
ed as mock-ups of the future interferometric detectors of
gravitational radiation, should be sensitive and flexible
enough to be used to test the theory. The multistability
due to the nonlinear radiation pressure force and the pre-
dicted instability caused by the time lag should be easily
detectable.

The dynamics of a pendular Fabry-Perot cavity were
initially investigated by Dorsel et a/. In Refs. 21 and
22 Deruelle and Tourrenc studied the effects of the time
delay in the special configuration where the equilibrium
position of the mirror corresponds to a maximum of the
radiation force. In this particular case, using the method
of I.agrange, they obtained an approximate ordinary
di8'erential system describing the motion, up to first order
in terms of the delay and up to second order in terms of
the mirror displacement from its equilibrium position.
More recently, Aguirregabiria and Bel derived from the
linearized hereditary differential system the characteristic
equation, which allowed them to study the bifurcation
between stable and unstable solutions. They concluded
that instabilities due to delays certainly cannot be ignored
for values of the parameters pertinent to the future inter-
fero metric detectors of gravitational radiation. This
completed some previous work by one of us. However,
these results are not su%cient to describe the asymptotic
evolution of the system in detail.

In this paper we shall adapt the method used in Ref.
23, which is based on the series I.iapounofF'introduced in
his so-called first method 5 (see Appendix A for an ele-
mentary introduction to this technique). We shall derive
the dominant reduction of the equation of motion, for
high finesse but arbitrary delays, and conclude by discuss-
ing in some detail the case of small delays.

X(t)= k exp(zt)+k exp(zr)+hk exp(2zr)

+gkk exp(z+z )t +)'i k exp(2zt)+

where z and its complex conjugate z are roots of the
characteristic equation, and k is an arbitrary constant,
into the hereditary difkrential equation. The parameters
h, g, . . . are then formally determined by identifying suc-
cessive powers of k and k.

Now when either the finesse or the length of the cavity
is large enough, the roots of the characteristic equation
with the largest real part, z, and z, say, have a positive
real part (with z, &z, ), as shown in Ref. 23, so that the
development (1) is dubious. However, there exists a suit-
able combination of X(t) and its first and second deriva-
tives which presumably does converge. Neglecting the
terms which asymptotically tend to zero, we thus obtain
the dominant reduction of the retarded system (expanded
here up to the second order in terms of the displacement),
that is the ordinary differential equation (of the second
order in this case) whose general solution is (1), in which
all the k but k, are set equal to zero. In some cases to be
discussed below, the dominant reduction can be further
simplified by an expansion in terms of the delay.

8. The hereditary differential system

Consider the Fabry-Perot cavity of Fig. 1. The motion
of the mirror is determined by the combined action of the
mechamcal restoring force and the radiation pressure of
light. Its equation of motion has been obtained in Ref.
21. We shall write it in the form (see caption of Fig. 1 for
notations):

x+—+x+xo=(A sin 8)ff,

where x =4m[D(r) —D ]/A, and xo=4n(D Do)/A, .
, —

D =A(2m +,1)/4 being a resonance length of the cavity,
and r the time in units of co '. The constant A is
A =8mP/cMkcg, c being the speed of light. f is equal,
up to a phase, to E/(P' sin8) where E is the elec-
tromagnetic field on the mirror at time t:

i'm imari ri

II. DERIVATION GF THE APPROXIMATE
DOMINANT REDUCE j.ON

A. Outline of the method

We start from the exact hereditary di8'erential equation
describing the motion of the mirror ' [see Eqs. (2)—(4)
below]. We then expand it about a stationary solution in
terms of the displacement. Following Liapouno8's Srst
method (cf. Appendix A), we seek its general solution
X(t) under the form of a sum over the characteristic
roots z; of the linearized retarded equation. Hence we
substitute

Do

FIG. 1. The parameters of the cavity. P is the laser power, A,

its wavelength. 8 =cos8 is the reAectivity of the fixed mirror
Mi. The mobile mirror M2 (supposed to be without losses), of
mass I, angular frequency co, and quality factor Q is suspended
to a wire anchored at Do. The total length of the cavity is D(t).
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f (t)= 1+p exp[i (x(i~ —x& )]f(t —r(i~ )

A recurrent application yields

f =1+ g p"expi g (xi,.~

—x, ) (3b)

where x, is the equilibrium position, p=cosH expix„and
x~~)

——x(t r~), r—j being the time needed by the light to
make j round trips in the cavity ending at time t. In the
static case, x,ji ——const, ff is proportional to the usual
Airy function. In the following we shall in fact set r =jr
with r =2Doco/c, which in all practical cases is an excel-
lent approximation. The equilibrium position x, is the
stationary solution of Eqs. (2) and (3) and is related to the
suspension point xo by

X

A sin 8
Xo+X~ =

(1—p)(1 —p)

(see Fig. 2).

C. The characteristic equation

In order to obtain the characteristic equation, we set

x (t) x, =X—(t), (5)

FIG. 2. The positions of equilibrium of the mirror. These lie
at the intersection of the opposite of the mechanical restoring
force (a straight line) and the radiation pressure force (an Airy
function). %'hen their number exceeds 1 the system is multi-
stable (see Refs. 20-22), and the equilibrium position is chosen
as shown in the 5gure.

and linearize f in X. Inserting the ansatz (1) for X(t) into

f and Eq. (2), we recover, at zeroth order in k, the equa-
tion (4) of the equilibrium configuration, and obtain at
erst order in k the characteristic equation

z A slli 8 l A(p —p)z +—+1=
Q (1—p)( I —p) (1—Ap)( 1 —AP)

where

A=exp( zr} . —

This equation has already been analyzed under a di8'erent
form in Ref. 23. In particular, the threshold at which the
real part of z, and z, —the roots with the largest real
part —becomes positive, has been determined. In the
case when 8 is small and x, lies within a resonance peak
(cf. Fig. 2), we set y, =2x, 8 so that y, =O(1). When

~

z
~

r8 ~(1 the characteristic equation reduces to

sry, 2y,'+ Q
'—. .. + 1+

a8 (1+y, ) a(1+y, )

where a=8 /8A. The system develops a linear instabili-
ty when the coeflicient of z becomes negative (see below
for application to cavities of special interest). The point

l

to stress here is that the expansion parameter is not mere-
ly the round-trip travel time of light in the cavity, but
zr8, that is, as mentioned in the Introduction, F~OQ
where Qo is the eftective angular frequency of the mirror,
and the finesse F is I' =2m /8 .

If we call z, and z, the solutions of (8}, the linearized
equation of motion can be written as

y' —(z, +z, }y+z,z,y =0,
wherey =2(x —x, )8

0, The approximate dominant reduction

%e now proceed to construct, up to the second order
in the displacement, the dominant reduction of the
hereditary equation of motion, that is the ordinary
difterential equation whose general solution is conjec-
tured to approach the general solution of the retarded
equation asymptotically. This equation reads (for z i &z i )

~ ~ 0

X—(zi+z, )X+ziz, X =azoX +a, iXX+a02X

where the coeScients a; are to be determined.
To this end, we first expand f up to the second order in

x(t) —x, =X(t) and replace X(t) by the ansatz (1). The
development of f up to the second order in terms of k
and k then yields, for t =0,

kP k A gkkWA I k'A' I k '4 '
(1—p)f =1+ip + + + 2 +

1 —Ap 1 —Ap 1 —AAp 1 —Ap 1 —A p

2kkAA(1 —p AA) k A (1+Ap) k A (1+Ap)
(1—Ap)(1 —Ap)(1 —AAp) (1—Ap)(1 —A p) (1—Ap)(1 —A p)
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To get f —see (3)—we transform p into p and i into —i (leaving A and k unchanged, because x is real}. Substituting (1}
into (2) and using (11),we recover (4), (6) and (7) by identifying the terms constant and linear in k and k. As for h and g,
they are obtained by identifying the terms quadratic in k and k. They read

, h=h(A, .-)
4z'+2z/Q+1 P—(A)

5
(z+z)'+(z+z)/Q+1 —8

where z is a solution of the characteristic equation (6), (7) and where

i( x, +xo) A(p —P)
P(A)=

(1—pA )(1—pA )

(12}

(13)

(14)

Q(A) =(x, +xo)A
(1—pA)(1 —pA)

i (x, +xo)AA(p —p)R=
(1—pAA)(1 —PAA)

p(1+pA) p(1+pA)
2(1 —pA}(1—pA ) 2(1—pA)(1 —pA )

(16)

PP pj p(1 —p AA)

(1—pA)(1 —pA) (1—pA)(1 —pA) (1—pA)(1 —pA)(1 —pAA)

p(1 —p AA)

(1—pA )(1—PA )( 1 —pAA)

The general solution at the approximation considered
is now known in terms of the characteristic roots of the
linearized equation„provided that the series (1) con-
verges. If the real part of z, and z, becomes positive, the
solution is not asymptotically stable and the development
(1) is meaningless. Following the method outlined previ-
ously and in Appendix A, we look for the combination of
X and its derivatives which does converge. Its limit is the
dominant reduction, Eq. (10), whose coeScients a," are
obtained by inserting the formal expressions (1) and
(12)—(17) for X into Eq. (10), and then identifying the
terms quadratic in k and k

azo(z —z ) =hz (2z —z )+hz(2z —z) —zzg, (18)

a02(z —z ) =zz [hz(2z z)+hz (2z —z)——gzz ],
where h, h, and g are given by Eqs. (12)-(17) and where
Z Z]e

This completes the obtainment of the approximate
dominant reduction for arbitrary delays. Note that when

z, =z, the a,. - are not de6ned. Should that happen, the
method would have to be slightly modif]jed.

Let us now give an expansion of the dominant reduc-
tion [Eqs. (10) and (18}—(20)] in terms of the delay, valid
when F~Aog~1 and for small 8. A rather long but
straightforward calculation yields

y+Ey+Q y =0, (21)

where y is the variable defined in (9) and where the
"damping" function E and the "angular frequency*' 0
are given by

a„(z —z) =zz[ —2h (2z —z) —2h(2z —z)+g(z+z)],
(19)

Sry,K= Q a8'( I +y')'
8r(1 —5y, )

a8 (1+y, )
(22)

2ys 1 3ys

a(1+y,')' a(1+y,')'
(23)

This expansion of the dominant reduction can, in fact, be
derived directly- from the exact hereditary equations of
motion (2)-(4); see Appendix B.

X+X/Q +(ziz~ QipX)X =0 (2&)

and for very small displacements the motion is harmonic;
its natural frequency cu becoming Qo=(z, z, )' co due to
the radiation pressure force (see Fig. 2). When the term
a2OX becomes significant, the equation is elliptic and its
solution is known.

%'hen the delay can no longer be neglected and for
very small displacements, Eq. (24) reduces to

III. DISCUSSIQN

The preceding section has essentially consisted in re-
placing the exact equation for the displacement X of the
mobile mirror of the Fabry-Perot cavity represented in
Fig. 1 by a much simpler equation, the dominant reduc-
tion, "of the form

X—X[(zi+zi)+a»X+a02X]+X(z, z, —azoX)=0,

(24)

where z, and z, are the roots with the largest real part of
equation (6) and where the coefficients a, are defined by
(18}—(20) and (12)—(17).

When the delay can be neglected, Eq. (24) reduces to
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Q=10, A, =0.6 pm, &@=2m rads (27)

X —(z, +z, )X+ziziX =0,
and the motion is linearly unstable if the real part of z, is

positive. In that case the nonlinear terms grow, and
when they cannot be neglected any more, the sign of the
coefficient of X in (24) may vary in time so that the nature
of the attractor of the dynamical system is not obvious a
priori. Preliminary numerical studies of the exact equa-
tion of motion indicate, however, that the system can ap-
proach a limit cycle.

Let us now consider cavities of actual interest, such as
those planned to detect gravitational radiation and their
present prototypes. Typical values for the parameters
(see Fig. 1) are

P/M=10 Wkg (28}

a value relevant for the future detectors (I'=1 kW,
M = 100 kg) as well as their prototypes (P = 1 W,
M=100 g). These values yield A =3.5X10 . On the
other hand, the cavities are very difFerent as regards the
delays. Since the reAectivity of the mobile mirror can
have various values (ranging from 8=10 ' to 8=10 '

)

and since the length D of the gravitational wave detectors
will be of the order of 1 km when their present prototypes
are 1 m long, we shall leave 8 and D as free parameters.

Suppose first that Eq. (24) can be expanded up to the
first order in terms of the delay. %e showed in the
preceding section that it then reduces to Eqs. (21}—(23).
Kith the values chosen for the parameters it reads

y'+y[g ' —(1.2 X 10 )D8 (1—2y)]+y [1+0.148 (1 —0.5y)] =0 . (29)

To be specific we chose in (29) y, = 1 (see Fig. 2). The
case y, =0 (equilibrium position at a maximum of the ra-

diation pressure force) has been considered in Refs.
21-22. It is clear that for all the values of D (1 m & D & 1

km) and 8 (0.03 & 8 &0. 1}considered, and for small dis-
placements (y « 1), Eq. (29) can be further simplified to

z +az+b =0 .

If both z, and z2 have negative real parts, the motion is
asymptotically stable, that is, x tends to zero as t tends to
inf][nity.

Let us now consider the nonlinear difFerential equation

y'-(1.2X10 ')D8 y+0. 148 y =0 . (30) x+ax+bx =f (x) (A4)

In all cases then [at least when Eq. (29) can be used —see
below], the system is linearly unstable. Its behavior is de-
picted in Fig. 3 for four difkrent typical cases.

Now, as shown previously, the dominant reduction (24}
can be expanded in terms of the delay only if

~
z

~

r 8
«1, where z is the characteristic root of (30) and where
r =2Dco jc. One easily sees that this condition is satisfied
by the present prototypes (D =1 m) of the detectors but
will be violated by the future detectors (D =1 km) if the
re6ectivity of the mobile mirror becomes significantly
smaller than 10 '. Indeed for D =1 km and 8=10
for example, ~z

~

r8 =5&(10. The description of such
cavities therefore cannot be based on the simple analysis
of Appendix 8 which is valid only for small delays. In
that case then we have to use the full-Aedged method
which yields the "dominant reduction" (24).

with f (0)=f(0)=0. Under some technical conditions
on the function f (x), Liapounoff proved that if the
roots z] and z2 of the characteristic equation of the
linearized equation, that is to say (Al), have both nega-
tive real parts, then the motion is asymptotically stable.

To prove this result, Liapounoff (in the so-called
Liapounoff first method) considers the infinite series

x = k, exp(zit)+kzexp(zzt)+czpkiexp(2zit)

+2c „k,kzexp[(z, +zz )tl+ cpzk z exp(2zzt) +
(A5)

1km

APPENDIX A: DOMINANT REDUCTION OF
ORDINARY NONLINEAR DIFFKRKNTIAL EQUATIONS

The general solution of the homogeneous linear
second-order difFerential equation

is

x+ax+bx =0 (A1) 10-'5

x =kiexP(zit)+kzexP(zzt)

where k, and k2 are arbitrary constants arid where z]
and zz (with zi&zi) are the roots of the characteristic
equation

FIG. 3. Onset of the instability. For di8'erent values of the
length of the cavity and of the reAectivity of the mobile mirror,
we give here the angular pulsation (upper corner) and the e-
folding time (lower corner) in units of co
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Once it has been shown that the coe%cients c; can be
determined algorithmically in order that (A5) formally
satisfy Eq. (A4) for arbitrary constants k, and k2, then
(A5) is the general solution of Eq. (A4) {at least when
z i &z2 ) and Liapounoff's result is intuitively obvious. To
prove it rigorously he had to show that the series (A5)
converges for 6nite values of t greater than some value to
and that it converges to zero when t tends to in6nity.

Here we shall follow the same line of argument to in-
troduce the concept of dominant reduction. In order that
the discussion be clearer we shall restrict ourselves to the
case of ordinary nonlinear equations of the type (A4).
The extension of the framework to the delay systems con-
sidered in the main body of this paper is straightforward.

Let us therefore consider again the linear equation
(A 1), but this time when the real part of one of the roots
z, and zz is positive. To be speci6c we shall consider the
case when z& and z2 are real and, respectively, positive
and negative. The solution (A2) will then not be asymp-
totically stable unless k& is zero. However, if we elimi-
nate ki between expression (A2) and its derivative with
respect to t we obtain

x —zix =ki(zz —zi )exp(zest), (A6)

x —z, x —S (x)=E(t), (AS}

where E (t) is an infinite sum of exponentially decreasing
functions of t and where

and since exp(z2t) tends to zero, the left-hand side of this
expression is asymptotically stable. Considering its limit,
we obtain the differential equation

x —zix =0.
This equation is a reduction of Eq. (A 1), that is, a
difFerential equation of lower order whose solutions are
also solutions of Eq. (Al). Using the terminology intro-
duced in Ref. 17 it is actually its dominant reduction, i.e.,
a di8'erential equation of lower order whose solutions
asymptotically approach the solutions of Eq. (Al) in the
case considered.

Consider now again the nonlinear equation (A4) and
the infinite series (A5). If z, has a positive real part, this
series is generically meaningless, since an infinite subset
of its terms diverges exponentially as t tends to in6nity.
Let us, however, formally determine the coeScients c; as
before, thus formally de6ning the general solution of Eq.
(A4). Let us then, still in a formal way, eliminate k, from
expression (A5) and the series obtained by taking its
derivative with respect to t. This elimination leads to an
expression of the following form:

The dlfFerential equation obtained by taking the limit
of (AS}

x —z, x —S(x)=0 (A10)

is then by construction the dominant reduction of Eq. (4).
Indeed it is the differential equation whose general solu-
tion is expression (A5) in which one sets k2 equal to zero
[under the assumptions previously made about the con-
vergence of S(x) and E (t)].

Let us now present the simplest example for which the
use of a series similar to (A5} can be thoroughly tested.
Consider the following 6rst-order nonlinear difFerential
equation with real coefBcients a and b

x+ax =bx

whose general solution is

(Al 1)

x = k exp( at)—
1+( kb /a )exp( —ai)

(A12)

where k is an arbitrary constant. Its linearized approxi-
mation is

x+ax =0 (A13)

and the root of the characteristic equation is z = —a.
Consider now the formal series

x =k exp(zt)+k czexp(2zt)+ (A14)

which is nothing but the formal development of (A12) re-
gardless of the fact that the expansion is permissible or
not. The expansion converges only if

i
k(b/z)exp(zt)

i
&1 . (A16)

Therefore if z is negative there always exists a value of to
such that if t ) to then the series (A15) converges and we
recover LiapounoFs result: if the characteristic root of
the linearized equation (A13) is negative, the solution of
the nonlinear equation (Al 1) is asymptotically stable and
is given by the series (A15).

The dominant reduction of Eq. (A 1 1) is obtained by
formally eliminating the constant k between (A15}and its
derivative. That it is meaningful for all values of its argu-
ments follows from the fact that it is nothing but the
differential equation (A 1 1) we started from.

and impose the condition that it be a solution of (All).
One thus obtains algorithmically the formal general solu-
tion of (Al 1):

x =k exp(zt) [1+k (b /z)exp(zt )

+k2(b/z) exp(2zt)+ ],

SC'x) =a20x +a»xx+a02x +

the a,j being some coeScients determined algorithmical-
ly.

To keep with LiapounoFs standards of rigor one
should show that the series S(x) and E (t) so defined con-
verge in some domain and that E(t) tends to zero as r

goes to infinity. To our knowledge these crucial results
have not yet been proven, and we shall here assume them.

APPENDIX 8: THE APPRQXIMATK DGMINANT
REDUCTION IN THK CASK QF A SMALL DELAY

The equation of motion of the suspended mirror of the
Fabry-Perot cavity of Fig. 1 [Eqs. (2)—(4)] can be written
as (cf. Ref. 21 and see text for notations)

A sin 8x+x/Q+x+xo=
i

1 —cos8 exp [iX(r ) ] i
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where the function x(t) is a solution of the delay equation

exp[ix (t)]
exp[ix (t —r)]

1+cos8 I exp[ix (t —r) ]—exp[ix ( t —r }]I
r being here the round-trip travel time of light in the cav-
ity which satisfies

yryS+yl
y+y/Q+y = —2

a(1+y, )

y,'(3y,' —1)+y (3—y,')+ gy, y;y,+ 2 3a(1+y,')'

(B6)

rc/~=2D +X[x(t)+x(t r)]—/4~ . (B3)
where y, and y,- are solutions of the following delay sys-
tem:

A sin 8
X +Xp= 71+cos28 —2 cos6Icosx,

(B4)

(In the following we shall in fact set r =2Doto/c).
The position of equilibrium x, of the mirror, that is the

stationary solution of Eqs. (Bl)—(B3), is such that

y„=y„(1—8 /2) —8 y,y;/2+8 y/2

+(8'/2) Iy; [(y —y„)(1—8'/2)+y;y, 8'/2]

—(I —8'/2)y„y; —8'y, (y„'—y )/4

+8'y, y'/41 (B7)

x —x, =8 y/2,
x —x, =8 (y„+iy, )/2,

x, =8 y, /2,

(B5)

we obtain the following approximate hereditary equation,
valid for y (g1:

see Fig. 2 and Eq. (4).
We now expand the equation of motion (Bl)—(B3)

about x„up to the second order in the displacement. As-

suming 8 to be small and setting

y; =y;(1-8'/2) —8'y, (y -y„)/2
—(8'/2) I

—y „'/2+y /2+y„y +8'y, y„y, /2

—
—,'(I —8'/2)(y„' —y ) —8'y'/4I,

where we have set f=f(t +r)
Consider the linear approximation of the equation of

motion, that is, Eqs. (B6)-(BS) truncated at linear order.
Setting y =exp(zt) we recover the characteristic equation
(6) (for small 8), under a different form:

g4 I
z +z/Q+1=-

2a(1+y, ) [exp(zr) —(1—8 /2)] +(y, 8 /2)
(B9)

y„=y +2rf, /8, y, =2rf, /8 (B10)

and expand all functions f=f (t + r) as f=f (t)+ r'f (t),
thus making a "Lagrange expansion. " Inserting (B10)
into (B7) and (B8) gives f„and f; straightforwardly, and
hence y„and y, :

Let us now restrict ourselves to the case of a small de-
lay and solve Eqs. (B7) and (B8) iteratively. When the de-
lay is neglected (zeroth order) we have y„=y, =y and

y;=y;=0. At first order we introduce f„and f; as

y, =y —, , y +, » [1—8'(I+y,')/4]yy
8'(1+y,') 8'(1+y,')'

(B1 1)
2ryq 2r 2 2 2, [(1—y, ) —8 (1+y, ) lyy.

8 (1+y,') 8'(1+y, )'
(B12)

Inserting the result into the equation of motion (B6),
we Anally obtain the dominant reduction for I'vQp(+1
and small 8, which is nothing but Eqs. (21)—(23).
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